94 research outputs found

    A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain

    Get PDF
    The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase

    Submesoscale dispersion in the vicinity of the Deepwater Horizon spill

    Full text link
    Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 meters to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. \textcolor{black} {Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200m-50km scales and clearly indicate that dispersion at the submesoscales is \textit{local}, driven predominantly by energetic submesoscale fluctuations.} The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Ocean convergence and the dispersion of flotsam

    Get PDF
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    How do hydrodynamic instabilities affect 3D transport in geophysical vortices?

    No full text
    Three-dimensional (3D) transport within geophysical vortices (e.g. ocean eddies) is important in understanding processes at a variety of scales, ranging from plankton production to climate variability. 3D transport can be affected by hydrodynamic instabilities of geophysical vortices; however, how the instabilities affecting 3D transport is not clear. Focusing on barotropic, inertial and 3D instabilities, we investigate the joint impacts of instabilities on 3D transport by using analytical methods and direct numerical simulations. We discover for the first time that material can be exchanged through 3D pathways which link a family of vortices generated by the instabilities in a single, initially unstable vortex. We also show that instabilities can increase the magnitude of vertical velocity, mixing rate and vertical material exchange. Besides, we find that instabilities can cause the kinetic energy wavenumber spectrum to have a power-law regime different than the classic regimes of k-5/3 and k-3, and propose a new energy spectrum to interpret the non-classic regime

    On modeling turbulent exchange in buoyancy-driven fronts

    No full text
    •Comparisons of small-scale processes using two numerical approaches (LES and OGCM).•Two classic test cases are investigated: lock-exchange and mixed layer instability.•The impact of common OGCM modeling choices in the solutions are quantified.•Choice of turbulence closure is important when modeling submesoscale processes. Our primary objective is to quantify the uncertainty in the solution space associated with mixing and stirring in ocean general circulation models (OGCMs) due to common modeling choices, namely the spatial resolution, tracer advection schemes, Reynolds number and turbulence closures. In many cases the assessment of errors is limited by the observational data set, therefore, large eddy simulations from a spectral element Boussinesq solver are taken as ground truth. First, the lock-exchange problem is used to quantify the temporal evolution of mixing from shear-driven stratified overturns. It is found that mixing in an OGCM is more sensitive to the choice of grid resolution than any other parameters tested here. The results do not monotonically converge towards the ground truth as the resolution is refined. Second, stirring of a passive tracer by submesoscale eddies generated by surface density fronts is considered. We find that using a second-order turbulence closure leads to an accurate representation of the restratification in the mixed layer
    corecore