495 research outputs found

    Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    Get PDF
    AbstractComputational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure

    Constraining Parity Violation in Gravity with Measurements of Neutron-Star Moments of Inertia

    Full text link
    Neutron stars are sensitive laboratories for testing general relativity, especially when considering deviations where velocities are relativistic and gravitational fields are strong. One such deviation is described by dynamical, Chern-Simons modified gravity, where the Einstein-Hilbert action is modified through the addition of the gravitational parity-violating Pontryagin density coupled to a field. This four-dimensional effective theory arises naturally both in perturbative and non-perturbative string theory, loop quantum gravity, and generic effective field theory expansions. We calculate here Chern-Simons modifications to the properties and gravitational fields of slowly spinning neutron stars. We find that the Chern-Simons correction affects only the gravitomagnetic sector of the metric to leading order, thus introducing modifications to the moment of inertia but not to the mass-radius relation. We show that an observational determination of the moment of inertia to an accuracy of 10%, as is expected from near-future observations of the double pulsar, will place a constraint on the Chern-Simons coupling constant of \xi^{1/4} < 5 km, which is at least three-orders of magnitude stronger than the previous strongest bound.Comment: 14 pages, 6 figures, replaced with version accepted for publication in Phys. Rev.

    EXO 0748-676 Rules out Soft Equations of State for Neutron Star Matter

    Get PDF
    The interiors of neutron stars contain matter at very high densities, in a state that differs greatly from those found in the early universe or achieved at terrestrial experiments. Matter in these conditions can only be probed through astrophysical observations that measure the mass and radius of neutron stars with sufficient precision. Here I report for the first time a unique determination of the mass and radius of the neutron star EXO 0748-676, which appears to rule out all the soft equations of state of neutron star matter. If this object is typical, then condensates and unconfined quarks do not exist in the centers of neutron stars.Comment: To appear in Nature, press embargo until publicatio

    Optical Lightcurve & Cooling Break of GRB 050502A

    Get PDF
    We present lightcurves of the afterglow of GRB050502A, including very early data at t-t_{GRB} < 60s. The lightcurve is composed of unfiltered ROTSE-IIIb optical observations from 44s to 6h post-burst, R-band MDM observations from 1.6 to 8.4h post-burst, and PAIRITEL J H K_s observations from 0.6 to 2.6h post-burst. The optical lightcurve is fit by a broken power law, where t^{alpha} steepens from alpha = -1.13 +- 0.02 to alpha = -1.44 +- 0.02 at \~5700s. This steepening is consistent with the evolution expected for the passage of the cooling frequency nu_c through the optical band. Even in our earliest observation at 44s post-burst, there is no evidence that the optical flux is brighter than a backward extrapolation of the later power law would suggest. The observed decay indices and spectral index are consistent with either an ISM or a Wind fireball model, but slightly favor the ISM interpretation. The expected spectral index in the ISM interpretation is consistent within 1 sigma with the observed spectral index beta = -0.8 +- 0.1; the Wind interpretation would imply a slightly (~2 sigma) shallower spectral index than observed. A small amount of dust extinction at the source redshift could steepen an intrinsic spectrum sufficiently to account for the observed value of beta. In this picture, the early optical decay, with the peak at or below 4.7e14 Hz at 44s, requires very small electron and magnetic energy partitions from the fireball.Comment: 22 pages, including 3 tables and 1 figure, Accepted by Ap

    Long-term X-ray changes in the emission from the anomalous X-ray pulsar 4U 0142+61

    Full text link
    We present results obtained from X-ray observations of the anomalous X-ray pulsar (AXP) 4U 0142+61 taken between 2000-2007 using XMM-Newton, Chandra and Swift. In observations taken before 2006, the pulse profile is observed to become more sinusoidal and the pulsed fraction increased with time. These results confirm those derived using the Rossi X-ray Timing Explorer and expand the observed evolution to energies below 2 keV. The XMM-Newton total flux in the 0.5-10 keV band is observed to be nearly constant in observations taken before 2006, while an increase of ~10% is seen afterwards and coincides with the burst activity detected from the source in 2006-2007. After these bursts, the evolution towards more sinusoidal pulse profiles ceased while the pulsed fraction showed a further increase. No evidence for large-scale, long-term changes in the emission as a result of the bursts is seen. The data also suggest a correlation between the flux and hardness of the spectrum, with brighter observations on average having a harder spectrum. As pointed out by other authors, we find that the standard blackbody plus power-law model does not provide the best spectral fit to the emission from 4U 0142+61. We also report on observations taken with the Gemini telescope after two bursts. These observations show source magnitudes consistent with previous measurements. Our results demonstrate the wide range of X-ray variability characteristics seen in AXPs and we discuss them in light of current emission models for these sources.Comment: 10 pages, 9 figures, in emulateapj style. Submitted to Ap

    Status of the ROTSE-III telescope network

    Get PDF
    ROTSE-III is a homogeneous worldwide array of 4 robotic telescopes. They were designed to provide optical observations of γ-ray burst (GRB) afterglows as close as possible to the start of γ-ray emission. ROTSE-III is fulfilling its potential for GRB science, and provides optical observations for a variety of astrophysical sources in the interim between GRB events

    Prompt Optical Detection of GRB 050401 with ROTSE-IIIa

    Full text link
    The ROTSE-IIIa telescope at Siding Spring Observatory, Australia, detected prompt optical emission from Swift GRB 050401. In this letter, we present observations of the early optical afterglow, first detected by the ROTSE-IIIa telescope 33 s after the start of gamma-ray emission, contemporaneous with the brightest peak of this emission. This GRB was neither exceptionally long nor bright. This is the first prompt optical detection of a GRB of typical duration and luminosity. We find that the early afterglow decay does not deviate significantly from the power-law decay observable at later times, and is uncorrelated with the prompt gamma-ray emission. We compare this detection with the other two GRBs with prompt observations, GRB 990123 and GRB 041219a. All three bursts exhibit quite different behavior at early times.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letter

    Refined Neutron-Star Mass Determinations for Six Eclipsing X-Ray Pulsar Binaries

    Full text link
    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor beta of the companion star, where beta = 1 indicates a completely filled Roche lobe. In previous work a range of beta between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal lightcurve data to constrain beta. We find neutron star masses of 1.77 +/- 0.08 M_{sun} for Vela X-1, 0.87 +/- 0.07 M_{sun} for 4U 1538-52 (eccentric orbit), 1.00 +/- 0.10 M_{sun} for 4U 1538-52 (circular orbit), 1.04 +/- 0.09 M_{sun} for SMC X-1, 1.29 +/- 0.05 M_{sun} for LMC X-4, 1.49 +/- 0.08 M_{sun} for Cen X-3, and 1.07 +/- 0.36 M_{sun} for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.Comment: 10 figures, accepted for publication in The Astrophysical Journa

    Equation of State of Nuclear Matter at high baryon density

    Get PDF
    A central issue in the theory of astrophysical compact objects and heavy ion reactions at intermediate and relativistic energies is the Nuclear Equation of State (EoS). On one hand, the large and expanding set of experimental and observational data is expected to constrain the behaviour of the nuclear EoS, especially at density above saturation, where it is directly linked to fundamental processes which can occur in dense matter. On the other hand, theoretical predictions for the EoS at high density can be challenged by the phenomenological findings. In this topical review paper we present the many-body theory of nuclear matter as developed along different years and with different methods. Only nucleonic degrees of freedom are considered. We compare the different methods at formal level, as well as the final EoS calculated within each one of the considered many-body schemes. The outcome of this analysis should help in restricting the uncertainty of the theoretical predictions for the nuclear EoS.Comment: 51 pages, to appear in J. Phys. G as Topical Revie

    The Anomalous Early Afterglow of GRB 050801

    Get PDF
    The ROTSE-IIIc telescope at the H.E.S.S. site, Namibia, obtained the earliest detection of optical emission from a Gamma-Ray Burst (GRB), beginning only 21.8 s from the onset of Swift GRB 050801. The optical lightcurve does not fade or brighten significantly over the first ~250 s, after which there is an achromatic break and the lightcurve declines in typical power-law fashion. The Swift/XRT also obtained early observations starting at 69 s after the burst onset. The X-ray lightcurve shows the same features as the optical lightcurve. These correlated variations in the early optical and X-ray emission imply a common origin in space and time. This behavior is difficult to reconcile with the standard models of early afterglow emission.Comment: 5 pages, 1 figure. Accepted for publication in ApJ Letter
    corecore