30 research outputs found

    Landscape constraints on mire lateral expansion

    Get PDF
    Little is known about the long-term expansion of mire ecosystems, despite their importance in the globalcarbon and hydrogeochemical cycles. It has been firmly established that mires do not expand linearlyover time. Despite this, mires are often assumed to have expanded at a constant rate after initiationsimply for lack of a better understanding. There has not yet been a serious attempt to determine the rateand drivers of mire expansion at the regional, or larger spatial scales. Here we make use of a naturalchronosequence, spanning the Holocene, which is provided by the retreating coastline of NorthernSweden. By studying an isostatic rebound area we can infer mire expansion dynamics by looking at theportion of the landscape where mires become progressively scarce as the land becomes younger. Ourresults confirms that mires expanded non-linearly across the landscape and that their expansion isrelated to the availability of suitably wet areas, which, in our case, depends primarily on the hydro-edaphic properties of the landscape. Importantly, we found that mires occupied the wettest locationsin the landscape within only one to two thousand years, while it took mires three to four thousand yearsto expand into slightly drier areas. Our results imply that the lateral expansion of mires, and thus peataccumulation is a non-linear process, occurring at different rates depending, above all else, on thewetness of the landscape

    Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development

    Get PDF
    Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession

    The Kulbacksliden Research Infrastructure: a unique setting for northern peatland studies

    Get PDF
    Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbacksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbacksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system

    Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams

    Get PDF
    Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector

    Fostering breakthrough research

    No full text

    A Simplified Drying Procedure for Analysing Hg Concentrations

    Get PDF
    Mercury (Hg) in peatlands remains a problem of global interest. To mitigate the risks of this neurotoxin, accurate assessments of Hg in peat are needed. Treatment of peat that will be analysed for Hg is, however, not straightforward due to the volatile nature of Hg. The drying process is of particular concern since Hg evasion increases with the temperature. Samples are, therefore, often freeze-dried to limit Hg loss during the drying processes. A problem with freeze-drying is that cost and equipment resources can limit the number of samples analysed in large projects. To avoid this bottleneck, we tested if drying in a 60 degrees C-degree oven could be an acceptable alternative to freeze-drying. We both freeze-dried and oven-dried (60 degrees C) 203 replicate pairs of peat samples, and then examined the differences in total Hg concentration. The Hg concentration differed significantly between the two drying methods with a median Hg deficit in oven-dried samples of 4.2%. Whether a 4.2% deficit of Hg depends on one's purpose. The lower median Hg concentration in oven-dried samples has to be weighed against the upside efficiently drying large sets of peat samples. By freeze-drying a subset of the samples, we fitted a function to correct for Hg loss during oven-drying (y = 0.96x + 0.08). By applying this correction, the freeze-drying bottleneck could oven-dry large-scale inventories of total Hg in peatlands with results equivalent to freeze-drying, but only have to freeze-dry a subset

    Nutrient losses from forage stands in the non-growing season

    No full text

    Biochar increases tree biomass in a managed boreal forest, but does not alter N2O, CH4, and CO2 emissions

    Get PDF
    Biochar soil amendment may provide the forestry sector with a formidable tool to simultaneously sequester carbon (C) in the soil and aboveground by enhancing plant productivity, yet several key uncertainties remain. Crucially, empirical evidence of long-term effects of biochar management on vegetation and on greenhouse gas emissions in forest ecosystems is scarce. Using a large field experiment in a young managed boreal forest in northern Sweden, we investigated the effects of biochar (applied either on the soil surface or mixed in the soil 8-9 years prior to this study) on supply rates of soil nutrients, on survival and growth of planted Pinus sylvestris, on community composition of the understory vegetation, and on forest floor fluxes of N2O, CH4, and CO2. We found that biochar promoted P. sylvestris survival only when biochar was applied on the soil surface. Conversely, biochar enhanced P. sylvestris growth overall, resulting in a 19% increase in C stored in biomass. Biochar also altered the composition of the understory vegetation, especially when mixed into the soil, and promoted a more resource-conservative community (i.e., with more ericaceous shrubs and less graminoids and forbs). Meanwhile, supply rates of the main soil nutrients were largely unaffected by biochar. Finally, we found that biochar did not alter overall N2O and CO2 emissions and CH4 uptake from the forest floor. Our findings show that biochar amendment increased the net C input to the system, since, besides directly increasing soil C stocks, biochar enhanced biomass growth without increasing soil C losses. Therefore, our study suggests that biochar could potentially be used for emissions abatement in intensively managed boreal forests
    corecore