376 research outputs found

    Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean

    Get PDF
    Greenhouse experiments were conducted to study the effects of glyphosate drift on plant growth and concentrations of mineral nutrients in leaves and seeds of non-glyphosate resistant soybean plants (Glycine max, L.). Glyphosate was sprayed on plant shoots at increasing rates between 0.06 and 1.2% of the recommended application rate forweed control. In an experiment with 3-week-old plants, increasing application of glyphosate on shoots significantly reduced chlorophyll concentration of the young leaves and shoots dry weight, particularly the young parts of plants. Concentration of shikimate due to increasing glyphosate rates was nearly 2-fold for older leaves and 16-fold for younger leaves compared to the control plants without glyphosate spray. Among the mineral nutrients analyzed, the leaf concentrations of potassium (K), phosphorus (P), copper (Cu) and zinc (Zn) were not affected, or even increased significantly in case of P and Cu in young leaves by glyphosate, while the concentrations of calcium (Ca), manganese (Mn) and magnesium (Mg) were reduced, particularly in young leaves. In the case of Fe, leaf concentrations showed a tendency to be reduced by glyphosate. In the second experiment harvested at the grain maturation, glyphosate application did not reduce the seed concentrations of nitrogen (N), K, P, Zn and Cu. Even, at the highest application rate of glyphosate, seed concentrations of N, K, Zn and Cuwere increased by glyphosate. By contrast, the seed concentrations of Ca, Mg, Fe and Mn were significantly reduced by glyphosate. These results suggested that glyphosatemay interfere with uptake and retranslocation of Ca, Mg, Fe and Mn, most probably by binding and thus immobilizing them. The decreases in seed concentration of Fe, Mn, Ca and Mg by glyphosate are very specific, and may affect seed quality

    Root uptake of lipophilic zinc-rhamnolipid complexes

    Get PDF
    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in 65Zn-spiked ice-cold solutions, compared with ZnSO4 alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO4, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When applied to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots

    Large variations in the hole spin splitting of quantum-wire subband edges

    Full text link
    We study Zeeman splitting of zone-center subband edges in a cylindrical hole wire subject to a magnetic field parallel to its axis. The g-factor turns out to fluctuate strongly as a function of wire-subband index, assuming values that differ substantially from those found in higher-dimensional systems. We analyze the spin properties of hole-wire states using invariants of the spin-3/2 density matrix and find a strong correlation between g-factor value and the profile of hole-spin polarization density. Our results suggest possibilities for confinement engineering of hole spin splittings.Comment: 4 pages, 3 figures, RevTex4, to appear in PR

    The role of growth regulators, embryo age and genotypes on immature embryo germination and rapid generation advancement in tomato (Lycopersicon esculentum Mill.)

    Get PDF
    One of the most important problem of tomato breeders is lengthy seed to seed cycle in a breeding program. In vitro techiques provide a lot of advantages for breeders. The objective of this work was to determine the effect of growth regulators and immature embryo age on embryo germination and rapid generation advancement in different tomato genotypes. For this purpose, four different tomato genotypes were used. Immature embryos were derived from fruits 20, 24, 28, 32 and 36 days after pollination. Fruits were left on the plant to mature as control (conventional breeding cycle). MS, MS + 0.1 mg/l kinetin, MS + 0.1 mg/l IAA and MS + 0.1 mg/l kinetin + 0.1 mg/l IAA were used as growth regulators. Growth regulators and genotypes resulted in nonsignificant effect on germination rate and rapid generation advancement, but embryo age resulted in significant effect. Germination rate from immature embryos ranged between 55.22 and 100%. Twenty eight (28) and thirty two (32) days old embryos gave the best germination rate. Days from pollination to flowering, shortened between 53,36 and 63,96 days in comparison with the conventional breeding cycle. This study showed that using immature embryo technique in tomato breeding offers more generation per year when compared to conventional breeding practice.Key words: Growth regulators, immature embryo culture, embryo age, tomato, kinetin, IAA, shortened breeding cycle

    Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora

    Get PDF
    Artemisia plants and foliaceous lichens are known to be capable of accumulating heavy metals (HM) from soil and air. These plant species are widespread on polluted sites of Azerbaijan. However, so far their capacity to accumulate HM in their shoots and roots has not been tested. Three Artemisia and two lichen species were collected from different contaminated sites of Azerbaijan. Plant and surface soil samples were measured for Cd, Cu, Pb, Ni and Zn concentrations by ICP-AES.The results indicated that among the Artemisia species A. scoparia showed the best HM accumulation properties. Lichen species were also distinguished by very high amounts of HM in their biomass, while in surrounding soil samples HM concentrations had higher contents than the soils occupied only with Artemisia species.The results indicate that on contaminated sites Artemisia and lichens accumulated metals in their biomass without toxicity symptoms. Taking large biomass and high adaptation ability into account, A. scoparia represents a good tool for a phytoremediation approach on polluted soils

    Synthesis and dye sensitized solar cell applications of Bodipy derivatives with bis-dimethylfluorenyl amine donor groups

    Get PDF
    Three Bodipy dyes with strong absorptivities in the visible and near infrared regions were designed, synthesized and their potential as photosensitizers for liquid electrolyte-based dye sensitized solar cells have been evaluated. For the first time Bodipy derivatives with bis-dimethylfluorenyl amine donor groups which were known for their bulky structures as donor groups have been used together. We altered our mostly used triphenylamine group with these and investigated the dye-sensitized solar cell efficiencies of this new class of Bodipy dyes. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

    Iron and zinc grain density in common wheat grown in Central Asia

    Get PDF
    Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg1 to 56 mg kg1 (mean 38 mg kg1). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg1 and 39 mg kg1 (mean 28 mg kg1). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype × environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    Color and translucency of milled polymethyl methacrylate crowns on non-tooth-colored interim abutments with different surface treatments.

    Get PDF
    STATEMENT OF PROBLEM The interim rehabilitation of implants has become a necessity, particularly for those placed in the esthetic regions. However, the optical properties of computer-aided design and computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA) crowns on interim abutments with different surface treatments are unclear. PURPOSE The purpose of this in vitro study was to investigate the color and translucency of CAD-CAM PMMA crowns when different surface treatments were used on titanium interim abutments. MATERIAL AND METHODS A maxillary dentate stone cast with a narrow-diameter implant analog at the left lateral incisor site was used. Three titanium interim abutments (blue) were divided into 3 groups according to the surface treatment they received: control (steam cleaning), opaqued (120-μm Al2O3 airborne-particle abrasion and opaque application), and airborne-particle abraded (120-μm Al2O3). Thirty PMMA crowns (A2 shade) were milled (n=10). The color coordinates of the crown-interim abutment pairs and a shade tab (A2) were measured by using a colorimeter. The color differences (ΔE00) between the crowns and the shade tab and the relative translucency parameter (RTP) values of the crowns were calculated by using the CIEDE2000 formula. One-way ANOVA was used to analyze the ΔE00 and RTP values with subsequent Tukey honestly significant difference tests (α=.05). RESULTS The abutment surface treatment significantly affected the ΔE00 of interim crowns from the shade tab (P<.001), but no significant effect was found on RTP (P=.26). The control group had the highest ΔE00 from the shade tab (P≤.011). No significant difference (P=.14) was found between the opaqued and the ΔE00 of the airborne-particle abraded groups from the shade tab. CONCLUSIONS The surface treatments of interim abutments affected the color of CAD-CAM PMMA crowns, which differed from that of the shade tab. The color of crowns on opaqued or airborne-particle abraded interim abutments was closer to the color of the shade tab. Abutment surface treatments did not affect the translucency of crown-interim abutment pairs

    General analysis of lepton polarizations in rare B -> K^* l^+ l^- decay beyond the standard model

    Get PDF
    The general analysis of lepton polarization asymmetries in rare B -> K^* l^+ l^- decay is investigated. Using the most general, model independent effective Hamiltonian, the general expressions of the longitudinal, normal and transversal polarization asymmetries for l^- and l^+ and combinations of them are presented. The dependence of lepton polarizations and their combinations on new Wilson coefficients are studied in detail. Our analysis shows that the lepton polarization asymmetries are very sensitive to the scalar and tensor type interactions, which will be very useful in looking for new physics beyond the standard model.Comment: 29 pp, 15 figure
    corecore