6 research outputs found

    Inhibition of VMAT2 by β2-adrenergic agonists, antagonists, and the atypical antipsychotic ziprasidone

    Get PDF
    Vesicular monoamine transporter 2 (VMAT2) is responsible for packing monoamine neurotransmitters into synaptic vesicles for storage and subsequent neurotransmission. VMAT2 inhibitors are approved for symptomatic treatment of tardive dyskinesia and Huntington’s chorea, but despite being much-studied inhibitors their exact binding site and mechanism behind binding and inhibition of monoamine transport are not known. Here we report the identification of several approved drugs, notably β2-adrenergic agonists salmeterol, vilanterol and formoterol, β2-adrenergic antagonist carvedilol and the atypical antipsychotic ziprasidone as inhibitors of rat VMAT2. Further, plausible binding modes of the established VMAT2 inhibitors reserpine and tetrabenazine and hit compounds salmeterol and ziprasidone were identified using molecular dynamics simulations and functional assays using VMAT2 wild-type and mutants. Our findings show VMAT2 as a potential off-target of treatments with several approved drugs in use today and can also provide important first steps in both drug repurposing and therapy development targeting VMAT2 function.publishedVersio

    Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles

    Get PDF
    The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.publishedVersio

    The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes

    Get PDF
    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of catecholamine neurotransmitters, and a reduction in TH activity is associated with several neurological diseases. Human TH is regulated, among other mechanisms, by Ser19-phosphorylation-dependent interaction with 14-3-3 proteins. The N-terminal sequence (residues 1–43), which corresponds to an extension to the TH regulatory domain, also interacts with negatively charged membranes. By using X-ray crystallography together with molecular dynamics simulations and structural bioinformatics analysis, we have probed the conformations of the Ser19-phosphorylated N-terminal peptide [THp-(1-43)] bound to 14-3-3γ, free in solution and bound to a phospholipid bilayer, and of the unphosphorylated peptide TH-(1-43) both free and bilayer bound. As seen in the crystal structure of THp-(1-43) complexed with 14-3-3γ, the region surrounding pSer19 adopts an extended conformation in the bound state, whereas THp-(1-43) adopts a bent conformation when free in solution, with higher content of secondary structure and higher number of internal hydrogen bonds. TH-(1-43) in solution presents the highest mobility and least defined structure of all forms studied, and it shows an energetically more favorable interaction with membranes relative to THp-(1-43). Cationic residues, notably Arg15 and Arg16, which are the recognition sites of the kinases phosphorylating at Ser19, are also contributing to the interaction with the membrane. Our results reveal the structural flexibility of this region of TH, in accordance with the functional versatility and conformational adaptation to different partners. Furthermore, this structural information has potential relevance for the development of therapeutics for neurodegenerative disorders, through modulation of TH–partner interactions

    Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles

    No full text
    The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers
    corecore