13 research outputs found

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Financiado para publicación en acceso aberto: Universidad de Granada / CBUA.[Abstract]: Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.Funding for open access charge: Universidad de Granada / CBUA. The work reported here has been partially funded by many public and private bodies: by the MCIN/AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project, by the Consejeria de Economia, Innovacion, Ciencia y Empleo (Junta de Andalucia) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects, and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa, the Margarita-Salas grant to J.E. Arco, and the Juan de la Cierva grant to D. Castillo-Barnes. This work was supported by projects PGC2018-098813-B-C32 & RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, Innovacón y Universidades”), P18-RT-1624, UMA20-FEDERJA-086, CV20-45250, A-TIC-080-UGR18 and P20 00525 (Consejería de econnomía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF). M.A. Formoso work was supported by Grant PRE2019-087350 funded by MCIN/AEI/10.13039/501100011033 by “ESF Investing in your future”. Work of J.E. Arco was supported by Ministerio de Universidades, Gobierno de España through grant “Margarita Salas”. The work reported here has been partially funded by Grant PID2020-115220RB-C22 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”. The work of Paulo Novais is financed by National Funds through the Portuguese funding agency, FCT - Fundaça̋o para a Ciência e a Tecnologia within project DSAIPA/AI/0099/2019. Ramiro Varela was supported by the Spanish State Agency for Research (AEI) grant PID2019-106263RB-I00. José Santos was supported by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014–2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2022/33, and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00). The work reported here has been partially funded by Project Fondecyt 1201572 (ANID). The work reported here has been partially funded by Project Fondecyt 1201572 (ANID). In [247], the project has received funding by grant RTI2018-098969-B-100 from the Spanish Ministerio de Ciencia Innovación y Universidades and by grant PROMETEO/2019/119 from the Generalitat Valenciana (Spain). In [248], the research work has been partially supported by the National Science Fund of Bulgaria (scientific project “Digital Accessibility for People with Special Needs: Methodology, Conceptual Models and Innovative Ecosystems”), Grant Number KP-06-N42/4, 08.12.2020; EC for project CybSPEED, 777720, H2020-MSCA-RISE-2017 and OP Science and Education for Smart Growth (2014–2020) for project Competence Center “Intelligent mechatronic, eco- and energy saving sytems and technologies”BG05M2OP001-1.002-0023. The work reported here has been partially funded by the support of MICIN project PID2020-116346GB-I00. The work reported here has been partially funded by many public and private bodies: by MCIN/AEI/10.13039/501100011033 and “ERDF A way to make Europe” under the PID2020-115220RB-C21 and EQC2019-006063-P projects; by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” under FPU16/03740 grant; by the CIBERSAM of the Instituto de Salud Carlos III; by MinCiencias project 1222-852-69927, contract 495-2020. The work is partially supported by the Autonomous Government of Andalusia (Spain) under project UMA18-FEDERJA-084, project name Detection of anomalous behavior agents by DL in low-cost video surveillance intelligent systems. Authors gratefully acknowledge the support of NVIDIA Corporation with the donation of a RTX A6000 48 Gb. This work was conducted in the context of the Horizon Europe project PRE-ACT, and it has received funding through the European Commission Horizon Europe Program (Grant Agreement number: 101057746). In addition, this work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract nummber 22 00058. S.B Cho was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).Junta de Andalucía; CV20-45250Junta de Andalucía; A-TIC-080-UGR18Junta de Andalucía; B-TIC-586-UGR20Junta de Andalucía; P20-00525Junta de Andalucía; P18-RT-1624Junta de Andalucía; UMA20-FEDERJA-086Portugal. Fundação para a Ciência e a Tecnologia; DSAIPA/AI/0099/2019Xunta de Galicia; ED431G 2019/01Xunta de Galicia; GPC ED431B 2022/33Chile. Agencia Nacional de Investigación y Desarrollo; 1201572Generalitat Valenciana; PROMETEO/2019/119Bulgarian National Science Fund; KP-06-N42/4Bulgaria. Operational Programme Science and Education for Smart Growth; BG05M2OP001-1.002-0023Colombia. Ministerio de Ciencia, Tecnología e Innovación; 1222-852-69927Junta de Andalucía; UMA18-FEDERJA-084Suíza. State Secretariat for Education, Research and Innovation; 22 00058Institute of Information & Communications Technology Planning & Evaluation (Corea del Sur); 2020-0-0136

    Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.MCIU - Nvidia(UMA18-FEDERJA-084

    Computational Approaches to Explainable Artificial Intelligence:Advances in Theory, Applications and Trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Computational approaches to Explainable Artificial Intelligence:Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.</p

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    No full text
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated humanlevel performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.CIBERSAM of the Instituto de Salud Carlos III 495-2020UMA18-FEDERJA-084Autonomous Government Andalusia (Spain) RTX A6000 48NVIDIA Corporation 101057746Horizon Europe project PRE-ACTEuropean Commission Horizon Europe Program 22 00058Swiss State Secretariat for Education, Research and Innovation (SERI) 2020-0-01361Institute for Information & Communication Technology Planning & Evaluation (IITP), Republic of Korea Ministry of Science & ICT (MSIT), Republic of KoreaArtificial Intelligence Graduate School Program (Yonsei University)Funding for open access charge: Universidad de Granada / CBU

    Computational approaches to explainable artificial intelligence: advances in theory, applications and trends

    No full text
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated humanlevel performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.Fil: Górriz, J. M.. Universidad de Granada; España. University of Cambridge; Reino UnidoFil: Álvarez Illán, I.. Universidad de Granada; EspañaFil: Álvarez Marquina, A.. Universidad Politécnica de Madrid; EspañaFil: Arco, J. E.. Universidad de Granada; España. Universidad de Málaga; EspañaFil: Atzmueller, M.. Osnabrück University; Alemania. German Research Center For Artificial Intelligence; AlemaniaFil: Ballarini, Fabricio Matias. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barakova, E.. Eindhoven University of Technology; Países BajosFil: Bologna, G.. University of Applied Sciences and Arts of Western Switzerland; SuizaFil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Universidad Politécnica de Cartagena; España. Universidad de Buenos Aires; ArgentinaFil: Castellanos Dominguez, G.. Universidad Nacional de Colombia; ColombiaFil: Castillo Barnes, D.. Universidad de Granada; España. Universidad de Málaga; EspañaFil: Cho, S. B.. Yonsei University; Corea del SurFil: Contreras, R.. Universidad de Concepción; ChileFil: Cuadra, J. M.. Universidad Nacional de Educación a Distancia; EspañaFil: Domínguez, E.. Universidad de Málaga; EspañaFil: Domínguez Mateos, F.. Universidad Rey Juan Carlos; EspañaFil: Duro, R. J.. Universidad da Coruña; EspañaFil: Elizondo, D.. de Montfort University; Reino UnidoFil: Fernández Caballero, A.. Universidad de Castilla-La Mancha; España. Instituto de Salud Carlos III; EspañaFil: Fernández Jover, Eduardo. Universidad de Miguel Hernández; EspañaFil: Formoso, M. A.. Universidad de Málaga; España. Universidad de Granada; EspañaFil: Gallego Molina, N. J.. Universidad de Málaga; España. Universidad de Granada; EspañaFil: Gamazo, J.. Universidad Nacional de Educación a Distancia; EspañaFil: García González, J.. Universidad de Málaga; EspañaFil: Garcia Rodriguez, J.. Universidad de Alicante; EspañaFil: Wang, W.. University of Leicester; Reino UnidoFil: Zhang, Y. D.. University of Leicester; Reino UnidoFil: Zhu, H.. University of Leicester; Reino UnidoFil: Zhu, Z.. University of Leicester; Reino UnidoFil: Ferrández Vicente, J. M.. Universidad Politécnica de Cartagena; España. Universidad Politécnica de Madrid; Españ

    Determination of direct alcohol markers: a review

    No full text
    corecore