14 research outputs found

    Produced water treatment by advanced oxidation processes

    Get PDF
    Abstract Different Advanced Oxidation Processes (AOPs) such as photocatalysis, Fenton-based processes and ozonation were studied to include one of these technologies within an integrated solution for produced water (PW) polishing. Synthetic PW was prepared adding toluene, xylene, naphthalene, phenol, acetic and malonic acids to a seawater matrix. Despite that in all AOPs studied in this work BTEX and naphthalene were removed, the efficiency (in terms of TOC removal) of each treatment varied largely. Among these techniques, photocatalysis was found to be the less effective for the treatment of PW, as TOC removals lower than 20% were obtained for the best scenario after 4 h treatment. In the contrary, best results were obtained by ozonation combined with H2O2, where all the organic components were removed, including a high percentage of acetic acid, which was not abated by the rest of the AOPs studied. The optimum conditions for ozonation were 4 g h−1 O3 and 1500 mg L−1 H2O2 at pH 10, where after 2 h a 74% of TOC removal was achieved and the acetic acid elimination was 78%. This condition enabled that ozonation process accounted for the lowest electric energy consumption per order of target compound destruction regarding total organic carbon (TOC)

    Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review

    No full text
    The synthesis and applications of composites based on layered double hydroxides (LDHs) and nanocarbons have recently seen great development. On the one hand, LDHs are versatile 2D compounds that present a plethora of applications, from medicine to energy conversion, environmental remediation, and heterogeneous catalysis. On the other, nanocarbons present unique physical and chemical properties owing to their low-dimensional structure and sp2 hybridization of carbon atoms, which endows them with excellent charge carrier mobility, outstanding mechanical strength, and high thermal conductivity. Many reviews described the applications of LDH/nanocarbon composites in the areas of energy and photo- and electro-catalysis, but there is still scarce literature on their latest applications as heterogeneous catalysts in chemical synthesis and conversion, which is the object of this review. First, the properties of the LDHs and of the different types of carbon materials involved as building blocks of the composites are summarized. Then, the synthesis methods of the composites are described, emphasizing the parameters allowing their properties to be controlled. This highlights their great adaptability and easier implementation. Afterwards, the application of LDH/carbon composites as catalysts for C–C bond formation, higher alcohol synthesis (HAS), oxidation, and hydrogenation reactions is reported and discussed in depth

    Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions

    Get PDF
    Layered double hydroxides (LDH) or their derived mixed oxides present marked acid-base properties useful in catalysis, but they are generally agglomerated, inducing weak accessibility to the active sites. In the search for improving dispersion and accessibility of the active sites and for controlling the hydrophilic/hydrophobic balance in the catalysts, nanocomposite materials appear among the most attractive. In this study, a series of nanocomposites composed of LDH and reduced graphene oxide (rGO), were successfully obtained by direct coprecipitation and investigated as base catalysts for the Claisen–Schmidt condensation reaction between acetophenone and benzaldehyde. After activation, the LDH-rGO nanocomposites exhibited improved catalytic properties compared to bare LDH. Moreover, they reveal great versatility to tune the selectivity through their composition and the nature or the absence of solvent. This is due to the enhanced basicity of the nanocomposites as the LDH content increases which is assigned to the higher dispersion of the nanoplatelets in comparison to bulk LDH. Lewis-type basic sites of higher strength and accessibility are thus created. The nature of the solvent mainly acts through its acidity able to poison the basic sites of the nanocatalysts

    Tuning Ni‐Pyrazolate Frameworks by Post‐Synthetic Fe‐Incorporation for Oxidase‐Mimicking H2O2 Activation

    Get PDF
    [EN]The introduction of iron ionic sites by metal exchange of defective homometallic nickel pyrazolate frameworks generates non-precious, Earth-abundant, first-row heterometallic Fe/Ni-pyrazolate frameworks. The Fe incorporation at the Ni nodes of the framework allows to control the hydrogen peroxide activation, minimizing its decomposition and O2 liberation, occurring at the homometallic Ni nodes. The generation of Fe−OH reactive oxygen species at the heterometallic Fe/Ni nodes is demonstrated by the higher activity in the proof-of-concept oxidation of 1-phenylethanol to acetophenone in an aqueous medium.Programa I Plan Propio de la Universidad de Salamanca (PIC2-2022-08

    Punto Mayor

    No full text
    El proyecto PAP “Punto mayor” se divide en diversas áreas como nutrición, comercio/tecnología, arquitectura y psicología; cada área está enfocada en el mejoramiento de la calidad de vida de los adultos mayores, es decir que el objetivo principal es ayudar a las personas de la 3º edad que radican o visitan con frecuencia los centros de apoyo; el proyecto piloto constó de 4 sesiones donde se trabajan diversos temas como: enfermedades, emociones, terapias alternas y tecnología, todo con el fin de ayudar y enriquecer a las personas con conocimientos que pueden ser utilizados y transmitidos desde el día uno.ITESO, A.C
    corecore