1,069 research outputs found

    Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4Pn_2Ch_4 compounds: an {\em ab-initio} study

    Full text link
    Based on the relativistic spin-polarized density functional theory calculations we investigate the crystal structure, electronic and magnetic properties of a family MnPn2Ch4 compounds, where pnictogen metal atoms (Pn) are Sb and Bi; chalcogens (Ch) are Se, Te. We show that in the series the compounds of this family with heavier elements prefer to adopt rhombohedral crystal structure composed of weakly bonded septuple monoatomic layers while those with lighter elements tend to be in the monoclinic structure. Irrespective of the crystal structure all compounds of the MnPn2Ch4 series demonstrate a weak energy gain (of a few meV per formula unit or even smaller than meV) for antiferromagnetic (AFM) coupling for magnetic moments on Mn atoms with respect to their ferromagnetic (FM) state. For rhombohedral structures the interlayer AFM coupling is preferable while in monoclinic phases intralayer AFM configuration with ferromagnetic ordering along the Mn chain and antiferromagnetic ordering between the chains has a minimum energy. Over the series the monoclinic compounds are characterized by substantially wider bandgap than compounds with rhombohedral structure

    Electron-phonon interaction at the Be(0001) surface

    Full text link
    We present a first principle study of the electron-phonon (e-p) interaction at the Be(0001) surface. The real and imaginary part of the e-p self energy are calculated for the surface state in the binding energy range from the Γˉ\bar{\Gamma} point to the Fermi level. Our calculation shows an overall good agreement with several photoemission data measured at high and low temperatures. Additionally, we show that the energy derivative of real part of the self-energy presents a strong temperature and energy variation close to EFE_{F}, making it difficult to measure its value just at EFE_{F}.Comment: Accepted in Phys. Rev. Lett., 5 figure

    Surface-state electron dynamics in noble metals

    Full text link
    Theoretical investigations of surface-state electron dynamics in noble metals are reported. The dynamically screened interaction is computed, within many-body theory, by going beyond a free-electron description of the metal surface. Calculations of the inelastic linewidth of Shockley surface-state electrons and holes in these materials are also presented. While the linewidth of excited holes at the surface-state band edge (k=0{\bf k}_\parallel=0) is dominated by a two-dimensional decay channel, within the surface-state band itself, our calculations indicate that major contributions to the electron-electron interaction of surface-state electrons above the Fermi level come from the underlying bulk electrons.Comment: 17 pages, 7 figures, to appear in Prog. Surf. Sc

    Ultrafast electron dynamics in metals

    Get PDF
    During the last decade, significant progress has been achieved in the rapidly growing field of the dynamics of {\it hot} carriers in metals. Here we present an overview of the recent achievements in the theoretical understanding of electron dynamics in metals, and focus on the theoretical description of the inelastic lifetime of excited hot electrons. We outline theoretical formulations of the hot-electron lifetime that is originated in the inelastic scattering of the excited {\it quasiparticle} with occupied states below the Fermi level of the solid. {\it First-principles} many-body calculations are reviewed. Related work and future directions are also addressed.Comment: 17 pages, two columns, 13 figures, to appear in ChemPhysChe

    Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    Get PDF
    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important directions providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to make graphene Dirac states spin-polarized. Here, we report on absolutely new promising pathway to create spin-polarized Dirac states based on coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We demonstrate how the spin-helical Dirac states are formed in graphene deposited on the surface of BiTeCl. This coupling induces spin separation of the originally spin-degenerate graphene states and results in fully helical in-plane spin polarization of the Dirac electrons.Comment: 5 pages, 3 figure

    Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: surfaces of bismuth tellurohalides

    Full text link
    Spintronics is aimed at active controlling and manipulating the spin degrees of freedom in semiconductor devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction (SOI) in a two-dimensional (2D) electron system immersed in an inversion-asymmetric environment. The SOI induced spin-splitting of the 2D-electron state provides a basis for many theoretically proposed spintronic devices. However, the lack of semiconductors with large Rashba effect hinders realization of these devices in actual practice. Here we report on a giant Rashba-type spin splitting in 2D electron systems which reside at tellurium-terminated surfaces of bismuth tellurohalides. Among these semiconductors, BiTeCl stands out for its isotropic metallic surface-state band with the Gamma-point energy lying deep inside the bulk band gap. The giant spin-splitting of this band ensures a substantial spin asymmetry of the inelastic mean free path of quasiparticles with different spin orientations.Comment: 12 pages, 5 figure
    corecore