7 research outputs found

    Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy

    Get PDF
    Sulfur is one of the main redox sensitive and volatile elements involved in chemical transfers between earth surface and the deep mantle. At mid-oceanic ridges, sulfur cycle is highly influenced by serpentinite formation which acts as a sink of sulfur under various oxidation states (S 2 − , S − , S 0 and S 6 + ). Sulfur sequestration in serpentinites is usually attributed to the crystallization of secondary minerals, such as sulfides (e.g. pyrite, pyrrhotite) or sulfates (e.g. anhydrite). However, the role of serpentine minerals as potential sulfur carriers is not constrained. We investigate the distribution and redox state of sulfur at micro-scale combining in situ spectroscopic (X-ray absorption near-edge structure: XANES) and geochemical (SIMS) measurements in abyssal serpentinites from the SWIR (South West Indian Ridge), the Rainbow and the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) areas. These serpentinites are formed in different tectono-metamorphic settings and provide a meaningful database to understand the fate of sulfur during seafloor serpentinization. XANES spectra of serpentinite powders show that the sulfur budget of the studied samples is dominated by oxidized sulfur (S 6 + / S = 0.6–1) although sulfate micro- phases, such as barite and anhydrite, are absent. Indeed, μ -XANES analyses of mesh, bastite and antigorite veins in thin sections and of serpentine grains rather suggest the presence of S 6 + ions incorporated into serpentine minerals. The structural incorporation of S in serpentine minerals is also supported by X- ray fluorescence mapping revealing large areas (1600 μm 2 ) of serpentinite where S is homogeneously distributed. Our observations show that serpentine minerals can incorporate high S concentrations, from 140 to 1350 ppm, and that this can account for 60 to 100% of the sulfur budget of abyssal serpentinites. Serpentine minerals thus play an important role in S exchanges between the hydrosphere and the mantle at mid-oceanic ridges and may participate to S recycling in subduction zones.NERC Deep Volatiles Consortium Grant NE/M000303/

    Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contamination assessment; gather downhole electrical resistivity and magnetic susceptibility logs for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed rock drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.3 to 16.44 meters below seafloor and core recoveries as high as 75% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 revealed a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential, temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans, as well as verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, Mid-Atlantic Ridge, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif

    Pharmacien d officine, une profession en pleine transition

    No full text
    MONTPELLIER-BU Pharmacie (341722105) / SudocSudocFranceF

    Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62-65 degrees E)

    No full text
    International audiencePeridotites exhumed in the footwall of axial detachment faults at slow-spreading ridges are highly serpentinized. Most mid-ocean ridge detachment settings are magmatically active and hydrous fluid circulation in and near the fault has been shown to be influenced by the presence of melt or magmatic lithologies. Our working area along the Southwest Indian Ridge (62–65°E) is nearly amagmatic and represents an end-member to study the hydrous alteration of exhumed peridotites without these magmatic influences. We use an integrated petrological approach combining microstructural, mineralogical and chemical observations to unravel the sequence of serpentinization in 272 dredged samples of variably serpentinized peridotites and to document the circulation of serpentinizing fluids in and near the exhumation faults. We find that serpentine recrystallization and veins overprint the initial serpentinite mesh texture in ∼25% of the samples. Oxygen isotope data suggest that this sequence developed at relatively high temperatures (271–336°C) and under increasing fluid–rock ratios, from near stoichiometry for mesh texture formation to >10 during recrystallization. Increasing fluid supersaturation relative to serpentine favors the replacement of mesh texture lizardite by chrysotile and polygonal or polyhedral serpentine. We attribute local recrystallization into antigorite to moderate Si-metasomatism, possibly following pyroxene serpentinization. We do not observe the more pronounced Si-metasomatism leading to talc replacing serpentine that is reported for the more magmatically active Mid-Atlantic Ridge detachment settings and is attributed to prior leaching of magmatic rocks. Scales of preferential fluid pathways in our samples evolved from pervasive and close-spaced (<500 µm) microfractures during the formation of the initial serpentine mesh texture, to centimeter-thick planar domains of enhanced fluid flux, spaced at ∼10 cm intervals and probably grouped in corridors that may be up to ∼100 m across. Serpentine minerals are enriched in some fluid-mobile elements (Cl, B, U) relative to the peridotite protolith, and several elements (Al, Fe, Si, Cu, As, Sb, REE) are redistributed at the millimeter to decimeter scale. Serpentinizing fluids were seawater-derived, probably mildly alkaline (small to no europium anomalies), reducing and H2-enriched (formation of magnetite). These fluids may have been similar to, though warmer than, those venting at the ultramafic-hosted Lost City hydrothermal fluid (30°N, Mid-Atlantic Ridge)

    Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis Massif (IODP Expedition 357)

    No full text
    Serpentinized and metasomatized peridotites intruded by gabbros and dolerites have been drilled on the southern wall of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) during International Ocean Discovery Program (IODP) Expedition 357. They occur in seven holes from five sites making up an east-west trending, spreading-parallel profile that crosscuts this exhumed detachment footwall. Here we have taken advantage of this sampling to study heterogeneities of alteration at scales less than a kilometer. We combine textural and mineralogical observations made on 77 samples with in situ major and trace element analyses in primary and serpentine minerals to provide a conceptual model for the development of alteration heterogeneities at the Atlantis Massif. Textural sequences and mineralogical assemblages reveal a transition between an initial pervasive phase of serpentinization and subsequent serpentinization and metasomatism focused along localized pathways preferentially used by hydrothermal fluids. We propose that these localized pathways are interconnected and form 100 m- to 1 km-sized cells in the detachment footwall. This change in fluid pathway distribution is accompanied by variable trace element enrichments in the serpentine textures: deep, syn-serpentinization fluid-peridotite interactions are considered the source of Cu, Zn, As, and Sb enrichments, whereas U and Sr enrichments are interpreted as markers of later, shallower fluid-serpentinized peridotite interaction. Alteration of gabbros and dolerites emplaced in the peridotite at different lithospheric levels leads to the development of amphibole, chlorite and, or, talc-bearing textures as well as enrichments in LREE, Nb, Y, Th, Ta in the serpentine textures of the surrounding peridotites. Combining these observations, we propose a model that places the drill holes in a conceptual frame involving mafic intrusions in the peridotites and heterogeneities during progressive alteration and emplacement on the seafloor

    Special issue : Abyss

    No full text
    IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30 degrees N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west-east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life
    corecore