134 research outputs found

    How do prosperity and aspiration underlie leisure tourism expenditure patterns?

    Get PDF
    This research advances the current knowledge of tourism expenditure by adapting a new analytical approach to understand expenditure differentials along their conditional distributions, based on multiple segmentation criteria. Using data from survey and secondary sources, we approximate tourists’ required utilities via prosperity at their countries of residence, a macro-level criterion, and individual-travel aspirations, a micro-level criterion. Subsequently, expenditure differentials between more and less prosperous/aspired tourists are decomposed into two components. First, group differences in expenditure covariates that represent tourists’ relative consumption behaviors and, second, differences in the estimated returns to those covariates, measuring potential third-degree price discrimination. Our results guide policy makers in the tourism industry to develop pricing strategies capable of generating mark-ups within all viable segmentations

    Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons

    Full text link
    Composite detectors made of stainless steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175MeV. The neutron detection efficiency has been determined using two different methods. The data are in agreement with the output of Monte Carlo simulations. The simulations are then extended to study the response of a hypothetical array made of these detectors to energetic neutrons from a radioactive ion beam experiment.Comment: Submitted to Eur.Phys.J. A; upgraded version correcting some typos and updating ref.

    Modern Optimal Controllers for Hybrid Active Power Filter to Minimize Harmonic Distortion

    Get PDF
    Nowadays, AC distributed power networks are facing many challenges in guaranteeing and improving the required level of power quality indices in power networks with increasing nonlinear, time-variable and unbalanced loads. Power networks can benefit from avoiding and minimizing different AC problems, such as frequency fluctuation and Total Harmonic Distortions (THDs), by using power filters, such as Hybrid Active Power Filters (HAPFs). Therefore, attention towards responsible power quality indices, such as Total Harmonic Distortion (THD), Power Factor (P.F) and Harmonic Pollution (HP) has increased. THD and HP are important indices to show the level of power quality at the network. In this paper, modern optimization techniques have been employed to optimize HAPF parameters, and minimize HP, by using a nature-inspired optimization algorithm, namely, Whale Optimization Algorithm (WOA). The WOA algorithm is compared to the most competitive powerful metaheuristic optimization algorithms: Manta Ray Foraging Optimization (MRFO), Artificial Ecosystem-based Optimization (AEO) and Golden Ratio Optimization Method (GROM). In addition, the WOA, and the proposed modern optimization algorithms, are compared to the most competitive metaheuristic optimization algorithm for HAPF from the literature, called L-SHADE. The comparison results show that the WOA algorithm outperformed all other optimization algorithms, in terms of minimizing harmonic pollution, through optimizing parameters of HAPF; therefore, this paper aims to present the WOA as a powerful control model for HAPF

    Optimal controllers and configurations of 100% PV and energy Storage systems for a microgrid : the case study of a small town in Jordan

    Get PDF
    Renewable energy systems such as Photovoltaic (PV) have become one of the best options for supplying electricity at the distribution network level. This is mainly because the PV system is sustainable, environmentally friendly, and is a low-cost form of energy. The intermittent and unpredictable nature of renewable energy sources which leads to a mismatch between the power generation and load demand is the challenge to having 100% renewable power networks. Therefore, an Energy Storage System (ESS) can be a significant solution to overcome these challenges and improve the reliability of the network. In Jordan, the energy sector is facing a number of challenges due to the high energy-import dependency, high energy costs, and the inadequate electrification of rural areas. In this paper, the optimal integration of PV and ESS systems is designed and developed for a distribution network in Jordan. The economic and energy performance of the network and a proposed power network under different optimization algorithms and power network operation scenarios are investigated. Metaheuristic optimization algorithms, namely: Golden Ratio Optimization Method (GROM) and Particle Swarm Optimization (PSO) algorithms, are employed to find the optimal configurations and integrated 100% PV and ESS for the microgrid

    Independent measurement of the Hoyle state β\beta feeding from 12B using Gammasphere

    Get PDF
    Using an array of high-purity Compton-suppressed germanium detectors, we performed an independent measurement of the β\beta-decay branching ratio from 12B^{12}\mathrm{B} to the second-excited (Hoyle) state in 12C^{12}\mathrm{C}. Our result is 0.64(11)%0.64(11)\%, which is a factor 2\sim 2 smaller than the previously established literature value, but is in agreement with another recent measurement. This could indicate that the Hoyle state is more clustered than previously believed. The angular correlation of the Hoyle state γ\gamma cascade has also been measured for the first time. It is consistent with theoretical predictions

    Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

    Full text link
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique β\beta-decay transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique β\beta-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.Comment: Version as accepted by PR
    corecore