126 research outputs found
In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis
Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
Epigenetic polypharmacology: from combination therapy to multitargeted drugs
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed
Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding
The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for inhibiting two proteins in a single pathway
A global view of drug-therapy interactions
Network science is already making an impact on the study of complex systems
and offers a promising variety of tools to understand their formation and
evolution (1-4) in many disparate fields from large communication networks
(5,6), transportation infrastructures (7) and social communities (8,9) to
biological systems (1,10,11). Even though new highthroughput technologies have
rapidly been generating large amounts of genomic data, drug design has not
followed the same development, and it is still complicated and expensive to
develop new single-target drugs. Nevertheless, recent approaches suggest that
multi-target drug design combined with a network-dependent approach and
large-scale systems-oriented strategies (12-14) create a promising framework to
combat complex multigenetic disorders like cancer or diabetes. Here, we
investigate the human network corresponding to the interactions between all US
approved drugs and human therapies, defined by known drug-therapy
relationships. Our results show that the key paths in this network are shorter
than three steps, indicating that distant therapies are separated by a
surprisingly low number of chemical compounds. We also identify a sub-network
composed by drugs with high centrality measures (15), which represent the
structural back-bone of the drug-therapy system and act as hubs routing
information between distant parts of the network. These findings provide for
the first time a global map of the largescale organization of all known drugs
and associated therapies, bringing new insights on possible strategies for
future drug development. Special attention should be given to drugs which
combine the two properties of (a) having a high centrality value and (b) acting
on multiple targets.Comment: 16 pages, 4 figures. It was submitted to peer review on August 15,
200
A theoretical entropy score as a single value to express inhibitor selectivity
<p>Abstract</p> <p>Background</p> <p>Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.</p> <p>Results</p> <p>Here we propose a new theoretical entropy score that can be calculated from a set of IC<sub>50 </sub>data. In contrast to previous measures such as the 'selectivity score', Gini score, or partition index, the entropy score is non-arbitary, fully exploits IC<sub>50 </sub>data, and is not dependent on a reference enzyme. In addition, the entropy score gives the most robust values with data from different sources, because it is less sensitive to errors. We apply the new score to kinase and nuclear receptor profiling data, and to high-throughput screening data. In addition, through analyzing profiles of clinical compounds, we show quantitatively that a more selective kinase inhibitor is not necessarily more drug-like.</p> <p>Conclusions</p> <p>For quantifying selectivity from panel profiling, a theoretical entropy score is the best method. It is valuable for studying the molecular mechanisms of selectivity, and to steer compound progression in drug discovery programs.</p
Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks
Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types
- …
