2,088 research outputs found

    Phenomenological analysis connecting proton-proton and antiproton-proton elastic scattering

    Full text link
    Based on the behavior of the elastic scattering data, we introduce an almost model-independent parametrization for the imaginary part of the scattering amplitude, with the energy and momentum transfer dependences inferred on empirical basis and selected by rigorous theorems and bounds from axiomatic quantum field theory. The corresponding real part is analytically evaluated by means of dispersion relations, allowing connections between particle-particle and particle-antiparticle scattering. Simultaneous fits to proton-proton and antiproton-proton experimental data in the forward direction and also including data beyond the forward direction, lead to a predictive formalism in both energy and momentum transfer. We compare our extrapolations with predictions from some popular models and discuss the applicability of the results in the normalization of elastic rates that can be extracted from present and future accelerator experiments (Tevatron, RHIC and LHC).Comment: 17 pages, 17 figures, to appear in Eur. Phys. J.

    Parton model versus color dipole formulation of the Drell-Yan process

    Get PDF
    In the kinematical region where the center of mass energy is much larger than all other scales, the Drell-Yan process can be formulated in the target rest frame in terms of the same color dipole cross section as low Bjorken-x deep inelastic scattering. Since the mechanisms for heavy dilepton production appear very different in the dipole approach and in the conventional parton model, one may wonder whether these two formulations really represent the same physics. We perform a comparison of numerical calculations in the color dipole approach with calculations in the next-to-leading order parton model. For proton-proton scattering, the results are very similar at low x_2 from fixed target to RHIC energies, confirming the close connection between these two very different approaches. We also compare the transverse momentum distributions of Drell-Yan dileptons predicted in both formulations. The range of applicability of the dipole formulation and the impact of future Drell-Yan data from RHIC for determining the color dipole cross section are discussed. A detailed derivation of the dipole formulation of the Drell-Yan process is also included.Comment: 20 pages, 5 figure

    CX3CR1 Polymorphisms are associated with atopy but not asthma in German children

    Get PDF
    Chemokines and their receptors are involved in many aspects of immunity. Chemokine CX3CL1, acting via its receptor CX3CR1, regulates monocyte migration and macrophage differentiation as well as T cell-dependent inflammation. Two common, nonsynonymous polymorphisms in CX3CR1 have previously been shown to alter the function of the CX3CL1/CX3CR1 pathway and were suggested to modify the risk for asthma. Using matrix-assisted laser desorption/ionization time-of-flight technology, we genotyped polymorphisms Val249Ile and Thr280Met in a cross-sectional population of German children from Munich (n = 1,159) and Dresden ( n = 1,940). For 249Ile an odds ratio of 0.77 (95% confidence interval 0.63-0.96; p = 0.017) and for 280Met an odds ratio of 0.71 ( 95% confidence interval 0.56-0.89; p = 0.004) were found with atopy in Dresden but not in Munich. Neither polymorphism was associated with asthma. Thus, amino acid changes in CX3CR1 may influence the development of atopy but not asthma in German children. Potentially, other factors such as environmental effects may modify the role of CX3CR1 polymorphisms. Copyright (c) 2007 S. Karger AG, Basel

    The Structure of Screening in QED

    Get PDF
    The possibility of constructing charged particles in gauge theories has long been the subject of debate. In the context of QED we have shown how to construct operators which have a particle description. In this paper we further support this programme by showing how the screening interactions arise between these charges. Unexpectedly we see that there are two different gauge invariant contributions with opposite signs. Their difference gives the expected result.Comment: 8 pages, LaTe

    Quantum dots with two electrons: Singlet-triplet transitions

    Full text link
    The magnetic character of the ground-state of two electrons on a double quantum dot, connected in series to left and right single-channel leads, is considered. By solving exactly for the spectrum of the two interacting electrons, it is found that the coupling to the continuum of propagating states on the leads, in conjunction with the electron-electron interactions, may result in a delocalization of the bound state of the two electrons. This, in turn, reduces significantly the range of the Coulomb interaction parameters over which singlet-triplet transitions can be realized. It is also found that the coupling to the leads favors the singlet ground-state.Comment: 8 pages, submitted to Phys. Rev.

    Entanglement Interpretation of Black Hole Entropy in String Theory

    Full text link
    We show that the entropy resulting from the counting of microstates of non extremal black holes using field theory duals of string theories can be interpreted as arising from entanglement. The conditions for making such an interpretation consistent are discussed. First, we interpret the entropy (and thermodynamics) of spacetimes with non degenerate, bifurcating Killing horizons as arising from entanglement. We use a path integral method to define the Hartle-Hawking vacuum state in such spacetimes and discuss explicitly its entangled nature and its relation to the geometry. If string theory on such spacetimes has a field theory dual, then, in the low-energy, weak coupling limit, the field theory state that is dual to the Hartle-Hawking state is a thermofield double state. This allows the comparison of the entanglement entropy with the entropy of the field theory dual, and thus, with the Bekenstein-Hawking entropy of the black hole. As an example, we discuss in detail the case of the five dimensional anti-de Sitter, black hole spacetime

    Dijet photoproduction of massless charm jets at next-to-leading order of QCD

    Full text link
    We compute the charm dijet photoproduction cross section at next-to-leading order of QCD in the zero-mass variable flavour number scheme, i.e. with active charm quarks in the proton and photon. The results are compared to recent measurements from the ZEUS experiment at HERA. The predictions for various distributions agree well with the data, in particular for large momentum fractions of the the partons in the photon, where direct photon processes dominate. At low momentum fractions, the predictions are quite sensitive to the charm content in the photon. The experimental data are shown to favour parameterizations with a substantial charm quark density such as the one proposed by Cornet et al.Comment: 18 pages, 11 figure

    Electromagnetic Interference in Measurements of Radial Stress During Split Hopkinson Pressure Bar Experiments

    Get PDF
    Split Hopkinson pressure bar experiments on soils are often carried out using a rigid steel confining ring to provide plane strain conditions, and measurements of the circumferential strain in the ring can be used to infer the radial stress on the surface of the specimen. Previous experiments have shown evidence of irregular electromagnetic interference in measurements of radial stress, which obscures the signals and impedes analysis. The development of robust constitutive models for soils in blast and impact events relies on the accurate characterisation of this behaviour, and so it is necessary to isolate and remove the source of interference. This paper uses an induction coil to identify the source of the anomalous signals, which are found to be due to induced currents in the gauge lead wires from the movement of magnetised pressure bars (martensitic stainless steel, 440C). Comparative experiments on sand and rubber specimens are used to show that the deforming soil specimen does not make a significant contribution to this activity, and recommendations are made on reducing electromagnetic interference to provide reliable radial stress measurements

    Electrospray sample injection for single-particle imaging with x-ray lasers

    Get PDF
    The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution. © 2019 The Authors

    Combining eight research areas to foster the uptake of ecosystem-based management in fresh waters

    Get PDF
    Freshwater ecosystems are under a constant risk of being irreversibly damaged by human pressures that threaten their biodiversity, the sustainability of ecosystem services (ESs), and human well-being. Despite the implementation of various environmental regulations, the challenges of safeguarding freshwater assets have so far not been tackled successfully. A promising way forward to stop the loss of freshwater biodiversity and to sustain freshwater-based ESs is by implementing ecosystem-based management (EBM), an environmental planning and adaptive management approach that jointly considers social and ecological needs. Responsible for considerable recent success in sustainably managing and conserving marine ecosystems, EBM has not yet been championed for fresh waters. A major reason for the delayed uptake of EBM in fresh waters is likely to be its complexity, requiring planners to be familiar with the latest developments in a range of different research areas. EBM would therefore benefit from becoming more tangible to receive attention on the ground. To facilitate uptake, eight core research areas for EBM and their innovations are introduced, and the way in which they feed into the workflow that guides the EBM planning stage is explained. The workflow links biodiversity distributions with ES supply-and-demand modelling and SMART (specific, measurable, attainable, relevant, and timely) target planning, including scenario- and cross-realm perspectives, the prioritization of management alternatives, spatial prioritization of biodiversity conservation and ES areas, and the quantification of uncertainties. Given the extensive resources, time, and technical capacity required to implement the full workflow, a light and an ultralight version of the workflow are also provided. Applied in concert, the eight well-known research areas allow for better planning and operationalizing, and eventually for implementing EBM in freshwater ecosystems. EBM has great potential to increase public acceptance by introducing the consideration of human needs and aspirations into typically biodiversity-driven conservation and management approaches. This will ultimately improve the integrity of freshwater ecosystems. © 2019 John Wiley & Sons, Ltd.German Federal Ministry of Education and Research, Grant/Award Number: 01 LN1320A; Horizon 2020 Framework Programme, Grant/Award Number: 642317; Marie Sklodowska‐Curie Global Fellowship, Grant/Award Number: 748625; RamĂłn y Cajal, Grant/Award Number: RYC‐2013‐1397
    • 

    corecore