5,429 research outputs found

    Binary evolution using the theory of osculating orbits: conservative Algol evolution

    Full text link
    Our aim is to calculate the evolution of Algol binaries within the framework of the osculating orbital theory, which considers the perturbing forces acting on the orbit of each star arising from mass exchange via Roche lobe overflow (RLOF). The scheme is compared to results calculated from a `classical' prescription. Using our stellar binary evolution code BINSTAR, we calculate the orbital evolution of Algol binaries undergoing case A and case B mass transfer, by applying the osculating scheme. The velocities of the ejected and accreted material are evaluated by solving the restricted three-body equations of motion, within the ballistic approximation. This allows us to determine the change of linear momentum of each star, and the gravitational force applied by the mass transfer stream. Torques applied on the stellar spins by tides and mass transfer are also considered. Using the osculating formalism gives shorter post-mass transfer orbital periods typically by a factor of 4 compared to the classical scheme, owing to the gravitational force applied onto the stars by the mass transfer stream. Additionally, during the rapid phase of mass exchange, the donor star is spun down on a timescale shorter than the tidal synchronization timescale, leading to sub-synchronous rotation. Consequently, between 15 and 20 per cent of the material leaving the inner-Lagrangian point is accreted back onto the donor (so-called `self-accretion'), further enhancing orbital shrinkage. Self-accretion, and the sink of orbital angular momentum which mass transfer provides, may potentially lead to more contact binaries. Even though Algols are mainly considered, the osculating prescription is applicable to all types of interacting binaries, including those with eccentric orbits.Comment: A&A in press. Minor typos correcte

    High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys

    Full text link
    The development of new engineering alloy chemistries is a time consuming and iterative process. A necessary step is characterization of the nano/microstructure to provide a link between the processing and properties of each alloy chemistry considered. One approach to accelerate the identification of optimal chemistries is to use samples containing a gradient in composition, ie. combinatorial samples, and to investigate many different chemistries at the same time. However, for engineering alloys, the final properties depend not only on chemistry but also on the path of microstructure development which necessitates characterization of microstructure evolution for each chemistry. In this contribution we demonstrate an approach that allows for the in-situ, nanoscale characterization of the precipitate structures in alloys, as a function of aging time, in combinatorial samples containing a composition gradient. The approach uses small angle x-ray scattering (SAXS) at a synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the combinatorial samples prepared contain a gradient in Co from 0% to 2%. These samples are aged at temperatures between 450{\textdegree}C and 550{\textdegree}C and the precipitate structures (precipitate size, volume fraction and number density) all along the composition gradient are simultaneously monitored as a function of time. This large dataset is used to test the applicability and robustness of a conventional class model for precipitation that considers concurrent nucleation, growth and coarsening and the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali

    Harmonic maps and twistorial structures

    Full text link
    We introduce the notion of Riemannian twistorial structure and we show that it provides new natural constructions of harmonic maps.Comment: 15 page

    Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    Get PDF
    The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface

    Sea surface temperature of the coastal zones of France

    Get PDF
    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery

    Sea surface temperature of the coastal zones of France

    Get PDF
    The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent

    Dynamic of a lacustrine sedimentary system during late rifting at the Cretaceous‐Palaeocene transition: Example of the Yacoraite Formation, Salta Basin, Argentina

    Get PDF
    The architecture of lacustrine systems is the result of the complex interaction between tectonics, climate and environmental parameters, and constitute the main forcing parameters on the lake dynamics. Field analogue studies have been performed to better assess such interactions, and their impact on the facies distribution and the stratigraphic architecture of lacustrine systems. The Yacoraite Formation (Late Cretaceous/Early Palaeocene), deposited during the sag phase of the Salta rift basin in Argentina, is exposed in world-class outcrops that allowed the dynamics of this lacustrine system to be studied through facies analysis and stratigraphic evolution. On the scale of the Alemania-Met\ue1n-El Rey Basin, the Yacoraite Formation is organized with a siliciclastic-dominated margin to the west, and a carbonate-dominated margin to the east. The Yacoraite can be subdivided into four main \u2018mid-term\u2019 sequences and further subdivided into \u2018short-term\u2019 sequences recording high frequency climate fluctuations. Furthermore, the depositional profiles and identified system tracts have been grouped into two end-members at basin scale: (a) a balanced \u2018perennial\u2019 depositional system for the lower part of the Yacoraite Formation and (b) a highly alternating \u2018ephemeral\u2019 depositional system for the upper part of the Yacoraite Formation. The transition from a perennial system to an ephemeral system indicates a change in the sedimentary dynamics of the basin, which was probably linked with the Cretaceous/Tertiary boundary that induced a temporary shutdown of carbonate production and an increase in siliciclastic supply

    Response to Interferon-Beta Treatment in Afro-Caribbeans with Multiple Sclerosis

    Get PDF
    Background. Multiple sclerosis (MS) patients of African ancestry have a more aggressive disease course than white patients and could be resistant to interferon-beta (INFB). Methods. We studied the impact of INFB in treatment-naive Afro-Caribbean (AC) with clinically definite MS using our European Database for Multiple Sclerosis (EDMUS) (2003–2010). Main outcome measures were annual relapse rate after 2 years of treatment, proportion of exacerbation-free subjects 48 weeks after initiating INFB, and time to first relapse. Results. 76 AC-MS (59F/17M) were identified. Annual relapse rate of 1.29 decreased to 0.83 (−35.6%) after 2 years of treatment. The proportion of relapse-free patients at 48 weeks was 46.2%. Median time to first relapse was 52 weeks. Conclusion. INFB is not strong enough to control AC-MS patients in many cases which is problematic in a population of worse MS prognosis
    corecore