Dynamic of a lacustrine sedimentary system during late rifting at the Cretaceous‐Palaeocene transition: Example of the Yacoraite Formation, Salta Basin, Argentina

Abstract

The architecture of lacustrine systems is the result of the complex interaction between tectonics, climate and environmental parameters, and constitute the main forcing parameters on the lake dynamics. Field analogue studies have been performed to better assess such interactions, and their impact on the facies distribution and the stratigraphic architecture of lacustrine systems. The Yacoraite Formation (Late Cretaceous/Early Palaeocene), deposited during the sag phase of the Salta rift basin in Argentina, is exposed in world-class outcrops that allowed the dynamics of this lacustrine system to be studied through facies analysis and stratigraphic evolution. On the scale of the Alemania-Met\ue1n-El Rey Basin, the Yacoraite Formation is organized with a siliciclastic-dominated margin to the west, and a carbonate-dominated margin to the east. The Yacoraite can be subdivided into four main \u2018mid-term\u2019 sequences and further subdivided into \u2018short-term\u2019 sequences recording high frequency climate fluctuations. Furthermore, the depositional profiles and identified system tracts have been grouped into two end-members at basin scale: (a) a balanced \u2018perennial\u2019 depositional system for the lower part of the Yacoraite Formation and (b) a highly alternating \u2018ephemeral\u2019 depositional system for the upper part of the Yacoraite Formation. The transition from a perennial system to an ephemeral system indicates a change in the sedimentary dynamics of the basin, which was probably linked with the Cretaceous/Tertiary boundary that induced a temporary shutdown of carbonate production and an increase in siliciclastic supply

    Similar works