316 research outputs found

    Author Index

    Get PDF
    Contains an index of authors

    The emerging role of the FKBP5 gene polymorphisms in vulnerability-stress model of schizophrenia: further evidence from a Serbian population

    Get PDF
    Increased reactivity to stress is observed in patients with schizophrenia spectrum disorders and their healthy siblings in comparison with the general population. Additionally, higher levels of neuroticism, as a proposed psychological measure of stress sensitivity, increase the risk of schizophrenia. HPA axis dysregulation is one of the possible mechanisms related to the vulnerability–stress model of schizophrenia, and recent studies revealed a possible role of the functional genetic variants of FK506-binding protein 51 (FKBP5) gene which modulate activity of HPA axis. The purpose of the present study was to investigate impact of FKBP5 on schizophrenia in Serbian patients and to explore relationship between genetic variants and neuroticism by using the case–sibling–control design. In 158 subjects, we measured psychotic experiences, childhood trauma and neuroticism. Nine single-nucleotide polymorphisms (rs9295158, rs3800373, rs9740080, rs737054, rs6926133, rs9380529, rs9394314, rs2766533 and rs12200498) were genotyped. The genetic influence was modeled using logistic regression, and the relationship between genetic variants and neuroticism was assessed by linear mixed model. Our results revealed genetic main effect of FKBP5 risk alleles (A allele of rs9296158 and T allele of rs3800373) and AGTC “risk” haplotype combination (rs9296158, rs3800373, rs9470080 and rs737054, respectively) on schizophrenia, particularly when childhood trauma was set as a confounding factor. We confirmed strong relationship between neuroticism and psychotic experiences in patients and siblings and further showed relationship between higher levels of neuroticism and FKBP5 risk variants suggesting potential link between biological and psychosocial risk factors. Our data support previous findings that trauma exposure shapes FKBP5 impact on schizophreni

    Vida aprofitada: homenatge familiar a Josep Gorina i Pujol

    Get PDF

    Boletín oficial de la provincia de León: Num. 34 (09/02/1934)

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 2011-201

    Spartan Daily, February 20, 1998

    Get PDF
    Volume 110, Issue 21https://scholarworks.sjsu.edu/spartandaily/9237/thumbnail.jp

    Cerebellar Activation During Simple and Complex Bimanual Coordination:an Activation Likelihood Estimation (ALE) Meta-analysis

    Get PDF
    Bimanual coordination is an important part of everyday life and recruits a large neural network, including the cerebellum. The specific role of the cerebellum in bimanual coordination has not yet been studied in depth, although several studies indicate a differential role of the anterior and posterior cerebellum depending on the complexity of the coordination. An activation likelihood estimation (ALE) meta-analysis was used combining the data of several functional MRI studies involving bimanual coordination tasks with varying complexities to unravel the involvement of the different areas of the cerebellum in simple and complex bimanual coordination. This study confirms the general bimanual network as found by Puttemans et al. (Puttemans et al. in J Neurosci 25:4270-4278, 2005) and highlights the differences between preferred in-phase (simultaneous movements of homologous muscle groups) and anti-phase movement conditions (alternating movements of homologous muscle groups), and more complex, non-preferred bimanual movements (e.g., out-of-phase movements). Our results show a differential role for the anterior and posterior vermis in bimanual coordination, with a role for the anterior vermis in anti-phase and complex bimanual coordination, and an exclusive role for the posterior vermis in complex bimanual movements. In addition, the way complexity was manipulated also seems to play a role in the involvement of the anterior and posterior vermis. We hypothesize that the anterior vermis is involved in sequential/spatial control, while the posterior vermis is involved in temporal control of (bimanual) coordination, though other factors such as (visual) feedback and continuity of the movement also seem to have an impact. More studies are needed to unravel the specific role of the cerebellar vermis in bimanual coordination

    Daily Eastern News: February 15, 1999

    Get PDF
    https://thekeep.eiu.edu/den_1999_feb/1008/thumbnail.jp

    Daily Eastern News: February 15, 1999

    Get PDF
    https://thekeep.eiu.edu/den_1999_feb/1008/thumbnail.jp
    corecore