18,248 research outputs found

    A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site

    Full text link
    In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of substrate binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modelled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse-grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically, without loss of accuracy in the atomistic description. This multi-resolution methodology can successfully model stable ligand binding, and we further confirm its validity via an exploration of system properties relevant to enzymatic function. In addition to a computational speedup, such an approach can allow the identification of the essential degrees of freedom playing a role in a given process, potentially yielding new insights into biomolecular function

    Optimal Rates of Statistical Seriation

    Full text link
    Given a matrix the seriation problem consists in permuting its rows in such way that all its columns have the same shape, for example, they are monotone increasing. We propose a statistical approach to this problem where the matrix of interest is observed with noise and study the corresponding minimax rate of estimation of the matrices. Specifically, when the columns are either unimodal or monotone, we show that the least squares estimator is optimal up to logarithmic factors and adapts to matrices with a certain natural structure. Finally, we propose a computationally efficient estimator in the monotonic case and study its performance both theoretically and experimentally. Our work is at the intersection of shape constrained estimation and recent work that involves permutation learning, such as graph denoising and ranking.Comment: V2 corrects an error in Lemma A.1, v3 corrects appendix F on unimodal regression where the bounds now hold with polynomial probability rather than exponentia

    Automorphisms of Cuntz-Krieger algebras

    Full text link
    We prove that the natural homomorphism from Kirchberg's ideal-related KK-theory, KKE(e, e'), with one specified ideal, into Hom_{\Lambda} (\underline{K}_{E} (e), \underline{K}_{E} (e')) is an isomorphism for all extensions e and e' of separable, nuclear C*-algebras in the bootstrap category N with the K-groups of the associated cyclic six term exact sequence being finitely generated, having zero exponential map and with the K_{1}-groups of the quotients being free abelian groups. This class includes all Cuntz-Krieger algebras with exactly one non-trivial ideal. Combining our results with the results of Kirchberg, we classify automorphisms of the stabilized purely infinite Cuntz-Krieger algebras with exactly one non-trivial ideal modulo asymptotically unitary equivalence. We also get a classification result modulo approximately unitary equivalence. The results in this paper also apply to certain graph algebras.Comment: 26 page

    Multistep DBT and regular rational extensions of the isotonic oscillator

    Full text link
    In some recent articles we developed a new systematic approach to generate solvable rational extensions of primary translationally shape invariant potentials. In this generalized SUSY QM partnership, the DBT are built on the excited states Riccati-Schr\"odinger (RS) functions regularized via specific discrete symmetries of the considered potential. In the present paper, we prove that this scheme can be extended in a multistep formulation. Applying this scheme to the isotonic oscillator, we obtain new towers of regular rational extensions of this potential which are strictly isospectral to it. We give explicit expressions for their eigenstates which are associated to the recently discovered exceptional Laguerre polynomials and show explicitely that these extensions inherit of the shape invariance properties of the original potential

    Higher variations for free L\'evy processes

    Full text link
    For a general free L\'evy process, we prove the existence of its higher variation processes as limits in distribution, and identify the limits in terms of the L\'evy-It\^o representation of the original process. For a general free compound Poisson process, this convergence holds almost uniformly, This implies joint convergence in distribution to a kk-tuple of higher variation processes, and so the existence of kk-fold stochastic integrals as almost uniform limits. If the existence of moments of all orders is assumed, the result holds for free additive (not necessarily stationary) processes and more general approximants. In the appendix we note relevant properties of symmetric polynomials in non-commuting variables

    Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways

    Full text link
    Diverse classes of proteins function through large-scale conformational changes; sophisticated enhanced sampling methods have been proposed to generate these macromolecular transition paths. As such paths are curves in a high-dimensional space, they have been difficult to compare quantitatively, a prerequisite to, for instance, assess the quality of different sampling algorithms. The Path Similarity Analysis (PSA) approach alleviates these difficulties by utilizing the full information in 3N-dimensional trajectories in configuration space. PSA employs the Hausdorff or Fr\'echet path metrics---adopted from computational geometry---enabling us to quantify path (dis)similarity, while the new concept of a Hausdorff-pair map permits the extraction of atomic-scale determinants responsible for path differences. Combined with clustering techniques, PSA facilitates the comparison of many paths, including collections of transition ensembles. We use the closed-to-open transition of the enzyme adenylate kinase (AdK)---a commonly used testbed for the assessment enhanced sampling algorithms---to examine multiple microsecond equilibrium molecular dynamics (MD) transitions of AdK in its substrate-free form alongside transition ensembles from the MD-based dynamic importance sampling (DIMS-MD) and targeted MD (TMD) methods, and a geometrical targeting algorithm (FRODA). A Hausdorff pairs analysis of these ensembles revealed, for instance, that differences in DIMS-MD and FRODA paths were mediated by a set of conserved salt bridges whose charge-charge interactions are fully modeled in DIMS-MD but not in FRODA. We also demonstrate how existing trajectory analysis methods relying on pre-defined collective variables, such as native contacts or geometric quantities, can be used synergistically with PSA, as well as the application of PSA to more complex systems such as membrane transporter proteins.Comment: 9 figures, 3 tables in the main manuscript; supplementary information includes 7 texts (S1 Text - S7 Text) and 11 figures (S1 Fig - S11 Fig) (also available from journal site

    Time-convolutionless master equation for mesoscopic electron-phonon systems

    Full text link
    The time-convolutionless master equation for the electronic populations is derived for a generic electron-phonon Hamiltonian. The equation can be used in the regimes where the golden rule approach is not applicable. The equation is applied to study the electronic relaxation in several models with the finite number normal modes. For such mesoscopic systems the relaxation behavior differs substantially from the simple exponential relaxation. In particular, the equation shows the appearance of the recurrence phenomena on a time-scale determined by the slowest mode of the system. The formal results are quite general and can be used for a wide range of physical systems. Numerical results are presented for a two level system coupled to Ohmic and super-Ohmic baths, as well as for a model of charge-transfer dynamics between semiconducting organic polymers
    corecore