1,408 research outputs found

    Basic control for four rotor autonomous aerial agent

    Get PDF
    Aerial robotics provides many practical applications in fields such as search and rescue and surveying. In order to advance the research in aerial robotics, an inexpensive test platform is required. Our four-rotor platform provides researchers with a inexpensive, fully scalable test platform for future studies. Its completely on-board processing removes the need for a virtual tether in the form of a radio transmitter, allowing for completely autonomous operation

    Authentication and Encryption of Aerial Robotics Communication

    Get PDF
    As designed to accept custom modules, autonomous aircrafts has developed into a fast-paced industry. The remote-control system of aerial robotics is typically based on wireless communications methods, such as 2.4 GHz, 5.8 GHz, or Wi-Fi. Because the services vary with the communication method, users face different kinds of cybersecurity challenges. This thesis provides an innovative solution for the authentication and security methods in proposed aerial robotics communication network. The thesis begins with an introduction to RF drone communications. After a discussion of the MAV Link communication protocol, the thesis will focus on the differences between the existing one-to-one network and the proposed one-to-many network. This thesis will then address the application of the transport layer security (TLS) layer, in connection with communication protocols, encryption, decryption, key distribution and authentication. The thesis concludes with a discussion of the future of Wi-Fi based aerial robotics networks

    Aerostack2: A Software Framework for Developing Multi-robot Aerial Systems

    Full text link
    In recent years, the robotics community has witnessed the development of several software stacks for ground and articulated robots, such as Navigation2 and MoveIt. However, the same level of collaboration and standardization is yet to be achieved in the field of aerial robotics, where each research group has developed their own frameworks. This work presents Aerostack2, a framework for the development of autonomous aerial robotics systems that aims to address the lack of standardization and fragmentation of efforts in the field. Built on ROS 2 middleware and featuring an efficient modular software architecture and multi-robot orientation, Aerostack2 is a versatile and platform-independent environment that covers a wide range of robot capabilities for autonomous operation. Its major contributions include providing a logical level for specifying missions, reusing components and sub-systems for aerial robotics, and enabling the development of complete control architectures. All major contributions have been tested in simulation and real flights with multiple heterogeneous swarms. Aerostack2 is open source and community oriented, democratizing the access to its technology by autonomous drone systems developers

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Aerial robotics in building inspection and maintenance

    Get PDF
    Buildings need periodic revision about their state, materials degrade with time and repairs or renewals have to be made driven by maintenance needs or safety requirements. That happens with any kind of buildings and constructions: housing, architecture masterpieces, old and ancient buildings and industrial buildings. Currently, nearly all of these tasks are carried out by human intervention. In order to carry out the inspection or maintenance, humans need to access to roofs, façades or other areas hard to reach and otherwise potentially hazardous location to perform the task. In some cases, it might not be feasible to access for inspection. For instance, in industry buildings operation must be often interrupted to allow for safe execution of such tasks; these shutdowns not only lead to substantial production loss, but the shutdown and start-up operation itself causes risks to human and environment. In touristic buildings, access has to be restricted with the consequent losses and inconveniences to visitors. The use of aerial robots can help to perform this kind of hazardous operations in an autonomous way, not only teleoperated. Robots are able to carry sensors to detect failures of many types and to locate them in a previously generated map, which the robot uses to navigate. Some of those sensors are cameras in different spectra (visual, near-infrared, UV), laser, LIDAR, ultrasounds and inertial sensory system. If the sensory part is crucial to inspect hazardous areas in buildings, the actuation is also important: the aerial robot can carry small robots (mainly crawler) to be deployed to perform more in-depth operation where the contact between the sensors and the material is basic (any kind of metallic part: pipes, roofs, panels…). The aerial robot has the ability to recover the deployed small crawler to be reused again. In this paper, authors will explain the research that they are conducting in this area and propose future research areas and applications with aerial, ground, submarine and other autonomous robots within the construction field.Peer ReviewedPostprint (author's final draft

    Visual servoing of an autonomous helicopter in urban areas using feature tracking

    Get PDF
    We present the design and implementation of a vision-based feature tracking system for an autonomous helicopter. Visual sensing is used for estimating the position and velocity of features in the image plane (urban features like windows) in order to generate velocity references for the flight control. These visual-based references are then combined with GPS-positioning references to navigate towards these features and then track them. We present results from experimental flight trials, performed in two UAV systems and under different conditions that show the feasibility and robustness of our approach

    Planning for perception and perceiving for decision: POMDP-like online optimization in large complex robotics missions

    Get PDF
    This ongoing phD work aims at proposing a unified framework to optimize both perception and task planning using extended Partially Observable Markov Decision Processes (POMDPs). Targeted applications are large complex aerial robotics missions where the problem is too large to be solved off-line, and acquiring information about the environment is as important as achieving some symbolic goals. Challenges of this work include: (1) optimizing a dual objective in a single decision-theoretic framework, i.e. environment perception and goal achievement ; (2) properly dealing with action preconditions on belief states in order to guarantee safety constraints or physical limitations, what is crucial in aerial robotics ; (3) modeling the symbolic output of image processing algorithms as input of the POMDP's observation function ; (4) parallel optimization and execution of POMDP policies in constrained time. A global view of each of these topics are presented, as well as some ongoing experimental results

    Marker based Thermal-Inertial Localization for Aerial Robots in Obscurant Filled Environments

    Full text link
    For robotic inspection tasks in known environments fiducial markers provide a reliable and low-cost solution for robot localization. However, detection of such markers relies on the quality of RGB camera data, which degrades significantly in the presence of visual obscurants such as fog and smoke. The ability to navigate known environments in the presence of obscurants can be critical for inspection tasks especially, in the aftermath of a disaster. Addressing such a scenario, this work proposes a method for the design of fiducial markers to be used with thermal cameras for the pose estimation of aerial robots. Our low cost markers are designed to work in the long wave infrared spectrum, which is not affected by the presence of obscurants, and can be affixed to any object that has measurable temperature difference with respect to its surroundings. Furthermore, the estimated pose from the fiducial markers is fused with inertial measurements in an extended Kalman filter to remove high frequency noise and error present in the fiducial pose estimates. The proposed markers and the pose estimation method are experimentally evaluated in an obscurant filled environment using an aerial robot carrying a thermal camera.Comment: 10 pages, 5 figures, Published in International Symposium on Visual Computing 201
    • …
    corecore