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Visual Servoing of an Autonomous Helicopter in
Urban Areas Using Feature Tracking

Luis Mejias, Srikanth Saripalli, Pascual Campoy and Gaurav S. Sukhatme

Abstract— We present the design and implementation of
a vision-based feature tracking system for an autonomous
helicopter. Visual sensing is used for estimating the position
and velocity of features in the image plane (urban features
like windows) in order to generate velocity references
for the flight control. These visual-based references are
then combined with GPS-positioning references to navigate
towards these features and then track them. We present
results from experimental flight trials, performed in two
UAV systems and under different conditions that show the
feasibility and robustness of our approach.

Index Terms— Unmanned Aerial Vehicle, feature track-
ing, visual servoing, autonomous helicopter

I. INTRODUCTION

Our goal is to build vision-guided autonomous
flying robots. Vision allows such robots to serve
as intelligent eyes-in-the-sky suitable for numerous
applications including law enforcement, search and
rescue, aerial mapping and inspection, and movie
making. Vision for flight control encompasses a
broad spamming of vision-based object detection
and tracking, optical position estimation, inertial
navigation, GPS, and non-linear system modeling.
An autonomous helicopter is highly suitable for
tasks like inspection, surveillance and monitoring.
The ability of the helicopter to fly at low speeds,
hover, fly laterally and perform maneuvers in narrow
spaces makes it an ideal platform for such tasks.
Electric power companies use helicopters to inspect
towers, transmission lines and other defects [Cam-
poy et al., 2000]. This ability can be extended
to urban environments where vision can be used
for navigation and obstacle avoidance [Hrabar and
Sukhatme, 2003]. One can also envisage tasks such
as inspection and surveillance, where the helicopter
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is required to recognize some set of features and
track them over time. This ability is particularly
useful in urban structured environments where the
features that are to be tracked have many similar ge-
ometric properties. Vision provides a natural sensing
modality for feature detection and tracking. In many
contexts (e.g. urban areas, airports) the structured
nature of features (e.g. windows) facilitates vision-
based state estimation and control.

We combine vision with low-level control to
achieve precise autonomous vision-based feature
tracking for an unmanned autonomous helicopter.
The vision-based system described here acts as
an overall controller sending navigation commands
to a flight controller which is responsible for au-
tonomous control of the helicopter. The result is an
overall algorithm for vision-based tracking of fea-
tures using an autonomous helicopter in structured
3D environment. Our tests have been performed on
two platforms. The first platform AVATAR [Mont-
gomery, 2000] at the University of Southern Cali-
fornia and the second COLIBRI [COLIBRI, 2005]
at Universidad Politécnica de Madrid. In the ex-
periments explained later the helicopter [Figures 1
and 2] is initialized in hover at an arbitrary location.
A user selects feature from the ground control unit
(in this case windows on a building) which the
helicopter should align to and track in successive
frames.

II. RELATED WORK

Recently there has been significant interest in
small autonomous flying vehicles in the robotics
community. An early autonomous navigation system
for a model-scale helicopter (the Hummingbird) was
reported in [Conway, 1995]. The unique feature of
this system was the sole use of GPS as the naviga-
tion sensor replacing the Inertial Measurement Unit.
In [Jun et al., 1999] a system based on integration
of the onboard INS and GPS was used to pro-
duce accurate position and velocity estimates. The
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Fig. 1. The Autonomous Vehicle Aerial Tracking and Reconnais-
sance (AVATAR)

Fig. 2. The COLIBRI autonomous helicopter during a flight trial

autonomous helicopter reported in [Amidi, 1996],
[Miller et al., 1997], had a combination of vision
and GPS for navigation capability. The onboard
DSP-based vision processor provided navigation
information such as position, velocity and attitude
at an acceptable delay (on the order of 10ms),
which was combined with GPS and IMU data
for accurate attitude and position measurements.
The reader is referred to [Saripalli et al., 2003b],
[Shim et al., 1998], [Johnson, 1980], [Conway,
1995], [Montgomery, 1999] for an overview of
the various types of vehicles, theory and the algo-
rithms used for their control. Recent work has in-
cluded autonomous landing [Saripalli et al., 2003a],
[Shakernia et al., 1999], aggressive maneuvering
of AFVs (Autonomous Flying Vehicles) [Gavrilets
et al., 2002], and pursuit-evasion games [Vidal et al.,
2002].

In [Bosse, 1997], a vision augmented naviga-
tion system is discussed for autonomous helicopter

control which uses vision in-the-loop to control a
helicopter. A notable vision-based technique used
in autonomous helicopter control, is the visual
odometer [Amidi et al., 1998], which provides ac-
curate navigational information (position and veloc-
ity) which is combined with inertial measurements.
In [Wu et al., 2005] vision is used as additional
sensor and fused with inertial and heading mea-
surements for control of an unmanned rotorcraft.
In [Garcia-Pardo et al., 2001] a vision-based so-
lution is given for safe-landing site detection in
unstructured terrain where the key problem is for
the onboard vision system to detect a suitable place
to land, without the aid of a structured landmark
such as a helipad. Recent work on autonomous
landing using vision and inertial sensing is described
in [Merz et al., 2004]. Previously we have shown
a real time computer vision system for tracking
a landing target and have successfully coupled it
with a helicopter controller to achieve landing [Sari-
palli et al., 2003a]. Work on window tracking for
one dimensional visual control of an unmanned
autonomous helicopter is reported in [Mejias et al.,
2005]

III. AUTONOMOUS HELICOPTER TESTBED

The experimental testbed, AVATAR (Autonomous
Vehicle for Aerial Tracking And Reconnais-
sance) [Montgomery, 2000], [AVATAR, 2005] is a
gas-powered radio-controlled model helicopter fit-
ted with a PC-104 stack augmented with sensors.
A Novatel RT-2 DGPS system provides positional
accuracy of 2 cm CEP (Circular Error Probable, i.e.
the radius of a circle, centered at the true location of
a receiver antenna, that contains 50% of the individ-
ual position measurements made using a particular
navigational system). An ISIS-IMU unit with three
single-axis accelerometers and three single-axis gy-
roscopes provides rate information to the onboard
computer, which is fused using a 16 state kalman
filter. The ground station is a laptop that is used to
send high-level control commands and differential
GPS corrections to the helicopter. Communication
with the ground station is via 802.11b. Autonomous
flight is achieved using a behavior-based control
architecture [Saripalli et al., 2003a].

The COLIBRI helicopter testbed is based on a
gas powered model helicopter twin stroke engine
with 52cc and 8 hp, fitted with a Xscale based
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flight computer augmented with sensors (GPS, IMU,
Magnetometer also fused with a kalman filter). For
vision processing it has a VIA mini-ITX 1.25GHz
computer onboard with 512Mb RAM, wireless in-
terface, and a firewire color camera for acquiring
the images. Both computers run Linux. The ground
station is a laptop used to send high-level control
commands to the helicopter. Is also used for visual-
ization of image data and communications with the
onboard image processing algorithm. Communica-
tion with the ground station is via 802.11g wireless
Ethernet.

IV. VISUAL PREPROCESSING

We present an image-based velocity references
approach to visually control the displacement of
a helicopter and two vision approaches to detect
and track features on buildings. The visual control
approach has been tested in two stages. In the
first approach, the helicopter autonomously detects
features (in this case windows) and based on the
output of the vision algorithm, is commanded to
laterally align with the window. On a higher level
a user select (on a GUI) the detected windows
which the helicopter should align to. The altitude
of the helicopter is maintained independently using
GPS. In the second approach the user selects a
window to track and the visual controller sends
lateral as well as vertical displacement commands to
the helicopter, in effect controlling both the lateral
position as well as the altitude.

Both systems have in common the same visual
processing architecture, that consists of two main
tasks running in a client-server architecture. The
server task (image processing), which runs on board
the helicopter, extracts the features and performs
tracking. The client task consists of a high level
graphical user interface that sends higher level com-
mands to the helicopter and also logs the data.

A. AVATAR: feature detection and tracking

In order to improve the performance of the sys-
tem, the entire image is not processed. In a general
case, image processing needs to be performed over
the entire image to extract the desired features, but
this task requires high speed processing or special
purpose hardware in order to work at frame rates
(30Hz), but for the task of feature tracking not
all pixels in the image are of interest. Thus the
computational cost can be reduced if only a local

area of the image is processed, our approach falls
on the category of window-based tracking [Haral-
ick and Shapiro, 1992] techniques. Our algorithm
measures the match between a fixed-size window
with features with an initially picked template along
a sequence of images. The position of the local
search window is first located in the same position
of the template, then is successively updated in the
previous successful matches. The vision system con-
sists of five stages. The feature detection algorithm
is described below in three stages; thresholding,
segmentation and square finding. Once the feature
is detected the tracking is performed in two stages:
template matching and window tracking, both of
which are described later in this section.

1) Segmentation and Thresholding: The purpose
of this stage is to extract the color that characterizes
the object of interest. Such a segmented image is
then converted to grayscale by thresholding. Next
template matching is performed for feature recog-
nition. The Equation used to convert a color image
to grayscale is given by [OpenCV, 2005]

Y =0.21267« R+0.715160«G+0.072169% B (1)

where: R,G,B are the red, green and blue image
channels. The formulation for threshold based
segmentation is as follows:

Let be I the image with component I, Iy, Iy,

respectively
Algorithm 1: SEGMENTATION()

(for i — N1 to N2

if Vi, < Yi <Y,

I, =Cy
else
17, = C(b
where:

N1 and N2 are the limits of the local search area
C' and C} the values for foreground and background
Yiow and Y, are the lower/upper thresholds,

usually, Yo, = 0.7 %Y, and Y,, = Y.. Y, is
the gray scale projection of the target color using
(1). Next the segmented image is thresholded to
produce a binary image where the object of interest
is represented by 1’s and the background with O’s.

Y; = 0.21267 % 1(i), + 0.715160 * (i), + 0.072169 * I(i)
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(a) Original image

(c) Binary image

Fig. 3.

2) Square finding: This is intended to identify
those geometric features that are candidates for
features to be tracked, in our case a window. This
algorithm takes a binary image (Figure 3c), finds
the contours and approximates it. The detected
contours are represented by continuous lines com-
posed of one or more line segments (Polylines).
An algorithm for reducing the points in a poly-
line to produce a simplified polylines is applied.
The Douglas-Peucker (DP) algorithm [Douglas and
Peucker, 1973] is used for this purpose. This algo-
rithm works from the top down by starting with a
crude initial guess at a simplified polyline, namely
the single edge joining the first and last vertices
of the polyline. Then the remaining vertices are
tested for closeness to that edge. If there are vertices
further than a specified tolerance, € > 0, away from
the edge, then the vertex furthest from it is added
the simplification. This creates a new guess for the
simplified polyline. Using recursion, this process
continues for each edge of the current guess until all

(d) Contour detection

Sequence of the image preprocessing operations.

vertices of the original polyline are within tolerance
of the simplification.

More specifically, in the DP algorithm, the two
extreme endpoints of a polyline are connected with
a straight line as the initial rough approximation of
the polyline. How well it approximates the whole
polyline is determined by computing the distances
from all intermediate polyline vertices to that (finite)
line segment. If all these distances are less than
the specified tolerance ¢, then the approximation
is good, the endpoints are retained, and the other
vertices are eliminated. However, if any of these
distances exceeds the ¢ tolerance, then the approxi-
mation is not good enough. In this case, we choose
the point that is furthest away as a new vertex
subdividing the original polyline into two (shorter)
polylines.

A rectangle is extracted using the convexity and
angle between the vectors of the approximated con-
tour. This algorithm is used for the first few frames,
once a window is detected, the matching algorithm
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takes over to track the window independently, even
when the detection algorithm fails. This is done for
robustness reasons where detection might be impos-
sible during forward flight. Figure 3 summarizes the
early preprocessing sequence.

3) Template Matching: The matching process
starts by selecting a patch of 40x40 pixels around
the location of the target chosen by the user. This
patch is successively compared with the local search
window of 100x100 in the grey scale image. This
local search area is first located in the same position
of the patch. It is then updated using the location
of the previous successful match. The template
matching is performed by measuring the similarity
between the patch and the features in the local
search area in successive image sequences. The
output of this process is a quantitative measure of
similarity which is converted to image coordinates.
We use the normalized cross correlation which is
defined by:

: SIS T (@, ) (x + &y + )

where H, is known and v, is random measure-
ment noise. A second order Kalman Filter is used
for tracking the target. The filter is formulated
as follows. Suppose we assume that the process
noise w;, is white, zero-mean, Gaussian noise with
a covariance matrix Q. Further assume that the
measurement noise is white, zero-mean, Gaussian
noise with a covariance matrix R, and that it is
not correlated with the process noise. The system
dynamics in general form is X = ¢ 1 X1 + wi
expanding the Equation is

Dk 1 T 71%)2 Pr—1
Vg = 0 1 T V-1 + wy
ak 0 0 1 Ap_1

where a;_1 is a random time-varying feature accel-
eration, vi_1 is the velocity and pj_ its position. T’
is the time between the steps k£ and £ — 1. For this
task the feature position is only taken into account
reducing the state vector to X = [px] = [z y]?
The state propagation and update Equation for the
discrete Kalman filter are given by [Kalman, 1960]

2)
In the above Equation w and h are boundaries of the
local area, I(z,y) and T'(z,y) represents the image
and template intensities, respectively.

4) Kalman Filter: Once a suitable match be-
tween the target template and the features in the
image is found a Kalman filter is used to track the
feature positions in the image sequence over time.
The inputs to the kalman filter are the x and y
coordinates (in pixels units) given by the template
matching algorithm. The outputs are the estimates
of these coordinates in the next frame. Based on a
second order kinematic model for the tracked object
we model the Equation of the target as a linear
system described by:

X1 = AXy + Bug + wy 3)
where wy, is random process noise and the subscripts
on the vectors represent the time step. Xj is the
state vector describing the motion of the target
(its position p, velocity v and acceleration a). The
measurement vector at time k is given by

Z, = Hp X + vy, “)

VIS T e, g) S T P+ By +9)

Xi(=) = P 1 X1 (—) (5)

Pi(=) = ®r 1 Pea(+)Pra” +Qrn (6)

Sy = HyPo(—)H," + R (7

Ky, = Py(—)Hy" S 3

Pe(+) = (In — KpHy) Pi(—) )

Xi(+) = Xi(=) + Ki(Ze — HiX(=))  (10)

In Equations 5 to 10, the superscript T indicates
matrix transposition. ® is the transition matrix. S
is the covariance of the innovation, K is the gain
matrix, and P is the covariance of the prediction
error. Equation 5 is state estimate extrapolation.
Equation 6 is the state covariance extrapolation.
Equation 8 is the Kalman gain matrix. Equations
(9)(10) are the state covariance update and the
state estimate update, respectively. Also we distin-
guish between estimates made before and after the
measurements occur. Xj(—) is the state estimate
that results from the propagation Equations alone
(i.e., before the measurements are considered) and
X (+) is the corrected state estimate that accounts
for measurements. Pj,(—) and Py(+) are defined
similarly. R

The output of the Kalman filter (X (+)) is used
as an error signal e for controlling the velocity of
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the helicopter. The derivation of the visual refer-
ences from the feature position estimation is similar
to Equation 13. The Figure 4 taken during flight
summarizes the detection and tracking process. The
small circle represent the feature picked by the user
and the bigger circle represents the output of the
Kalman filter.

Fig. 4. Detection and tracking process

B. COLIBRI: feature tracking and visual control

Fig. 5.

Window being tracked during flight

The tracking algorithm consists of a Lucas-
Kanade tracker [Lucas and Kanade, 1981], [Tomasi
and Kanade, 1993]. The Lucas-Kanade algorithm
(which is a Gauss-Newton gradient descent non-
linear optimization algorithm) is derived as follows.

Zw(x7y)lxlyu+z w(CC,y)IjU = — Z
> wla,y) ZutY w(x,y) Ly =Y

(11

(12)

w(z,y)I,1;

The goal of the Lucas-Kanade algorithm is to
minimize the sum of squared error between two
images, the template and the image warped back
onto the coordinate frame of the template. The value
w(x,y) is the Gaussian window, I, and I, the pixel
values, I; is the current grey level intensity image,
u and v are components of optical flow field in x
and y coordinates respectively.

An implementation [Bouguet Jean Yves, 1999] of
this algorithm is used to tracks 4 points correspond-
ing to four corners of a window. A grey level version
of the captured image is used for this purpose. Two
of the four points (corners) mentioned before are
initialized by the user. First the user picks two points
(opposite corners) then the remaining two points
are searched and detected in the neighborhood of
the first two. The criteria to find these remaining
two points are based on the eigen values, grey level
values, corner image location, etc. The central point
of these four corners is then used as a basis for the
visual reference.

During visual processing since the detection and
tracking of objects occurs in image space, the
natural output from such an algorithm is velocity
in image space. This represents the control inputs
to the helicopter in terms of velocity in the body-
coordinate frame.

1) Lateral Visual Reference: Once the object of
interest is located, its location in the image is used
to generate the visual references to the flight control
(Figure 6). If the camera is located approximately
at the center of mass of the helicopter (Xhc = 0)
the angles (5 and « will coincide. Given the fixed
kinematic relationship between the camera and the
helicopter the task of visual servoing consists of
making the angles zero that produces the alignment
of the vehicle with the target if the value of 7 is 3.

.- |y Pbisct

image coordinates

Fig. 6. Helicopter-Camera reference: top view

w(x,y)I,IBased on the above diagram i is the value that

makes the references higher when the object is far
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from the center and minimum when the helicopter
is in the image center. The lateral visual signal
that commands the helicopter laterally is given by
Equation 13.

(-3

w

VYref = 2 (13)
where w is the image width and ¢ is the horizontal
component of the object location in the image.

2) Vertical Visual References: Using the same
approach mentioned above and taking as reference
the scheme (Figure 7) the task of visual servoing
can be accomplished if the value of j is }—2‘

object

_ - -T =
N /;,
{2 ,‘u T\_ = ,l"lf
' o=

/7 | ,f
b y | / side view
7
!
goal location start location
image coordinates
Fig. 7. Helicopter-Camera reference: lateral view

Based on that, the vertical visual signal that com-
mands the helicopter vertically is given by Equa-
tion 14.

VZpef = 2 (14)
where h is the image height and j is the vertical
component of the object location in the image.

Before the references are sent to the flight con-
troller a low pass filter is applied. The general form
of the filter is the following

X=01-kxX"1T+kxX! (15)

where X = [0y v2res]7, the vector X' encodes
the current values. The value of k£ has been empir-

ically chosen to be equal to 0.9.

V. CONTROL ARCHITECTURES
A. AVATAR flight control architecture

The AVATAR is controlled using a hierarchical
behavior-based control architecture. The behavior-
based control architecture used for the AVATAR is
shown in Figure 8. The low-level behaviors have

been extensively described in previous work [Sari-
palli et al., 2003a], we give a brief summary below
and focus on the behaviors specific to the vision-
based lateral control problem.

Navigational |
Controller |

Desired
Velocity
Lateral
Controller

Y A

Desired
Heading

Desired
Altitude

 J

tch
troller

Altitude
Controller
| |

Heading
Controller |

A
Estimated
Heading

| Extended | Estimated
Kalman *
Filter |

l Altitude
Longitudinal Tail

Cyelic Rotor

Lateral
Cyclic

Collective

Fig. 8. AVATAR behavior-based controller

At the lowest level the robot has a set of reflex
behaviors that maintain stability by holding the craft
in hover. The heading control behavior attempts to
hold the desired heading by using data from the
kalman filtered heading to actuate the tail rotor.
The altitude control behavior uses the sonar, GPS
and IMU to control the collective and the throttle.
The pitch and roll control behaviors maintain the
desired roll and pitch angles received from the
lateral velocity behavior. The lateral velocity be-
havior generates desired pitch and roll values that
are given to the pitch and roll control behaviors to
achieve a desired lateral velocity. At the top level
the navigation control behavior inputs a desired
heading to the heading control, a desired altitude or
vertical velocity to the altitude control and a desired
lateral velocity to the lateral control behavior. A key
advantage of such a control algorithm is the ability
to build complex behaviors on top of the existing
low level behaviors, without changing them.

B. COLIBRI flight control architecture

The overall scheme of the flight controller is
shown in the Figure 9. The controller is based
on a decoupled PID control in which each degree
of freedom is controlled separately based on the
assumption that the helicopter dynamics are decou-
pled. The attitude control stabilizes the helicopter
in hover maintaining the desired roll, pitch and
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heading. The velocity and position controllers are
responsible to generate the appropriate references to
the attitude controller in order to maintain a desired
velocity or position, respectively.

attiitude control

estimation

actuators

—
onboard sensor

(GPS MU, Mag)

(_postion )
(_velociy )

Fig. 9. Flight controller scheme

The attitude controller is implemented as a
proportional-plus-derivative (PD) control. The head-
ing is implemented with a proportional-plus-
derivative-plus-integral control, the respective out-
put signal are given according to the following
Equations

Otar = KP(¢CZ - ¢) + de (16)

510” = Kp(ed - 9) + de (17)

or = Kp(tha — ) + K; /(¢d — w)dt"‘Kd(d}dd—_w
218)

where: 04, 010, and d; are the lateral cyclic, longi-
tudinal cyclic and collective tail commands, respec-
tively. The values K, K; and K, are the propor-
tional, integral and derivative gains associated with
each controller. The position and velocity controller
are implemented in the same way according with
same control law. These values were obtained for
autonomous navigation and hover. These gains will
be reviewed in the future to tune them for a best
visual servoing task.

VI. EXPERIMENTAL RESULTS

Two sets of experiments were performed to test
the vision system with combined flight control.

These were conducted in two different locations and
experimental conditions. The first set of flights were
performed at Del Valle Urban Search and Rescue
training site in Santa Clarita, California, using the
AVATAR helicopter. The second set of tests were
performed on two different days to validate the
vision system with the flight control. This set of
flights were done in a closed urban area at the
ETSII campus in Madrid, Spain using the COLIBRI
helicopter.

A. Experimental Results at Del Valle Urban Search
and Rescue training site in Santa Clarita, California

This section presents the results obtained during
flight trials. In our experiments the helicopter is
commanded to fly autonomously to a given GPS
waypoint. The vision algorithm then takes control
aligning the helicopter to the features being tracked.
Four flight trials were performed, the results of
which are summarized below.

The sequence of events during autonomous con-
trol is as follows: The helicopter starts in au-
tonomous hover at some GPS location. It is com-
manded to GOTO a particular GPS location which
is in the vicinity of the features to be detected and
tracked (dashed line segment in Figures 10(c)(d)).
The features in these set of experiments happened to
be rectangular windows. As soon as the helicopter
detects these features the controller on the helicopter
switches from GPS-based control to vision-based
control (solid line segment in figures 10(c)(d)).
The Kalman filter-based tracker commands the low
level controller on the helicopter. The helicopter
then tracks the window in successive frames, and
produces the necessary velocity commands to the
controller such that it can hover facing the window.
The object of interest in these experiments was a
window which was 4 meters away from the GPS
waypoint.

Figure 10(a) shows the velocity commands gen-
erated by the vision algorithm in the image plane,
solid line. This signal is the output of Kalman filter
as mentioned in IV-A.4. Note that for lateral control
only the y component of this signal is taken and
normalized between -1m/s and 1m/s. Figure 10(b)
shows the location of the features in the image
plane. Both the output of the raw correlation based
feature tracker and the Kalman filter are shown.

Figures 10(c) and 10(d) show the path taken by
the helicopter while tracking the features. Good
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correlation can be seen with respect to the desired
commands by the vision system and the path of
the helicopter. This can be noticed by comparing
Figures 10(a) and 10(c) where a corresponding
change in velocity shows a proportional change in
position as expected. In figures 10(c) and 10(d) the
solid line represents the time when the helicopter is
controlled based on GPS and the dashed line rep-
resents vision-based control. The oscillations which
are seen in the graph are due to the Proportional-
Integral (PI) control used. In the future we plan
to test an Proportional-Derivative (PD) control to
dampen the oscillations. Also a very large time pe-
riod of oscillation can be seen (around 10 seconds)
which is to be expected since we command only
small changes (+/- 1m/sec). In these experiments
the vision processing task was ran on the same flight

control computer. The current image processing rate
for this set of experiments was 15fps, we believe
that with an independent vision processor the system
will work at frame rate (30Hz).

B. Experimental Results at ETSI] campus in
Madrid, Spain

A total of seven experimental trials on two
different days were performed to validate the vi-
sion system with the flight control. This section
presents the results obtained during these trials. In
the experiments the helicopter is commanded to fly
autonomously to a given GPS way-point and then
the vision algorithm takes control aligning the heli-
copter to the feature being tracked. From the set of
experiments the two most relevant experimental re-
sults are presented here. Videos and more informa-
tion from the flight trials can be downloaded from
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Fig. 11.  Performance of the system during sixth flight trial. Subfigures a) to e) refers to vision based control, subfigure f) shows the
helicopter displacements during the entire flight trial. Position is shown in meters in the UTM coordinates system NED.

http://www.disam.upm.es/colibri. Fig- in Figures 11(f) and 12(f). The visual task occurs
ures (11) and (12) depict the results for these two at 250 < ¢ < 400 sec and 700 < ¢t < 1650 sec,
trials. The data taken from the helicopter are shown respectively.
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Fig. 12. Performance of the system during seventh flight trial. Subfigures a) to e) refers to vision based control, subfigure f) shows the
helicopter displacements during the entire flight trial. Position is shown in meters in the UTM coordinates system NED.

Figures 11(a-e) and Figures 12(a-e) show the lo- and 11(b) show the visual references with respect
cation of the helicopter and the references involved to the helicopter velocity in the lateral and vertical
while the visual control is performed. Figures 11(a) direction. Figure 11(b) correlates the vertical visual
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references (vz,) and the helicopter velocity (vz).
This shows the correspondence between two signals
that causes the displacements in altitude (down)
observed in Figure 11(d). Analogously Figure 11(a)
and 11(c), correlates the velocity references (vy,)
with the helicopter velocity (vy) and lateral dis-
placement (east). Velocity references are given in
body frame. For this particular task a negative vy,
causes negative evolution in the lateral position of
the helicopter!. Negative values vz, will cause the
helicopter to moves up (positive evolution in D) and
positive to move down.

In general the vision-based controller is able to
command the requisite velocities that are required
for the helicopter to successfully track the features
(in our case windows). From the Figures 11(a-b)
and Figures 12(a-b) it can be seen that when there
is a noticable change in the targets position in the
image plane the algorithm produces the requisite
visual reference commands to the velocity controller
on the helicopter. This then causes a change in the
velocity of the helicopter and subsequently a change
in the position of the helicopter such that it is able
to align and track the target. Although we do not
know the global coordinates of the target, we can
see that the reference commands converge to zero
which implies that the helicopter has the target in
the center of its image coordinate frame.

The behavior observed in the longitudinal ve-
locity in Figures 11(e) and 12(e) is undesirable
but understandable since during the task vz, is
fixed to zero which does not guarantee that the
helicopter keeps its longitudinal position, since we
are controlling velocity not position. A combination
of the two approaches, i.e, position and velocity
control will cause a better general behavior.

The rate at which the visual processing sends
command to the flight controller was one of the
most critical parameters. We have noticed that the
higher the vision system sends commands to the
flight control, the smoother is the resulting heli-
copter behavior.

That is expected since vision sends input ref-
erence commands (in term of sample rates) to a
high level controller. The low sample rate cause
long reaction time and poor perturbation rejection.

"Note that the lateral and longitudinal positions correspond to
easting and northing in these particular set of experiments. This is
because the helicopter was flying with its nose pointing towards north.
This is not true in all cases.

In these experiments special emphasis was placed
on the speed. In the current version the visual
processing rate is 20 fps. The fact that the tracking
algorithm only tracks 4 points allows the vision
system to run at this frame rate.

VII. CONCLUSION AND FUTURE WORK

We have experimentally demonstrated an ap-
proach to visually control an autonomous heli-
copter. Such a capability is very important for aerial
robotics. Our strategy can be extrapolated to many
tasks that require visual servoing for UAV. Such
tasks require the vision algorithm to command the
UAV towards features of interest when GPS has
dropouts (usually in urban areas) or to track a target.
Our algorithm assumes that the UAV can accept
lateral, longitudinal and altitude velocity commands
and does not depend on the inherent dynamics of
the UAV. Most of the UAV in production or research
use (both fixed wing and rotorcraft can take veloc-
ity commands as input) [DARO, 1998]. This was
experimentally demonstrated by performing vision-
based window tracking tasks on two different plat-
forms at different locations and different conditions.
Although the vision algorithms differed in their
structure depending on the nature of the task, the
control inputs to the helicopter controller remained
the same. Both visual processing stages were tested
in outdoor environments and track features even
with a 10° change in roll. However its believed
that the segmentation algorithm could be sensitive
to strong changes in ambient light, brightness, shad-
ows, etc. For this reason a more detailed study of
all the environmental factors should be made and
included in future approaches.

In this specific task we observed experimentally
that the performance of the system decreases when
the frame-rate goes below 15 fps. In order to
increase the reliability and robustness of the sys-
tem for future developments a more comprehensive
study about high performance visual servoing will
be carried out.

Future work includes an extensive set of test of
the vision approach and its integration with the flight
control. The goal is to unify the approach in order
to make it common to different helicopter platform.
Additionally we plan to tune the gains of the flight
control algorithm in the COLIBRI helicopter to
improve the performance. The next step is to apply
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this approach to the inspection of power lines in a
real scenario.
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