210 research outputs found

    Study of Obstacle effect on the GPSR protocol and a Novel Intelligent Greedy Routing protocol for VANETs

    Get PDF
    In recent years, connected vehicle technologies have been developed by automotive companies, academia, and researchers as part of Intelligent Transportation Systems (ITS). This group of stakeholders continue to work on these technologies to make them as reliable and cost-effective as possible. This attention is because of the increasing connected vehicles safety-related, entertainment, and traffic management applications, which have the potential to decrease the number of road accidents, save fuel and time for millions of daily commuters worldwide. Vehicular Ad-Hoc Network (VANET), which is a subgroup of Mobile Ad-Hoc Network (MANET), is being developed and implemented in vehicles as the critical structure for connected vehicles applications. VANET provides a promising concept to reduce the number of fatalities caused by road accidents, to improve traffic efficiency, and to provide infotainment. To support the increasing number of safety-related applications, VANETs are required to perform reliably. Since VANETs promise numerous safety applications requiring time-bound delivery of data packets, it is also necessary to replicate real-world scenarios in simulations as accurately as possible. Taking into account the effect of realistic obstacles while simulating a variety of case scenarios increases the reliability of the tested routing protocol to appropriately perform in real-world situations. It also exposes routing protocols to possible vulnerabilities caused by obstacles. Nevertheless, it is not uncommon for researchers to omit real-world physical layer communication hurdles in simulation-based tests, including not considering the effect of obstacles on their routing protocol performance evaluation simulations. Consequently, the performance of these protocols is usually overestimated and do not support in real-world environment. Failure to account for obstacle effects overstate the network performance. In this thesis, a framework for measuring obstacle effects on routing protocols is defined. We also propose, a new routing protocol based on the traditional Greedy Perimeter Stateless Routing (GPSR) protocol called Intelligent Greedy Routing (IGR) protocol. The proposed IGR protocol considers a parameter called ReceptivityReceptivity to chose the next hop in a route. We implemented the new protocol using the Simulation of Urban Mobility (SUMO) and the Network Simulator (NS-3). An analysis of Packet Delivery Ratio (PDR), End-to-End Delay (E2ED) and Mean Hop count with the assumption that nodes (vehicles) are moving in various topologies is presented in this thesis. The study presented here gives a general idea of the effects of obstacles on the Greedy Perimeter Stateless Routing (GPSR) protocol considering multiple realistic scenarios such as Urban, Residential and Highway. In addition, we compare the performance of GPSR and the new IGR protocols with the presence of obstacles considering various topologies. The new proposed IGR protocol performs better compared to the traditional GPSR for all the investigated metrics

    Comparison among Different Routing Protocols of Vehicular Ad Hoc Networks

    Get PDF
    To improve highway transport security VANET Vehicular Ad Hoc Network is used which is a developing technology incorporating ad hoc network cellular technology and wireless LAN VANETs are different from other type ad hoc networks by their cross network constructions node association features and new application setups The approach of an effective routing protocol for VANETs is vital as VANETs show various distinctive networking research challenges In this paper we discuss the research challenges of routing in VANETs and compare recent routing protocols of VANET

    A Survey on Topology and Position Based Routing Protocols in Vehicular Ad hoc Network (VANET)

    Get PDF
    Vehicular Ad Hoc Networks (VANET) is a subclass of Mobile ad hoc networks. It is a developing new technology in which vehicles interchange the information from one vehicle to another vehicle within a network. VANET is responsible for providing an illustrated approach for Intelligent Transport System (ITS). The main use of VANET is to save life and prevent the accidents. This Paper describes a survey of routing protocols in vehicular ad hoc networks. The survey of routing protocols in VANET is significant and essential for smart ITS. The routing protocols are divided into two categories of topology-based and position-based routing for VANETs. This review discusses the advantages and disadvantages of these routing protocols

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    A Contention-Based Routing Protocol for VANET

    Get PDF
    In VANETs, vehicles as nodes are self-organized and inter-communicated without centralized authority. The topology formed by vehicles changes quickly, which makes routing become instability. Position-based routing, compared with traditional routing, is more scalable and feasible. Thus it has been proven stabler for VANETs than conventional routing. However, the frequently changed topology and nodes density could break the path a packet is following. Thus designing a robust multi-hop routing in VANET is challenging. This paper proposes an enhanced position-based routing protocol called CBGR, which takes into account the velocity and direction of vehicles in VANET. Simulation results show that CBGR achieves a high level of routing performance in terms of hop counts, network latency and packet delivery ratio both in dense or sparse vehicular ad-hoc networks

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    Survey and Review on Various Topology and Geographical based Routing Protocol Parameters to Ensure the QOS Parameters of VANET

    Get PDF
    Vehicular Ad Hoc Network (VANET) is a type of wireless network that allows communication between vehicles and infrastructure. One of the critical considerations in VANET is Quality of Service (QoS) parameters, which determine the network's performance. The effective management of QoS parameters is essential for VANET's reliable and efficient operation. In this research paper, we aim to explore topology-based and geographical-based routing protocol parameters to ensure QoS parameters in VANET. The former uses the network topology to make routing decisions, while the latter uses the location information of vehicles.  We will first provide an overview of VANET and QoS parameters. Then, we will delve into the key parameters of topology-based and geographical-based routing protocols and how they affect QoS. We will also survey and review the existing routing protocols and parameter values used in these protocols. The findings of this research paper will provide insights into the effective management of QoS parameters in VANET and contribute to the development of more efficient routing protocols

    A Study of Geocast Routing Protocols in Vehicular Ad-Hoc Network (VANET)

    Get PDF
    Geocast routing has been comprehensively investigated for consistent and well-organized spreading of information due to growing number of Intelligent Transportation System (ITS) applications favouring geocasting. Freshly, different geocast routing protocol have been developed in vehicular ad-hoc network (VANET). In this paper, a qualitative survey of recent geocast routing protocols and some specific future research issues in geocast routing have been provided. A practical and qualitative explanation of each considered protocols have been presented. All the considered protocols have been relatively characterized. This relative study leads us towards some future research challenges in geocast routing. DOI: 10.17762/ijritcc2321-8169.150519

    Qualitative Based Comparison of Routing Protocols for VANET

    Get PDF
    Vehicular ad hoc network is one of the most promising applications of MANET that an inter communication system. In VANET nodes which are vehicles can move safety with high speed and generally must communicate quickly reliably. When an accident occurs in a road or highway, alarm messages must be disseminated, instead of ad hoc routed, to inform all other vehicles. Vehicular ad hoc network architecture and cellular technology to achieve intelligent communication and improve road traffic safety and efficiency .To organize their in vehicle computing system, vehicle to vehicle ad hoc networks, hybrid architecture with special properties such as high mobility, network portioning and constrained topology .there is a lot of research about VANET for driving services, traffic information services, user communication and information services. VANET can perform effective communication by utilizing routing information. Some researchers are contributed a lots in the area of VANET. In this articles mainly focusing on significant features, performance improvement in comparisons of routing protocol for vehicular ad hoc network (VANET). Keywords: VANET, Routing Protocol, PBR, CAR, CBR etc

    Design and Evaluation of Improvement of GPSR-Based RoutingTechniques for Intelligent Transport Systems using Vehicular AdHoc Networks

    Get PDF
     As topology has become extremely fast, VANETs (vehicular ad-hoc networks) have become increasingly complex, creating new routing protocols for geographic routing. A GPSR-enhanced system (E-GPSR) is presented in this paper, which includes extended capabilities that select the best route and bypass previous vehicles delivering such packets. The E-GPSR protocol also prevents packets from being sent to neighbours similarly, thus eliminating packet routing loops. Road accidents and dead-end roads are unavoidable reasons for link breakage, which the E-GPSR protocol helps to resolve. Simulation of Urban Mobility (SUMO) and Network Simulator-version 3 (NS-3.33) platforms were used to compare E-GPSR with traditional GPSR and Maxduration-Minangle GPSR (MM-GPSR). GPSR and MM GPSR have better packet loss ratios (PLR) and packet delivery ratios (PDR) than the proposed E-GPSR protocol.,
    • …
    corecore