304 research outputs found

    Experimental evaluation of IEEE 802.15.4/ZigBee for multi-patient ECG monitoring

    Get PDF
    IEEE 802.15.4/ZigBee wireless sensor networks (WSNs) are a promising alternative to cabled systems for patient monitoring in hospitals. Some areas where monitoring systems based on WSNs can be successfuly used are ambulatory, waiting and triage rooms, post-op, and emergency rooms. The low power and small size ZigBee devices have the ability to form self-configuring networks that can extend themselves through a hospital wing or floor. Using spatially distributed networks, it is possible to cover an extended area and serve several patients. However, the low data rate protocols provided by IEEE 802.15.4 poses several challenges, mainly because its protocols were primarily designed to operate in low traffic load scenarios but some vital signs sensors generate a large volume of data. This work presents an experimental evaluation of the performance of multi-hop ZigBee networks comprised of several nodes that carry the traffic of wearable electrocardiogram (ECG) sensors. The results indicate that star networks can relay 100% of the traffic generated by at least 12 ECG nodes. In tree topologies, the increase of the network traffic load reduces the performance but even these networks can reliably relay the traffic of a considerable number of ECG nodes.Fundação para a Ciência e a Tecnologia (FCT)Grupo AMI – Assistência Médica Integral (Casa de Saúde Guimarães, SA

    HM4All: A vital signs monitoring system based in spatially distributed ZigBee networks

    Get PDF
    Low power consumption and small footprint make ZigBee based devices well suited for personal healthcare applications, being a promising alternative to general care patient monitoring. However, their use in a healthcare facility to monitor several mobile patients poses several difficulties, mainly because this protocol was primarily designed to operate in low data rate scenarios. This paper introduces HM4All, a remote vital signs monitoring system, and presents a prototype system being deployed in a hospital internment floor. Its architecture, original network topology, software applications and wireless sensors are described.Fundação para a Ciência e a Tecnologia (FCT)Grupo AMI – Assistência Médica Integral (Casa de Saúde Guimarães, SA

    Using wearable sensors for remote healthcare monitoring system

    Get PDF
    Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on human body, create a wireless body area network (WBAN) to monitor various physiological vital signs for a long period of time and providing real-time feedback to the user and medical staff. WBANs promise to re-volutionize health monitoring. In this paper, medical sensors were used to collect physiological data from patients and transmit it to Intelligent Personal digital Assistant (IPDA) using ZigBee/IEEE802.15.4 standard and to medical server using 3G communications. We introduced priority scheduling and data compression into the system to increase transmission rate of physiological critical signals which improve the bandwidth utilization. It also extends the life time of hand-held personal server by reducing power consumption during transmission

    Smartphone: The Ultimate IoT and IoE Device

    Get PDF
    Internet of Things (IoT) and Internet of Everything (IoE) are emerging communication concepts that will interconnect a variety of devices (including smartphones, home appliances, sensors, and other network devices), people, data, and processes and allow them to communicate with each other seamlessly. These new concepts can be applied in many application domains such as healthcare, transportation, and supply chain management (SCM), to name a few, and allow users to get real-time information such as location-based services, disease management, and tracking. The smartphone-enabling technologies such as built-in sensors, Bluetooth, radio-frequency identification (RFID) tracking, and near-field communications (NFC) allow it to be an integral part of IoT and IoE world and the mostly used device in these environments. However, its use imposes severe security and privacy threats, because the smartphone usually contains and communicates sensitive private data. In this chapter, we provide a comprehensive survey on IoT and IoE technologies, their application domains, IoT structure and architecture, the use of smartphones in IoT and IoE, and the difference between IoT networks and mobile cellular networks. We also provide a concise overview of future opportunities and challenges in IoT and IoE environments and focus more on the security and privacy threats of using the smartphone in IoT and IoE networks with a suggestion of some countermeasures

    A Survey: Wireless Body Area Network for Health Monitoring

    Get PDF
    With an increasingly mobile society and the worldwide deployment of mobile and wireless networks, the wireless infrastructure can support many current and emerging health care applications. Citizens, being patients or non-patients, will not only be able to get medical advice from a distance but will also be able to send from any location full detailed and accurate vital signal measurements, as if they had been taken in medical centers. Towards this direction, the proposed system is highly customizable vital signal monitoring system based on Wireless Body Area Networks (WBAN). The proposed system allows the incorporation of diverse medical sensors via wireless connections and the live transmission of the measured vital signals over public wireless networks to healthcare providers. This paper discusses different scenarios where this wearable health monitoring system can be used and different types of sensors are used to measure the different parameters such as temperatures, glucose, heart beats, ECG, EEG, etc. Finally, through a case study, we demonstrate how the diabetic patient takes the advantage of this system

    Integrated system architecture for decision-making and urban planning in smart cities

    Get PDF
    Research and development of applications for smart cities are extremely relevant considering the various problems that population growth will bring to large urban centers in the next few years. Although research on cyber-physical systems, cloud computing, embedded devices, sensor and actuator networks, and participatory sensing, among other paradigms, is driving the growth of solutions, there are a lot of challenges that need to be addressed. Based on these observations, in this work, we present an integrated system architecture for decision-making support and urban planning by introducing its building blocks (termed components): sensing/actuation, local processing, communication, cloud platform, and application components. In the sensing/actuation component, we present the major relevant resources for data collection, identification devices, and actuators that can be used in smart city solutions. Sensing/actuation component is followed by the local processing component, which is responsible for processing, decision-making support, and control in local scale. The communication component, as the connection element among all these components, is presented with an emphasis on the open-access metropolitan area network and cellular networks. The cloud platform is the essential component for urban planning and integration with electronic governance legacy systems, and finally, the application component, in which the government administrator and users have access to public management tools, citizen services, and other urban planning resources15

    HM4All: A Vital Signs Monitoring System based in Spatially Distributed ZigBee Networks

    Get PDF
    Abstract-Low power consumption and small footprint make ZigBee based devices well suited for personal healthcare applications, being a promising alternative to general care patient monitoring. However, their use in a healthcare facility to monitor several mobile patients poses several difficulties, mainly because this protocol was primarily designed to operate in low data rate scenarios. This paper introduces HM4All, a remote vital signs monitoring system, and presents a prototype system being deployed in a hospital internment floor. Its architecture, original network topology, software applications and wireless sensors are described

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    New platform for intelligent context-based distributed information fusion

    Get PDF
    Tesis por compendio de publicaciones[ES]Durante las últimas décadas, las redes de sensores se han vuelto cada vez más importantes y hoy en día están presentes en prácticamente todos los sectores de nuestra sociedad. Su gran capacidad para adquirir datos y actuar sobre el entorno, puede facilitar la construcción de sistemas sensibles al contexto, que permitan un análisis detallado y flexible de los procesos que ocurren y los servicios que se pueden proporcionar a los usuarios. Esta tesis doctoral se presenta en el formato de “Compendio de Artículos”, de tal forma que las principales características de la arquitectura multi-agente distribuida propuesta para facilitar la interconexión de redes de sensores se presentan en tres artículos bien diferenciados. Se ha planteado una arquitectura modular y ligera para dispositivos limitados computacionalmente, diseñando un mecanismo de comunicación flexible que permite la interacción entre diferentes agentes embebidos, desplegados en dispositivos de tamaño reducido. Se propone un nuevo modelo de agente embebido, como mecanismo de extensión para la plataforma PANGEA. Además, se diseña un nuevo modelo de organización virtual de agentes especializada en la fusión de información. De esta forma, los agentes inteligentes tienen en cuenta las características de las organizaciones existentes en el entorno a la hora de proporcionar servicios. El modelo de fusión de información presenta una arquitectura claramente diferenciada en 4 niveles, siendo capaz de obtener la información proporcionada por las redes de sensores (capas inferiores) para ser integrada con organizaciones virtuales de agentes (capas superiores). El filtrado de señales, minería de datos, sistemas de razonamiento basados en casos y otras técnicas de Inteligencia Artificial han sido aplicadas para la consecución exitosa de esta investigación. Una de las principales innovaciones que pretendo con mi estudio, es investigar acerca de nuevos mecanismos que permitan la adición dinámica de redes de sensores combinando diferentes tecnologías con el propósito final de exponer un conjunto de servicios de usuario de forma distribuida. En este sentido, se propondrá una arquitectura multiagente basada en organizaciones virtuales que gestione de forma autónoma la infraestructura subyacente constituida por el hardware y los diferentes sensores

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    corecore