219 research outputs found

    Blockchain Nodes are Heterogeneous and Your P2P Overlay Should be Too: PODS

    Full text link
    At the core of each blockchain system, parties communicate through a peer-to-peer (P2P) overlay. Unfortunately, recent evidence suggests these P2P overlays represent a significant bottleneck for transaction throughput and scalability. Furthermore, they enable a number of attacks. We argue that these performance and security problems arise because current P2P overlays cannot fully capture the complexity of a blockchain system as they do not offer flexibility to accommodate node heterogeneity. We propose a novel approach to address these issues: P2P Overlay Domains with Sovereignty (PODS), which allows nodes in a single overlay to belong to multiple heterogeneous groups, called domains. Each domain features its own set of protocols, tailored to the characteristics and needs of its nodes. To demonstrate the effectiveness of PODS, we design and implement two novel node discovery protocols: FedKad and SovKad. Using a custom simulator, we show that node discovery using PODS (SovKad) architecture outperforms both single overlay (Kademlia) and multi-overlay (FedKad) architectures in terms of hop count and success rate, though FedKad requires slightly less bandwidth

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Building Robust Distributed Infrastructure Networks

    Get PDF
    Many competing designs for Distributed Hash Tables exist exploring multiple models of addressing, routing and network maintenance. Designing a general theoretical model and implementation of a Distributed Hash Table allows exploration of the possible properties of Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on utilizing Delaunay triangulation in a given metric space to maintain the networks topology. We will show that utilizing this model we can produce network topologies that approximate existing DHT methods and provide a starting point for further exploration. We will use our generalized model of DHT construction to design and implement more efficient Distributed Hash Table protocols, and discuss the qualities of potential successors to existing DHT technologies

    Empirical and Analytical Perspectives on the Robustness of Blockchain-related Peer-to-Peer Networks

    Get PDF
    Die Erfindung von Bitcoin hat ein großes Interesse an dezentralen Systemen geweckt. Eine häufige Zuschreibung an dezentrale Systeme ist dabei, dass eine Dezentralisierung automatisch zu einer höheren Sicherheit und Widerstandsfähigkeit gegenüber Angriffen führt. Diese Dissertation widmet sich dieser Zuschreibung, indem untersucht wird, ob dezentralisierte Anwendungen tatsächlich so robust sind. Dafür werden exemplarisch drei Systeme untersucht, die häufig als Komponenten in komplexen Blockchain-Anwendungen benutzt werden: Ethereum als Infrastruktur, IPFS zur verteilten Datenspeicherung und schließlich "Stablecoins" als Tokens mit Wertstabilität. Die Sicherheit und Robustheit dieser einzelnen Komponenten bestimmt maßgeblich die Sicherheit des Gesamtsystems in dem sie verwendet werden; darüber hinaus erlaubt der Fokus auf Komponenten Schlussfolgerungen über individuelle Anwendungen hinaus. Für die entsprechende Analyse bedient sich diese Arbeit einer empirisch motivierten, meist Netzwerklayer-basierten Perspektive -- angereichert mit einer ökonomischen im Kontext von Wertstabilen Tokens. Dieses empirische Verständnis ermöglicht es Aussagen über die inhärenten Eigenschaften der studierten Systeme zu treffen. Ein zentrales Ergebnis dieser Arbeit ist die Entdeckung und Demonstration einer "Eclipse-Attack" auf das Ethereum Overlay. Mittels eines solchen Angriffs kann ein Angreifer die Verbreitung von Transaktionen und Blöcken behindern und Netzwerkteilnehmer aus dem Overlay ausschließen. Des weiteren wird das IPFS-Netzwerk umfassend analysiert und kartografiert mithilfe (1) systematischer Crawls der DHT sowie (2) des Mitschneidens von Anfragenachrichten für Daten. Erkenntlich wird hierbei, dass die hybride Overlay-Struktur von IPFS Segen und Fluch zugleich ist, da das Gesamtsystem zwar robust gegen Angriffe ist, gleichzeitig aber eine umfassende Überwachung der Netzwerkteilnehmer ermöglicht wird. Im Rahmen der wertstabilen Kryptowährungen wird ein Klassifikations-Framework vorgestellt und auf aktuelle Entwicklungen im Gebiet der "Stablecoins" angewandt. Mit diesem Framework wird somit (1) der aktuelle Zustand der Stablecoin-Landschaft sortiert und (2) ein Mittel zur Verfügung gestellt, um auch zukünftige Designs einzuordnen und zu verstehen.The inception of Bitcoin has sparked a large interest in decentralized systems. In particular, popular narratives imply that decentralization automatically leads to a high security and resilience against attacks, even against powerful adversaries. In this thesis, we investigate whether these ascriptions are appropriate and if decentralized applications are as robust as they are made out to be. To this end, we exemplarily analyze three widely-used systems that function as building blocks for blockchain applications: Ethereum as basic infrastructure, IPFS for distributed storage and lastly "stablecoins" as tokens with a stable value. As reoccurring building blocks for decentralized applications these examples significantly determine the security and resilience of the overall application. Furthermore, focusing on these building blocks allows us to look past individual applications and focus on inherent systemic properties. The analysis is driven by a strong empirical, mostly network-layer based perspective; enriched with an economic point of view in the context of monetary stabilization. The resulting practical understanding allows us to delve into the systems' inherent properties. The fundamental results of this thesis include the demonstration of a network-layer Eclipse attack on the Ethereum overlay which can be leveraged to impede the delivery of transaction and blocks with dire consequences for applications built on top of Ethereum. Furthermore, we extensively map the IPFS network through (1) systematic crawling of its DHT, as well as (2) monitoring content requests. We show that while IPFS' hybrid overlay structure renders it quite robust against attacks, this virtue of the overlay is simultaneously a curse, as it allows for extensive monitoring of participating peers and the data they request. Lastly, we exchange the network-layer perspective for a mostly economic one in the context of monetary stabilization. We present a classification framework to (1) map out the stablecoin landscape and (2) provide means to pigeon-hole future system designs. With our work we not only scrutinize ascriptions attributed to decentral technologies; we also reached out to IPFS and Ethereum developers to discuss results and remedy potential attack vectors

    Exploiting Parallelism in the Design of Peer-to-Peer Overlays

    Get PDF
    Many peer-to-peer overlay operations are inherently parallel and this parallelism can be exploited by using multi-destination multicast routing, resulting in significant message reduction in the underlying network. We propose criteria for assessing when multicast routing can effectively be used, and compare multi-destination multicast and host group multicast using these criteria. We show that the assumptions underlying the Chuang-Sirbu multicast scaling law are valid in large-scale peer-to-peer overlays, and thus Chuang-Sirbu is suitable for estimating the message reduction when replacing unicast overlay messages with multicast messages. Using simulation, we evaluate message savings in two overlay algorithms when multi-destination multicast routing is used in place of unicast messages. We further describe parallelism in a range of overlay algorithms including multi-hop, variable-hop, load-balancing, random walk, and measurement overlay

    A Peer-to-Peer Network Framework Utilising the Public Mobile Telephone Network

    Get PDF
    P2P (Peer-to-Peer) technologies are well established and have now become accepted as a mainstream networking approach. However, the explosion of participating users has not been replicated within the mobile networking domain. Until recently the lack of suitable hardware and wireless network infrastructure to support P2P activities was perceived as contributing to the problem. This has changed with ready availability of handsets having ample processing resources utilising an almost ubiquitous mobile telephone network. Coupled with this has been a proliferation of software applications written for the more capable `smartphone' handsets. P2P systems have not naturally integrated and evolved into the mobile telephone ecosystem in a way that `client-server' operating techniques have. However as the number of clients for a particular mobile application increase, providing the `server side' data storage infrastructure becomes more onerous. P2P systems offer mobile telephone applications a way to circumvent this data storage issue by dispersing it across a network of the participating users handsets. The main goal of this work was to produce a P2P Application Framework that supports developers in creating mobile telephone applications that use distributed storage. Effort was assigned to determining appropriate design requirements for a mobile handset based P2P system. Some of these requirements are related to the limitations of the host hardware, such as power consumption. Others relate to the network upon which the handsets operate, such as connectivity. The thesis reviews current P2P technologies to assess which was viable to form the technology foundations for the framework. The aim was not to re-invent a P2P system design, rather to adopt an existing one for mobile operation. Built upon the foundations of a prototype application, the P2P framework resulting from modifications and enhancements grants access via a simple API (Applications Programmer Interface) to a subset of Nokia `smartphone' devices. Unhindered operation across all mobile telephone networks is possible through a proprietary application implementing NAT (Network Address Translation) traversal techniques. Recognising that handsets operate with limited resources, further optimisation of the P2P framework was also investigated. Energy consumption was a parameter chosen for further examination because of its impact on handset participation time. This work has proven that operating applications in conjunction with a P2P data storage framework, connected via the mobile telephone network, is technically feasible. It also shows that opportunity remains for further research to realise the full potential of this data storage technique

    Using a DHT in a Peer to Peer architecture for the Internet of Things

    Get PDF
    A challenging aspect of The Internet of Things (IoT) is to provide an architecture that can handle the range of IoT elements ranging from Cloud-based applications to constrained nodes in Wireless Sensor Networks (WSNs). Such an architecture must be scalable, allow seamless operation across networks and devices with little human intervention. This paper describes a set of abstractions and an architecture for the flow of data from sensors to applications supported by a Distributed Hash Table (DHT) and our novel Holistic Peer to Peer (HPP) Application Layer protocol to handle node ids, capabilities, services and sensor data. We show that this architecture can operate in a constrained node by presenting a `C' implementation running on the Contiki3.0 OS and consider the effectiveness of its use of a DHT and its abstractions

    地理位置情報に基づく分散ルーティングテーブルを用いた情報検索システム

    Get PDF
    In this thesis, we propose an information look up system using geographic location-based distributed routing (GDR) table that collects and manages information gathered by moving vehicles in urban areas. Throughout this thesis, weassume the underlay network of the GDR system can be modeled as a grid. This assumption makes a sense for an urban area where the roads are paved on a grid pattern. The system uses area nodes placed on several locations where each node manages location-oriented information on a designated non-overlapping area. The GDR system provides an information lookup based on the geographic latitude and longitude coordinates. A geographic coordinate is assigned for a node as its identifier (ID), and each node manages an overlay routing table. The routing table consists of pointers to other nodes in the network in order to forward messages to the geographically nearest overlay node toward its final destination. In a system with N nodes, each node has a routing table of size log N and a search is possiblein O(log N). We evaluate the mean and the variance of the path length and the relay length of GDR, CAN, Chord and Kademlia, under the assumptions that the ID is in cartesian format (x, y), all nodes are active, and the source node and the destination node are chosen independently with equal probability. We show that regardless of the ID format (i.e. even though the ID is in cartesian format or the ID is generated by using Space Filling Curve (SFC)), GDR, Chord and Kademlia have the same mean and the same variance of the path length,while the mean and the variance of the relay length of GDR are smaller than those of Chord and Kademlia. Furthermore, while GDR and CAN have the same mean and the same variance of the relay length, the mean and the variance of the pathlength of GDR are smaller than those of CAN.We show that the mean relay length of GDR is about half of that of Chord, and about 2/3 of that of Kademlia, and the mean path length is about (3/4) log N/√N of that of CAN. In addition, the GDR system has a routing redundancy to increase robustness. When a node fails, its neighbor node behaves as an agent for the failing node. To know the agent node of the failing node, each node has an agent list which is the records of the agent nodes of the nodes of its routing table. Since the number of the agent nodes is 2, the size of the agent list is 2 log N. If an underlay network can be modeled as a grid, it is easy to assign a physical address for a node. However, if a node fails, it is difficult to modify or change its physical address. In the GDR system, the nodes can avoid a failed node by using its agent list on the overlay network. We also present an application of the GDR system. In order to send a reply to a terminal after it moves to the neighboring area, we proposed Wall Pass (WP) algorithm. We consider a node as a wall player of wall pass in football. We evaluated the performance of the GDR system when the mobile mobile terminals are moving. The results show that WP algorithm can decrease the communication overhead.電気通信大学201
    corecore