1,663 research outputs found

    A model-independent confirmation of the Z(4430)Z(4430)^- state

    Get PDF
    The decay B0ψ(2S)K+πB^0\to \psi(2S) K^+\pi^- is analyzed using 3 fb1\rm 3~fb^{-1} of pppp collision data collected with the LHCb detector. A model-independent description of the ψ(2S)π\psi(2S) \pi mass spectrum is obtained, using as input the KπK\pi mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the ψ(2S)π\psi(2S)\pi mass spectrum can be described in terms of KπK\pi reflections alone is rejected with more than 8σ\sigma significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the Z(4430)Z(4430)^- exotic state.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-038.htm

    Q^2 Dependence of the azimuthal Asymmetry in Unpolarized Drell-Yan

    Full text link
    We study the azimuthal asymmetry of the unpolarized Drell-Yan in the framework of the T-odd functions. We find, on the basis of quite general arguments, that for |{\bf q}_{\perp}| << Q such an asymmetry decreases as Q^{-2}, where {\bf q}_{\perp} and Q are respectively the transverse momentum and the center-of-mass energy of the muon pair. The experimental results support this conclusion.Comment: 15 pages, 4 figures. Presented at "HiX2004", Marseille, July 26-28, 200

    Inclusive Λ_c^+ production in e^+e^- annihilations at √s=10.54  GeV and in Υ(4S) decays

    Get PDF
    We present measurements of the total production rates and momentum distributions of the charmed baryon Λ_c^+ in e^+e^-→hadrons at a center-of-mass energy of 10.54 GeV and in Υ(4S) decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in e^+e^-→cc[overbar] events, allowing direct studies of c-quark fragmentation. We measure a momentum distribution for Λ_c^+ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of =0.574±0.009 and a total rate of N_(Λc)^(qq[overbar]) =0.057±0.002(exp)±0.015(BF)  Λ_c^+ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, pK^-π^+. In Υ(4S) decays we measure a total rate of N_(Λc)^Υ=0.091±0.006(exp)±0.024(BF) per Υ(4S) decay, and find a much softer momentum distribution than expected from B decays into a Λ_c^+ plus an antinucleon and one to three pions

    Branching fraction measurements of the color-suppressed decays B̅^0 to D^((*)0_π^(0), D^((*)0)η, D^((*)0)ω, and D^((*)0)η′ and measurement of the polarization in the decay B̅ 0→D^(*0)ω

    Get PDF
    We report updated branching fraction measurements of the color-suppressed decays B̅ ^(0) → D^(0)π^(0), D^(*0)π^(0), D^(0)η, D^(*0)η, D^(0)ω, D^(*0)ω, D^(0)η′, and D^(*0)η′. We measure the branching fractions (×10^(-4)): B(B̅^0 → D^(0)π^(0)) = 2.69±0.09±0.13, B(B̅^(0) → D^(*0)π^(0)) = 3.05±0.14±0.28, B(B̅^(0) → D^(0)η) = 2.53±0.09±0.11, B(B̅^(0) → D^(*0)η) = 2.69±0.14±0.23, B(B̅^(0) → D^(0)ω) = 2.57±0.11±0.14, B(B̅^(0) → D^(*0)ω) = 4.55±0.24±0.39, B(B̅^(0)→D^(0)η′) = 1.48±0.13±0.07, and B(B̅^(0) → D^(*0)n′) = 1.49±0.22±0.15. We also present the first measurement of the longitudinal polarization fraction of the decay channel D*0ω, fL=(66.5±4.7±1.5)%. In the above, the first uncertainty is statistical and the second is systematic. The results are based on a sample of (454±5)×10^6 BB̅ pairs collected at the Υ(4S) resonance, with the BABAR detector at the PEP-II storage rings at SLAC. The measurements are the most precise determinations of these quantities from a single experiment. They are compared to theoretical predictions obtained by factorization, Soft Collinear Effective Theory (SCET) and perturbative QCD (pQCD). We find that the presence of final state interactions is favored and the measurements are in better agreement with SCET than with pQCD

    f(R) Gravity with Torsion: The Metric-Affine Approach

    Full text link
    The role of torsion in f(R) gravity is considered in the framework of metric-affine formalism. We discuss the field equations in empty space and in presence of perfect fluid matter taking into account the analogy with the Palatini formalism. As a result, the extra curvature and torsion degrees of freedom can be dealt as an effective scalar field of fully geometric origin. From a cosmological point of view, such a geometric description could account for the whole Dark Side of the Universe.Comment: 12 page

    The Cauchy problem for f(R)-gravity: an overview

    Full text link
    We review the Cauchy problem for f(R) theories of gravity, in metric and metric-affine for- mulations, pointing out analogies and differences with respect to General Relativity. The role of conformal transformations, effective scalar fields and sources in the field equations is discussed in view of the well-posedness of the problem. Finally, criteria of viability of the f(R)-models are considered according to the various matter fields acting as sources.Comment: 14 page

    Elementary quotient completion

    Get PDF
    We extend the notion of exact completion on a weakly lex category to elementary doctrines. We show how any such doctrine admits an elementary quotient completion, which freely adds effective quotients and extensional equality. We note that the elementary quotient completion can be obtained as the composite of two free constructions: one adds effective quotients, and the other forces extensionality of maps. We also prove that each construction preserves comprehensions

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Direct measurement of non-linear properties of bipartite quantum states

    Full text link
    Non-linear properties of quantum states, such as entropy or entanglement, quantify important physical resources and are frequently used in quantum information science. They are usually calculated from a full description of a quantum state, even though they depend only on a small number parameters that specify the state. Here we extract a non-local and a non-linear quantity, namely the Renyi entropy, from local measurements on two pairs of polarization entangled photons. We also introduce a "phase marking" technique which allows to select uncorrupted outcomes even with non-deterministic sources of entangled photons. We use our experimental data to demonstrate the violation of entropic inequalities. They are examples of a non-linear entanglement witnesses and their power exceeds all linear tests for quantum entanglement based on all possible Bell-CHSH inequalities.Comment: To appear on PRL with minor change
    corecore