9,567 research outputs found

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    HUDDL for description and archive of hydrographic binary data

    Get PDF
    Many of the attempts to introduce a universal hydrographic binary data format have failed or have been only partially successful. In essence, this is because such formats either have to simplify the data to such an extent that they only support the lowest common subset of all the formats covered, or they attempt to be a superset of all formats and quickly become cumbersome. Neither choice works well in practice. This paper presents a different approach: a standardized description of (past, present, and future) data formats using the Hydrographic Universal Data Description Language (HUDDL), a descriptive language implemented using the Extensible Markup Language (XML). That is, XML is used to provide a structural and physical description of a data format, rather than the content of a particular file. Done correctly, this opens the possibility of automatically generating both multi-language data parsers and documentation for format specification based on their HUDDL descriptions, as well as providing easy version control of them. This solution also provides a powerful approach for archiving a structural description of data along with the data, so that binary data will be easy to access in the future. Intending to provide a relatively low-effort solution to index the wide range of existing formats, we suggest the creation of a catalogue of format descriptions, each of them capturing the logical and physical specifications for a given data format (with its subsequent upgrades). A C/C++ parser code generator is used as an example prototype of one of the possible advantages of the adoption of such a hydrographic data format catalogue

    Bioinformatics service reconciliation by heterogeneous schema transformation

    Get PDF
    This paper focuses on the problem of bioinformatics service reconciliation in a generic and scalable manner so as to enhance interoperability in a highly evolving field. Using XML as a common representation format, but also supporting existing flat-file representation formats, we propose an approach for the scalable semi-automatic reconciliation of services, possibly invoked from within a scientific workflows tool. Service reconciliation may use the AutoMed heterogeneous data integration system as an intermediary service, or may use AutoMed to produce services that mediate between services. We discuss the application of our approach for the reconciliation of services in an example bioinformatics workflow. The main contribution of this research is an architecture for the scalable reconciliation of bioinformatics services

    A Progressive Clustering Algorithm to Group the XML Data by Structural and Semantic Similarity

    Get PDF
    Since the emergence in the popularity of XML for data representation and exchange over the Web, the distribution of XML documents has rapidly increased. It has become a challenge for researchers to turn these documents into a more useful information utility. In this paper, we introduce a novel clustering algorithm PCXSS that keeps the heterogeneous XML documents into various groups according to their similar structural and semantic representations. We develop a global criterion function CPSim that progressively measures the similarity between a XML document and existing clusters, ignoring the need to compute the similarity between two individual documents. The experimental analysis shows the method to be fast and accurate

    Coreference detection in XML metadata

    Get PDF
    Preserving data quality is an important issue in data collection management. One of the crucial issues hereby is the detection of duplicate objects (called coreferent objects) which describe the same entity, but in different ways. In this paper we present a method for detecting coreferent objects in metadata, in particular in XML schemas. Our approach consists in comparing the paths from a root element to a given element in the schema. Each path precisely defines the context and location of a specific element in the schema. Path matching is based on the comparison of the different steps of which paths are composed. The uncertainty about the matching of steps is expressed with possibilistic truth values and aggregated using the Sugeno integral. The discovered coreference of paths can help for determining the coreference of different XML schemas

    A Grammatical Inference Approach to Language-Based Anomaly Detection in XML

    Full text link
    False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the eXtensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learnability. Our contributions are an XML Schema compatible lexical datatype system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or datatypes.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    XML Schema-based Minification for Communication of Security Information and Event Management (SIEM) Systems in Cloud Environments

    Get PDF
    XML-based communication governs most of today's systems communication, due to its capability of representing complex structural and hierarchical data. However, XML document structure is considered a huge and bulky data that can be reduced to minimize bandwidth usage, transmission time, and maximize performance. This contributes to a more efficient and utilized resource usage. In cloud environments, this affects the amount of money the consumer pays. Several techniques are used to achieve this goal. This paper discusses these techniques and proposes a new XML Schema-based Minification technique. The proposed technique works on XML Structure reduction using minification. The proposed technique provides a separation between the meaningful names and the underlying minified names, which enhances software/code readability. This technique is applied to Intrusion Detection Message Exchange Format (IDMEF) messages, as part of Security Information and Event Management (SIEM) system communication hosted on Microsoft Azure Cloud. Test results show message size reduction ranging from 8.15% to 50.34% in the raw message, without using time-consuming compression techniques. Adding GZip compression to the proposed technique produces 66.1% shorter message size compared to original XML messages.Comment: XML, JSON, Minification, XML Schema, Cloud, Log, Communication, Compression, XMill, GZip, Code Generation, Code Readability, 9 pages, 12 figures, 5 tables, Journal Articl
    corecore