
Coreference detection in XML metadata

Marcin Szymczak∗† Sławomir Zadrożny∗ Guy De Tré†
∗ Systems Research Institute

Polish Academy of Sciences, Warsaw, Poland
† Department of Telecommunications and Information Processing

Ghent University, Ghent, Belgium

Abstract—Preserving data quality is an important issue in
data collection management. One of the crucial issues hereby
is the detection of duplicate objects (called coreferent objects)
which describe the same entity, but in different ways. In this
paper we present a method for detecting coreferent objects in
metadata, in particular in XML schemas. Our approach consists
in comparing the paths from a root element to a given element in
the schema. Each path precisely defines the context and location
of a specific element in the schema. Path matching is based on the
comparison of the different steps of which paths are composed.
The uncertainty about the matching of steps is expressed with
possibilistic truth values and aggregated using the Sugeno integral.
The discovered coreference of paths can help for determining the
coreference of different XML schemas.

I. INTRODUCTION

The existence of duplicate data across multiple related
databases significantly lowers data quality and should be
avoided. With duplicate data, hereafter called coreferent data,
we mean data pieces which refer to the same real world entity,
but differ in some way, e.g., due to using a different modelling
or representation. As an example, Figure 1 shows two data
pieces resp. taken from FreeDB1 (right tree) and Discogs2

(left tree) which describe the same entity (concept) ‘compact

disc’, but in different ways.
The detection and handling of coreferent data can be based

only on data or on both data and metadata. In this paper
we present a method for detecting coreferent data (schema
level objects) in metadata. Such methods can then later on
be used for improving the coreference detection of the data
described by the metadata. XML [1] was chosen as the data
model for multiple reasons. First, XML is one of the most
popular formats to store and exchange data. Second, it consists
of two well defined layers: a metadata layer (XML schema)
and a data layer (XML document). Moreover, it is platform
independent and often contains information that is represented
in different ways.

Paths can be considered as one of the main components of
an XML schema. Each path precisely defines the context and
location of a specific element. The objective of this paper is to
propose a method for detecting coreferent elements in XML
schemas based only on metadata and also, as a next step,
a method for detecting coreference of XML schemas. More
specifically, the subproblem of coreference detection based on
coreferent paths is studied in the paper.

1FreeDB, http://www.freedb.org/
2Discogs, http://www.discogs.com/data/

Fig. 1. Real-world data example: sample of schema instance from FreeDB
(right tree) and from Discogs (left tree).

The rest of this paper is structured as follows. In Section II
some preliminary notions are explained. Next, in Section III
it is studied how coreferent XML elements can be detected
based on paths. Section IV reports some experimental results.
Finally, Section V summarises the contributions of this paper.

II. PRELIMINARIES

Within the scope of this paper it is assumed that en-
tities from the real world are described as objects which
are characterized by a number of features (e.g., an object
person may be characterized by a name, address, etc.). In
case of XML, features include elements and attributes. Their
properties and relationships are defined in an XML schema.
Each XML schema comprises a collection M of metadata.
Fundamental types of metadata included are element and
attribute declarations and data types definitions. As elements
may be nested in other elements some paths leading from a
document root element to a leaf element are also included.

Considering a more abstract view of entity representation,
denoting the universe of the ith feature of an object by Ui,
we can model the universe O of objects by:

O = U1 × · · ·× Un. (1)

Two objects o1 ∈ O and o2 ∈ O are said to be coreferent

(denoted o1 ↔ o2) if and only if they describe the same real
world entity. Moreover, two objects o1 ∈ O and o2 ∈ O are

said to be coreferent based on metadata (denoted o1
M
↔ o2)

1354

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55828075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


if and only if metadata M1 of features of o1 are coreferent
to metadata M2 of features of o2, i.e., if o1 and o2 have a
coreferent structure.

Consequently,
M
↔ is an equivalence relation (reflexive, sym-

metrical and transitive). From a mathematical point of view
this means that given a database D of objects, identification
of coreferent objects in D comes down to defining such a
partition E of D that objects within each partition class are
coreferent and objects in different partition classes are not
coreferent. Hence, this boils down to finding clusters in D.

Two elementary operators play an important role in estab-
lishing a partition of a set of objects: a comparison operator

working at the level of object features (or metadata features)
and an aggregation operator combining the comparison scores
obtained for particular features.

Definition 1 (Comparison operator): A comparison opera-
tor on the universe O is defined by a function C:

C : O2 → L (2)

where (L,≤) is a totally ordered and bounded lattice.

A comparison operator C compares (a feature of) two objects
o1 and o2 and expresses the result of this comparison as a
matching degree belonging to a totally ordered and bounded
lattice L. In the case of probabilistic methods, L can be
instantiated with the unit interval [0, 1] in order to express
the result of comparison as a probability of identity of the
objects. Other practical examples of L are the set of Boolean
values B = {T, F}, where T and F denote true and false or
the set of possibilistic truth values (PTVs) F(B) [2].

In our approach we use PTVs to express the (uncertainty
about the) results of a comparison. Hereby, a PTV is a
(normalized) possibility distribution [3] defined over the set
of Boolean values B [4]. A PTV expresses the uncertainty
about the Boolean value of a proposition p. In the context
considered here, the propositions p of interest are of the form

p = o1 and o2 are coreferent

where o1 and o2 are two given (metadata) objects.

Let P denote a set of all propositions under consideration,
then each p ∈ P can be associated with a PTV denoted
p̃ = {(T, µp̃(T )) , (F, µp̃(F ))}, where µp̃(T ) represents the
possibility that p is true and µp̃(F ) denotes the possibility
that p is false. The domain of all possibilistic truth values is
denoted F(B), i.e., the fuzzy power set of (normalised) fuzzy
sets over B.

Let us define the order relation ≥ on the set F(B) by:

p̃ ≥ q̃ ⇐⇒

{
µp̃(F ) ≤ µq̃(F ), µp̃(T ) = µq̃(T ) = 1
µq̃(T ) ≤ µp̃(T ), else.

(3)

Comparison of complex objects is usually a two-stage process.
First, parts of objects, notably values of their (metadata)
features, are compared using a comparison operator. Thus, we
extend our definition of the comparison operator (2) so as to
make it applicable also to scalar feature values:

Ci : U
2
i → L (4)

In this way a separate comparison operator Ci can be defined
for each feature. Then, the results of those comparisons are
aggregated to obtain an overall PTV reflecting the coreference
of the whole objects being compared. Therefore, another
elementary operator, an aggregation operator, is needed.

Definition 2 (Aggregation operator): An aggregation oper-
ator on L is defined by a function A:

A : Ln → L (5)

where (L,≤) is a totally ordered and bounded lattice.
For more information on aggregation operators the reader is
referred to [5]. We assume that A is monotone in the following
sense: ∀ l, l′ ∈ Ln : l ≤ l′ ⇒ A(l) ≤ A(l′) where the relation
≤ is generalized to vectors from Ln in a point wise way.

Based on the definition of these two elementary operators,
pairwise comparison of two objects can be generally written
as:

C(o1, o2) =
n
A
i=1

(Ci (ui1, ui2)) (6)

where ui1 and ui2 denote the value of the ith (metadata)
feature of o1 and o2, respectively.

Aggregation of PTVs may be carried out using the Sugeno

integral for possibilistic truth values as defined in [6]; cf.
also [7]. We will briefly remind its idea in what follows.

This integral uses two fuzzy measures (γT and γF ). The
measure γT (resp. γF ) provides the conditional necessity that
two complex objects are (not) coreferent, given that some set
of (metadata) features are (not) coreferent. As required by
the definition of fuzzy measures, γT and γF are monotonic
and are normalised between ∅ and L, where L represents the
appropriate set of labels, which are used to name the features.
The label of a feature represents the class of entities (values)
that can be used to describe that feature.

Definition 3 (Sugeno integral for PTVs): Given a set of
propositions P = {p1, ..., pn} and a corresponding set of
PTVs P̃ = {p̃1, ..., p̃n}, let γT and γF be two fuzzy measures
defined on P which satisfy the condition:

∀Q ⊆ P : min(γT (Q), γF (Q̄)) = 0 (7)

Then the Sugeno integral of P̃ with respect to γT and γF is
defined by:

SγT,F (P̃ ) : F(B)n → F(B) : P̃ +→ p̃, where (8)

µp̃(T ) = 1−
n∨

i=1
Nec

(
P̃(i)F = F

)
∧ γF

(
P̃(i)F

)
(9)

µp̃(F ) = 1−
n∨

i=1
Nec

(
P̃(i)T = T

)
∧ γT

(
P̃(i)T

)
(10)

where ·()T (respectively ·()F ) is a permutation that orders the

elements of P̃ according to the largest (smallest) PTV first.

III. XML PATHS IN COREFERENCE DETECTION

An XML schema contains various types of metadata which
define the structure, data types, restrictions etc. that apply on
the corresponding XML documents. These metadata allow it
to reconstruct paths by which we mean here sequences of
elements connecting a root element with leaf elements.

1355



Moreover, each XML element can be defined within the
scope of a namespace. XML namespaces comprise logically
related sets of names. These names have to be unique within a
namespace but may be freely repeated in distinct namespaces.
XML namespaces will not be considered in this paper.

Two elements in two XML schemas may refer to the same
feature of a real-world entity (may be coreferent) even if they
have different tags and are located at different levels of an
XML file. Comparing their paths, as defined above, may help
to discover their coreference. In this section a novel method for
detecting coreferent XML elements based only on comparing
their paths is presented. However, the method is extendable
to other metadata like data types and restrictions, e.g., using
machine learning techniques [8], but this is out of the scope of
this paper. The proposed method is purely syntactic and does
not use any other external information sources like ontologies
or dictionaries. Using such extra information can increase
the quality of coreference detection, but also requires more
computational resources and is not being considered in the
paper. The following steps describe our object (XML element)
coreference detection method based on paths.

Step 1: Extraction

First, the algorithm extracts elements (leaves) with metadata
(paths to the root) from the input XML schemas to be
compared, cf., both schemas in Figure 1. For example, a
path /cddb/disc/tracks/title is extracted for the element title
of the schema on the right. Thus, two sets of paths are
obtained. In our example, elements (more precisely, their
paths) extracted from the schema on the left are represented
as a set A (not a multiset as each path in XML schema is
unique) and elements extracted from the schema on the right
are represented as a set B.

Step 2: Generation of a coreferent paths matrix

A coreferent paths matrix P is generated based on the tech-
nique that has been introduced in [9]. For two input schemas
with respectively m and n paths, P is a m×n matrix, where
element Pi,j , i = 1, . . . , n, j = 1, . . . ,m is the PTV resulting
from the comparison of paths i and j from both schemas
and reflecting the (uncertainty about) their coreference. An
example is given in Table I. Each row corresponds to a path
from A, whereas each column corresponds to a path from
B. The matrix elements are computed using the following
substeps.

1) Tokenization: In this step, each path is tokenized what
results in a list of substrings (elements on the path) which
are called steps [2]. Thus, tokenization transforms a path
into a list of steps. In most cases, steps are separate words.
In our approach, tokenization of a path is equivalent to
deleting all delimiting ‘/’ characters in the paths. For instance
tokenization of the path /cddb/disc/tracks/title results in a
list [cddb, disc, tracks, title]. The reason why we introduce
tokenization is that traditional string comparison methods
(character based methods) are not efficient for long char-
acter strings [2]. A major advantage of tokenization is that
it decreases complexity and enhances the effectiveness of

TABLE I
EXAMPLE OF A COREFERENT PATHS MATRIX.

Paths /c
d

d
b

/d
is

c/
d

ti
tl

e

/c
d

d
b

/d
is

c/
a
rt

is
t

/c
d

d
b

/d
is

c/
y
ea

r

/c
d

d
b

/d
is

c/
tr

a
ck

s/
ti

tl
e

/discs/disc/title
T:1.00 T:1.00 T:1.00 T:1.00
F:0.12 F:0.54 F:0.63 F:0.36

/discs/disc/artists/name
T:1.00 T:1.00 T:1.00 T:1.00
F:0.81 F:0.44 F:0.81 F:0.86

/discs/disc/year
T:1.00 T:1.00 T:1.00 T:1.00
F:0.63 F:0.63 F:0.06 F:0.81

/discs/disc/tracklist/title
T:1.00 T:1.00 T:1.00 T:1.00
F:0.36 F:0.54 F:0.81 F:0.16

string comparison in our approach. Moreover, it allows us to
introduce a specific aggregation method which helps to detect
coreferent elements more effectively.

2) Steps comparison: A one-level string comparison tech-
nique proposed in [2] is used to compare the resulting steps
from each pair of paths. This low level comparison method
estimates the possibility that two given steps are coreferent
and is based on an approximation of weak intersections. It uses
the concept of a moving window to construct the intersection
of the two input steps. This technique has been chosen
because of its efficiency [2]. In the literature a multitude of
algorithms for string comparison has been proposed and these
may also be employed here. An example of an interesting
survey concerning strings in general is [10]. Work focused
on coreference (duplicates) detection in the context of XML
is [11]. An example of an approach employing fuzzy logic
which might also be of interest to the reader is [12].

The algorithm compares pairs of steps from one input list
with steps from the other input list. It generates PTVs which
express the uncertainty about the coreference of the compared
steps as described in [2]. The possibility that a proposition p,
stating that two steps are coreferent, is true is calculated as the
ratio between the number of common characters and the length
of the longer step. On the other hand, the possibility that p is
false is computed as the ratio between the number of different
and missing characters, counted with specific weights, and the
length of the longer step. Both possibilites are normalized
(divided by the maximum of these possibilities). The PTVs
resulting from the comparisons of all steps in the two paths are
represented in a so-called coreferent steps matrix. An example
of such a matrix is given in Table II.

Our step comparison method thus takes into account mis-
spellings and abbreviations and moreover has a low com-
putational complexity. This is a great advantage for XML
coreference detection because abbreviations are frequently
used in XML paths.

3) Mapping at the steps level: This substep selects the best
1:1 mapping between steps belonging to the lists representing
two paths in the coreferent steps matrix (cf. Table II). The

1356



TABLE II
EXAMPLE OF A COREFERENT STEPS MATRIX.

Steps cd
d

b

d
is

c

tr
a
ck

s

ti
tl

e

discs
T: 0.0 T: 1.0 T: 0.0 T: 0.0
F: 1.0 F: 0.01 F: 1.0 F: 1.0

disc
T: 0.0 T: 1.0 T: 0.0 T: 0.0
F: 1.0 F: 0.0 F: 1.0 F: 1.0

tracklist
T: 0.0 T: 0.0 T: 1.0 T: 0.0
F: 1.0 F: 1.0 F: 0.17 F: 1.0

title
T: 0.0 T: 0.0 T: 0.0 T: 1.0
F: 1.0 F: 1.0 F: 1.0 F: 0.0

mapping algorithm [9] first selects the largest PTV for each
row of the matrix (largest in the sense of the order relation
(3)); if it is not unique one of the largest values is chosen
randomly. Next, the algorithm checks if conflicts occur, i.e., if
there is more than one PTV selected in the same column. If
this is the case, then the conflicts are resolved in a way best
illustrated with the coreferent steps matrix shown in Table
II. For rows ‘discs’ and ‘disc’ a conflict occurs as both of
them best match column ‘disc’. However row ‘disc’ contains
a larger PTV as (1, 0) ≥ (1, 0.01), so column ‘cddb’ is chosen
as matching row ‘discs’ (column ‘cddb’ is the only remaining
unselected). Finally, no conflicts occur and the algorithm stops.
The selected PTVs, indicating matching pairs of rows and
columns, are shown in bold, e.g., the steps tracks and tracklist

are chosen as matching and the PTV expressing their matching
degree is equal (1.0, 0.17). Our example only illustrates a
simple case of a conflict. For a detailed description of a conflict
resolution procedure the reader is referred to [9].

4) Aggregation at the steps level: The last substep in the
generation of the coreferent paths matrix is the aggregation
of the PTVs in the coreferent steps matrix, hereby using the
mappings that were obtained in the previous substep. The
result of this aggregation is a PTV for each pair of paths
which expresses the uncertainty about the coreference of these
two paths. For the aggregation at the steps level, the following
issue should be dealt with. Consider path /cddb/disc/tracks/title

from the right schema and path /discs/disc/tracklist/title from
the left schema of Figure 1, where not all steps are matched
at the beginning of the paths. In such a case, both paths have
a different context, but may describe the same object. This
means that if the steps at the end of the paths are coreferent
then this is a strong hint that the paths are coreferent. So, it
should be clear that not all steps in a path are equally important
with respect to coreference detection. Generally, two paths are
more likely to be coreferent if they have more similar steps
at the end. Because of that the aggregation takes into account
the PTVs resulting from the coreference detection of the steps
and the position of the steps in their respective paths. This rule
is implemented by using the Sugeno integral for possibilistic
truth values (8).

The aggregation operator for the comparison of two paths,
A and B, is defined by the Sugeno integral for PTVs where:

• P is a set of propositions stating coreference of pairs of

steps identified in the previous substep of the algorithm,
i.e., ‘mapping at the steps level’,

• P̃ is the set of PTVs corresponding to the above men-
tioned pairs, representing the uncertainty about their truth
values computed as discussed in the previous substep,

• the fuzzy measure γT is defined by Equation (11), where
Q ⊆ P , Q = {p1, . . . , pk}:

γT (Q) =
k∑

j=1

wj , where wj = rj/
k∑

j=1

rj (11)

and wj is the weight of the jth pair of steps and the ratio
rj equals

rj =
1

2

((pos(sjA)
len(A)

)p(A,j)
+
(pos(sjB)
len(B)

)p(B,j)
)

(12)

where step sjA is a part of path A, pos(s) is the position of
step s in its path, len(A) is the length of path A (the num-
ber of steps in this path) and p(A, j) = len(A)−pos(sjA).
The exponentiation employed in (12) helps to spread
weights. More precisely, thanks to it the distribution of
weights follows the power law and weights for steps at
the beginning of a path are lower than weights for steps
at the end. This helps implementing the assumption that
two paths are more likely to be coreferent if they have
more similar steps at the end.

• the fuzzy measure γF is defined by

γF (Q) =

{
1 if Q = P
0 otherwise

(13)

what is implied by condition (7) and the fact that γT is
always greater than 0 because weights are always greater
than 0.

Example. The aggregation at the steps level for the paths
/cddb/disc/tracks/title and /discs/disc/tracklist/title (cf. Ta-
ble II) goes as follows. First, the weights for the pairs of steps
are computed, e.g., w(cddb, discs) = 0.008, w(title, title) =
0.496. These weights are then used to aggregate the PTVs from
Table II. Table III shows the calculations for Nec(P̃(i)T = T ).
The rows are sorted in decreasing order by ranking the
PTVs expressing the coreference between matched pairs of
steps. The first column shows matched steps. The second
column shows the PTVs expressing their coreference, while
column 4 gives the value for Nec(P̃(i)T = T ). For example,

Nec(P̃(i)T = T ) in row 3 is computed by Nec(P̃(i)T = T ) =
1 − 0.16 = 0.84. The third column shows the weights. The
fuzzy measure γT of the subsequent sets P(i)T is shown in
column 5, e.g., for the steps pair (tracks, tracklist) we obtain
γT (P̃(3)T ) = 0.12 + 0.5 + 0.37 = 0.99. The last column

shows the minimum (denoted with ∧ in (10)) of γT (P̃(i)T ) and

Nec(P̃(i)T = T ), e.g., for (tracks, tracklist) we obtain 0.84.

Nec(P̃(i)F = F ) is calculated analogously to Nec(P̃(i)T =
T ). This time the rows are sorted in increasing order by rank-
ing the PTVs as shown in Table IV. The last column equals
0 for all matched steps pairs. Hence, the coreference between
the paths /cddb/disc/tracks/title and /discs/disc/tracklist/title is

1357



TABLE III
Nec(P̃

(i)T
= T ) FOR PATHS /cddb/disc/tracks/title AND

/discs/disc/tracklist/title.

Step PTV wi Nec(P̃
(i)T

= T ) γT

(
P̃
(i)T

)
∧

disc T: 1.00
0.12 1 0.12 0.12

disc F: 0.00
title T: 1.00

0.5 1 0.62 0.62
title F: 0.00

tracks T: 1.00
0.37 0.84 0.99 0.84

tracklist F: 0.16
cddb T: 0.00

0.01 0 1 0
discs F: 1.00

expressed by the PTV p̃ with µp̃(T ) = 1 − 0 = 1 and
µp̃(F ) = 1 − 0.84 = 0.16 where 0 and 0.84 are respectively
the maximum values (∨) of the last columns of Tables IV and
III (cf. Equation (8)).

TABLE IV
Nec(P̃

(i)F
= F ) FOR PATHS /cddb/disc/tracks/title AND

/discs/disc/tracklist/title.

Step PTV wi Nec(P̃
(i)F

= F ) γF (P̃
(i)F

) ∧

cddb T: 0.00
0.01 1 0 0

discs F: 1.00
tracks T: 1.00

0.37 0 0 0
tracklist F: 0.16

disc T: 1.00
0.12 0 0 0

disc F: 0.00
title T: 1.00

0.5 0 1 0
title F: 0.00

Step 3: Mapping algorithm at the paths level

One more time our algorithm establishes a mapping, but
this time between paths. In this step the best 1:1 mapping
between paths of two XML schemas is determined, based on
the coreferent paths matrix of which an example is shown
in Table I. The procedure is analogous to the ‘Mapping at

the steps level’ described above. Indeed, a coreferent paths
matrix also consists of PTVs of which the largest in each row
is selected hereby handling conflicts as described in Step 2,
Substep 3. For example, the PTVs of the selected, matched
paths are set in bold in Table I.

Step 4: Aggregation at the paths level

Finally, the coreference of the whole XML schemas can be
computed. To this aim the aggregation of the PTVs expressing
the paths coreference is done using a technique based on the
Sugeno integral for PTVs [6], in a similar way as proposed
for the ‘Aggregation at the steps level’ described in Step 2,
Substep 4. As argued earlier, this approach makes it possible to
adequately cope with the different importance of aggregated
elements, paths in this case. In [13] it is stated that not all
attributes are equally important and not all of them have the
same role in coreference discovery. For instance, it can be
assumed that a path /cddb/disc/title is more important than
a path /cddb/disc/id but this is, of course, context-dependent.
Because of that, mapped elements are classified into subsets
from the most to the least important. The classification can be

done manually or be based on heuristics or knowledge stored
in a knowledge base. So, PTVs expressing coreference of all
matched paths can be aggregated using the Sugeno integral.
The resulting aggregated PTV then expresses the (un)certainty
about the coreference between the two input XML schemas,
such as the left and right schemas represented in Figure 1.

IV. EVALUATION AND DISCUSSION

Datasets. To illustrate the proposed approach we consider
two different real-world datasets, respectively containing in-
formation about ‘compact discs’ and ‘university courses’.
Compact disc data are represented by two schemas (also
being used in the examples of the paper). The first schema
is extracted from FreeDB and consists of 7 leaf elements.
The second is extracted from Discogs and consists of 33 leaf
elements of which 7 have been identified as being coreferent
with FreeDB elements. University course data comprise three
schemas and originate from the AnHai Doan repository1. They
are derived from the websites of three universities: Reed
College (Reed), University of Wisconsin-Milwaukee (UWM)
and Washington State University (WSU). These schemas are
considered in pairs: (Reed,WSU) contains 12 coreferent
elements, (Reed, UWM) 10 and (WSU,UWM) 11. Real
coreferent elements were manually identified based on the
schemas and instance data.

Paths comparison. Table V presents the results of paths
coreference detection using our method (referred to as Paths

Matcher) and a two-level string comparison method proposed
in [2]. The latter method is similar to the Paths Matcher, but
does not take into account the positions of path elements. Ta-
ble V presents the PTVs denoting (un)certainty of coreference
for selected pairs of paths, calculated using both methods.
Columns correspond to particular methods and rows contain
selected paths from the CD and university courses datasets.
Path pairs from the CD datasets have equal number of steps
and different steps at the beginning, but are more similar at
the end. As Paths Matcher takes into account this feature of
coreferent paths, it gives much better results for these pairs
than the other method. However, when paths are similar at
the beginning, the results obtained using Paths Matcher are
only slightly better. Thus, our method properly implements
the assumption that not all steps are equally important and
differences at the beginning of paths do not exclude paths
coreference.

Paths Matcher properly deals with the differences in the
schema structures (e.g., the fourth row of Table V), abbre-
vations (e.g., tracklist and tracks in the second row) and
misspellings. This is confirmed by the larger PTVs returned by
our method for truly coreferent elements (e.g., /cddb/disc/year

and /discs/disc/year in the first row of Table V).

Recall and precision. Precision is one of the important
measures of quality for classification results. In our case it can
be defined as the fraction of really coreferent objects among all
objects classified by a given algorithm as being coreferent (true

1Doan, AnHai, http://www.cs.washington.edu/research/xmldatasets

1358



TABLE V
COMPARISON OF TWO ALGORITHMS FOR DETECTING PATHS

COREFERENCE.

Paths Paths
Matcher

Two-Level
Matcher

/cddb/disc/year T: 1.00 T: 1.00
/discs/disc/year F: 0.06 F: 0.25
/cddb/disc/tracks/title T: 1.00 T: 1.00
/discs/disc/tracklist/title F: 0.17 F: 0.42
/root/course/instructor T: 1.00 T: 1.00
/root/courseListing/restrictions F: 0.56 F: 0.12
/root/course/days T: 1.00 T: 1.00
/root/courseListing/sectionListing/days F: 0.33 F: 0.67

positives). High precision means that the method returns more
relevant (coreferent) than irrelevant results. Recall is another
important quality measure which in our case can be defined
as the fraction of true positive objects among all coreferent
objects present in a test dataset. High recall means that a
method is capable to discover most of the actually relevant
objects. Our algorithm employs two thresholds to decide on
paths coreference, which are set to 0.55 for µp̃(T ) and to
0.5 for µp̃(F ). If µp̃(F ) is lower than the threshold then the
coreference is declared. If µp̃(T ) is lower than the threshold
then the lack of coreference is declared. Finally, if both of the
thresholds are exceeded then the coreference status is declared
as unknown.

Table VI presents the recall and precision for the datasets
used in our experiments and calculated for the results ob-
tained using our algorithm (Paths Matcher), the two-level
string comparison[2] (Two-Level Matcher) and a Levenshtein
distance [14] (Levenshtein) based approach which employs a
predefined threshold value 0.5 on the normalized number of
edit operations needed, to decide if the coreference occurs.
Paths matcher returns better results than other methods for
each of different pairs of datasets. Our method gives the best
result compared to the other methods for the CD datasets,
because paths in these datasets have different beginnings and
our method copes with that type of differences properly.
Moreover, schemas of the Reed and WSU datasets are similar
so all methods return fairly good results, as shown in row two
of Table VI. The last two rows contain results of comparing
schemas that most differ in structure and names of their
elements. This explains the low results obtained for them in
our evaluation.

TABLE VI
RECALL AND PRECISION.

Datasets Paths Matcher Two Level Levenshtein
Precis. Recall Precis. Recall Precis. Recall

FreeDB
0.8 0.57 0.14 0.14 0.5 0.14

Discogs
Reed

1.0 0.75 0.75 0.75 0.83 0.83
WSU
Reed

0.5 0.3 0.13 0.1 0.25 0.1
UWM
WSU

0.67 0.36 0.25 0.18 0.38 0.27
UWM

V. CONCLUSION

We proposed a method to find coreferent XML elements
based on coreferent paths what may help to further decide
on the coreference of XML schemas. Paths are one of the
most crucial metadata in XML files. Detection of coreferent
paths requires recognizing coreferent steps from which paths
are constructed. We treat coreference as a binary notion, i.e.,
two paths are actually coreferent or not. However, we assume
that the results of the coreference detection may be uncertain
what is represented by employing possibilistic truth values.
Coreference is considered here in a hierarchical way. On the
basic level, the coreference of steps (parts of XML paths)
is determined. Then, the information on steps coreference,
with an explicit representation of its related uncertainty using
PTVs, is properly aggregated to obtain information on paths
coreference which is on its turn further aggregated to finally
decide on the coreference of whole XML schemas. We apply
a Sugeno integral for PTVs to aggregate information on the
coreference of subsequent levels of this hierarchy. This allows
us to explicitly cope with the position of the elements in a
path and the relative importance of paths within their schema.

ACKNOWLEDGMENT

This contribution is supported by the Foundation for Polish
Science under International PhD Projects in Intelligent Com-
puting. Project financed from The European Union within the
Innovative Economy Operational Programme 2007-2013 and
European Regional Development Fund.

REFERENCES

[1] D. C. Fallside, XML Schema Part 0: Primer, 2001.
[2] A. Bronselaer and G. De Tré, “A possibilistic approach to string

comparison,” IEEE TRANS. ON FUZZY SYST., vol. 17, no. 1, pp.
208–223, 2009.

[3] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets Syst., vol. 100, pp. 9–34, Apr. 1999.

[4] H. Prade, “Possibility sets, fuzzy sets and their relation to Lukasiewicz
logic,” in Proc 12th Int Symp on Multiple-Valued Logic, 1982, pp. 223–
227.

[5] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, 1st ed.
Springer, 2000.

[6] A. Bronselaer, A. Hallez, and G. D. Tré, “Extensions of fuzzy measures
and Sugeno integral for possibilistic truth values,” Int. J. Intell. Syst.,
vol. 24, no. 2, pp. 97–117, Feb. 2009.

[7] M. Sugeno, “Theory of fuzzy integrals and its applications,” Ph.D.
dissertation, Tokyo, Japan, 1974.

[8] M. Szymczak, A. Bronselaer, S. Zadrozny, and G. De Tré, “Dy-
namical construction of binary relations in coreference detection,” in
NAFIPS 2012. IEEE, 2012, pp. 100–106.

[9] A. Bronselaer, A. Hallez, and G. De Tré, “Evaluation in the possibilistic
framework for object matching,” in IPMU 2008, 2008.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp.
1–16, 2007.

[11] P. Calado, M. Herschel, and L. Leitão, “An overview of xml duplicate
detection algorithms,” in Soft Comput. in XML Data Manag. , 2010, pp.
193–224.

[12] S. Zadrozny, J. Kacprzyk, and G. Sobota, “Avoiding duplicate records
in a database using a linguistic quantifier based aggregation - a practical
approach,” in FUZZ-IEEE. IEEE, 2008, pp. 2194–2201.

[13] P. Zadeh and M. Reformat, “Fuzzy semantic similarity in linked data
using the OWA operator,” in NAFIPS 2012, Aug. 2012, pp. 1–6.

[14] V. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

1359


