
Bioinformatics Service Reconciliation By
Heterogeneous Schema Transformation

Lucas Zamboulis1,2, Nigel Martin1, and Alexandra Poulovassilis1

1 School of Computer Science and Information Systems, Birkbeck, Univ. of London
2 Department of Biochemistry and Molecular Biology, University College London

Abstract. This paper focuses on the problem of bioinformatics service
reconciliation in a generic and scalable manner so as to enhance interop-
erability in a highly evolving field. Using XML as a common representa-
tion format, but also supporting existing flat-file representation formats,
we propose an approach for the scalable semi-automatic reconciliation
of services, possibly invoked from within a scientific workflows tool. Ser-
vice reconciliation may use the AutoMed heterogeneous data integration
system as an intermediary service, or may use AutoMed to produce ser-
vices that mediate between services. We discuss the application of our
approach for the reconciliation of services in an example bioinformatics
workflow. The main contribution of this research is an architecture for
the scalable reconciliation of bioinformatics services.

1 Introduction

In recent years, the bioinformatics field has seen an explosion in the number of
services offered to the community. These platform-independent software compo-
nents have consequently been used for the development of complex tasks through
service composition within workflows, thereby promoting reusability of services.
However, the large number of services available impedes service composition and
so developing techniques for semantic service discovery that would significantly
reduce the search space is of great importance [12].

After discovering services that are relevant to one’s interests, the next step
is to identify whether these services are functionally compatible. Bioinformatics
services are being independently created by many parties worldwide, using dif-
ferent technologies and data types, hindering integration and reusability [21]. In
particular, after discovering two such services, the researcher needs to first iden-
tify whether the output of the first is compatible with the input of the second
based on a number of factors, such as the technology employed by each service,
the representation format and the data type used.

In practice, compatible services are rare. Within Taverna (see http://taverna.
sourceforge.net), service technology reconciliation is addressed by using Freefluo
[19], an extensible workflow enactment environment that bridges the gap between
web services and other service types, such as web-based REST services (stateless
services that support caching). However, the researcher still needs to reconcile

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/19749388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the outputs and inputs of services in terms of content, data type and represen-
tation format, spending time and effort in developing functionality that, even
though essential for the services to interoperate, is irrelevant to the experiment.

The primary cause of this problem is the existence of multiple different data
types and representation formats used even for basic concepts, such as DNA
sequences. These data types and representation formats, used for the same or
overlapping concepts, have been developed over the years by collaborative work
between researchers and/or industry and so even though standardisation efforts
are important and encouraged by the community, non-standardised efforts are
likely to persist and new ones are bound to appear in this constantly evolving
field. For this reason, service composition solutions that take into consideration
this factor are essential. Unfortunately, most current tools concentrate on a spe-
cific data type and representation format (or combinations of pairs of types and
formats, when translation is needed) to accomplish a highly specific task, rather
than being generic [13]. As a result, reusability of existing tools is low.

Another common practice in bioinformatics is the use of flat-file representa-
tion formats for the overwhelming majority of data types, while the adoption
rate of XML is low. This practice does not allow the application of Semantic Web
technologies and solutions to their full extent, such as semantically annotating
fields within a bioinformatics data type. For example, even though it is possible
to annotate a service as having FASTA output, it is not possible to annotate
the different fields within the non-tagged FASTA data type. But, even if a data
type is tagged, e.g. UniProt, annotation cannot be performed in a generic way,
as it would require data type-specific annotation tools.

We also observe that, even though the use of semantic annotations is key
to service discovery and composition, service providers are disinclined to supply
comprehensive annotations for their services. Relying on a centralised approach
for such a task is clearly not scalable, and so any proposed solution for the
reconciliation of bioinformatics services must ensure that the amount of required
annotations is kept to a minimum and that it is reused as much as possible.

We argue that (a) the use of XML and (b) allowing the annotation and ma-
nipulation of service inputs and outputs at a fine-grained level, can boost service
interoperability in a scalable manner. We therefore propose and exemplify an ar-
chitecture for the reconciliation of services by exploiting the (manual) semantic
annotation of service inputs and outputs using one or more interconnected on-
tologies, and the subsequent automatic restructuring of the XML output of one
service to the required XML input of another. Although our approach uses XML
as the common representation format, non-XML services are also supported by
the use of converters to and from XML. Our schema and data transformation
approach is supported by the AutoMed heterogeneous data integration system
(see http://www.doc.ic.ac.uk/automed) and can accommodate two types of
service reconciliation: either using AutoMed as a service itself, e.g. from within
a workflow tool, or using AutoMed to generate mediating services.

In the remainder of this paper, Section 2 first reviews current approaches
related to service interoperability. Section 3 then provides an overview of the

AutoMed system, to the level of detail necessary for this paper. Section 4 intro-
duces our proposed approach for a scalable solution to the problem of bioinfor-
matics service reconciliation. Section 5 presents our ongoing work in applying
our approach to the reconciliation of bioinformatics services. Section 6 provides
an overall discussion of our approach and gives our plans for future work.

2 Related Work

In the context of service composition, research such as [20, 18, 2] has mainly fo-
cused on service technology reconciliation, matchmaking and routing, assuming
that service inputs and outputs are a priori compatible. This assumption is re-
strictive, as it is often the case that two services are semantically compatible, but
cannot interoperate due to data type and/or representation format mismatches.

This problem has forced service consumers to handle such mismatches with
custom code from within the calling services. In an effort to minimise this issue
and promote service reusability, myGrid (see http://www.mygrid.org.uk) has
fostered the notion of shims [7], i.e. services that act as intermediaries between
services and reconcile their inputs and outputs. However, a new shim needs to
be manually created for each pair of services that need to interoperate. [8] states
that, even though in theory the number of shims that myGrid needs to provide
is quadratic in the number of services it contains, the actual number of shims
should be much smaller. However, this manual approach is not scalable, as in
2005 myGrid gave access to 1,000 services [12] and this number is now over 3,000.

[3] describes a scalable framework that uses mappings to one or more ontolo-
gies, possibly containing subtyping information, for reconciling the output of a
service with the input of another. The sample implementation of this framework
is able to use mappings to a single ontology in order to generate an XQuery
query as the transformation program.

We observe that [3] only provides for shim generation, whereas our approach,
by using the AutoMed data integration system, provides a uniform approach
to workflow and data integration, both of which are key aspects of in silico
biological experiments. Furthermore, the work presented here differs from [3]
in a number of aspects and provides a more generic solution to the problem of
bioinformatics service reconciliation. First, we also consider services that produce
or consume non-XML data and also allow primitive data type reconciliation,
whereas [3] does not. Moreover, we allow 1-n GLAV correspondences, compared
to the 1-1 LAV correspondences of [3] and we also define a methodology for
reconciling services that correspond to more than one ontology. We also note
that our XML restructuring algorithm is able to avoid loss of information during
data transformation, by analysing the hierarchical nature of the source and target
schemas and by using subtype information provided by the ontologies.

[22] also uses a mediator system for service composition. However, the focus
is either to provide a service over the global schema of the mediator whose data
sources are services, or to generate a new service that acts as an interface over
other services. In contrast, we use the AutoMed toolkit to reconcile a sequence

of semantically compatible services that need to form a pipeline: there is no need
for a single ‘global schema’ or a single new service to be created.

Concerning the use of ontologies for data integration, a number of approaches
have been proposed. For example, [1] uses an ontology as a virtual global schema
for heterogeneous XML data sources using LAV mapping rules, while [4] under-
takes data integration using mappings between XML data sources and ontolo-
gies, transforming the source data into a common RDF format. In contrast, we
use XML as the common representation format and focus on restructuring the
source data into a target XML format, rather than on integration.

3 Overview of AutoMed

AutoMed is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and hybrid data transforma-
tion/integration across multiple data models. It supports a low-level hypergraph-
based data model (HDM) and provides facilities for specifying higher-level
modelling languages in terms of this HDM. An HDM schema consists of a set
of nodes, edges and constraints, and each modelling construct of a higher-level
modelling language is specified as some combination of HDM nodes, edges and
constraints (the constraints are expressed in the IQL query language — see be-
low).

For any modelling language M specified in this way (via the API of Au-
toMed’s Model Definitions Repository) AutoMed provides a set of primitive
schema transformations that can be applied to schema constructs expressed in
M. In particular, for every construct of M there is an add and a delete prim-
itive transformation which add to/delete from a schema an instance of that
construct. For those constructs of M which have textual names, there is also a
rename primitive transformation.

Instances of modelling constructs within a particular schema are identified by
means of their scheme enclosed within double chevrons 〈〈. . .〉〉. AutoMed schemas
can be incrementally transformed by applying to them a sequence of primitive
transformations, each adding, deleting or renaming just one schema construct
(thus, in general, AutoMed schemas may contain constructs of more than one
modelling language). A sequence of primitive transformations from one schema
X1 to another schema X2 is termed a pathway from X1 to X2 and denoted by
X1 → X2. All source, intermediate, and integrated schemas, and the pathways
between them, are stored in AutoMed’s Schemas & Transformations Repository.

Each add and delete transformation is accompanied by a query specifying the
extent of the added or deleted construct in terms of the rest of the constructs
in the schema. This query is expressed in a functional query language, IQL [9].
Also available are extend and contract primitive transformations which behave
in the same way as add and delete except that they state that the extent of
the new/removed construct cannot be precisely derived from the rest of the
constructs. Each extend and contract transformation takes a pair of queries that
specify a lower and an upper bound on the extent of the construct. These bounds

may be Void or Any, which respectively indicate no known information about
the lower or upper bound of the extent of the new construct.

The queries supplied with primitive transformations can be used to trans-
late queries or data along a transformation pathway X1 → X2 (see [15, 16] for
details). For translating data from X1 to data on X2 the add, extend and re-
name steps are used. The queries supplied with primitive transformations also
provide the necessary information for these transformations to be automatically
reversible, in that each add/extend transformation is reversed by a delete/contract
transformation with the same arguments (including the same query arguments),
while each rename is reversed by a rename with the two arguments swapped. As
discussed in [15], this means that AutoMed is a both-as-view (BAV) data in-
tegration system: the add/extend steps in a transformation pathway correspond
to Global-As-View (GAV) rules while the delete and contract steps correspond
to Local-As-View (LAV) rules. If a GAV view is derived from solely add steps
it will be exact in the terminology of [11]. If, in addition, it is derived from one
or more extend steps using their lower-bound (upper-bound) queries, then the
GAV view will be sound (complete) in the terminology of [11]. Similarly for LAV
views. An in-depth comparison of BAV with the GAV and LAV approaches to
data integration can be found in [15], while [16, 17] discusses the use of BAV in
a peer-to-peer data integration setting. [10] discusses how Global-Local-As-View
(GLAV) rules [5, 14] can also be derived from BAV pathways. We note that
AutoMed and BAV transform both schema and data together, and thus do not
suffer from any data/schema divide.

4 Bioinformatics Service Reconciliation

In this section, we present the problems encountered during service reconcilia-
tion and describe our proposed approach for overcoming them, including a brief
discussion of how our approach could be incorporated within a workflow tool. We
then provide details of XML DataSource Schema (XMLDSS), the XML schema
type used in our approach, and of our own earlier work on schema transformation
using ontologies that has been extended to enable service reconciliation.

4.1 Proposed Approach

Consider a service S1 that produces data that need to be consumed by another
service S2. In general, the following issues need to be resolved when trying to
handle data exchange between S1 and S2:

1. Data model heterogeneity: different data models (e.g. legacy flat files
and XML) or different schema types (e.g. DTD and XML Schema) may be
used. It may also be the case that a service producing or consuming XML
data does not have an accompanying XML schema.

2. Semantic heterogeneity: schematic differences caused by the use of dif-
ferent terminology, or describing the same information at different levels of
granularity.

3. Schematic heterogeneity: schematic differences caused by modelling the
same information in different ways. This heterogeneity is common to all
data modelling languages, but is amplified in XML due to its hierarchical
nature, as well as the possibility of using elements with a single text node
and attributes interchangeably.

4. Primitive data type heterogeneity: differences caused by the use of
different primitive data types, e.g. int and varchar, for the same concept.

To resolve these issues, we propose the following 4-step approach, illustrated
in Figure 1:

Step 1: XML as the common representation format. We handle differ-
ences in the representation format by using XML as the common representation
format. If the output/input of a service is not in XML, then a format converter
is needed to convert to/from XML.
Step 2: XMLDSS as the schema type. We use our own XMLDSS schema
type for the XML documents input to and output by services. An XMLDSS
schema can be automatically extracted from an XML document or automatically
derived from an accompanying DTD/XML Schema, if one is available.
Step 3: Correspondences to typed ontologies. We use one or more on-
tologies as a ‘semantic bridge’ between services. Providers or users of services
semantically annotate the inputs and outputs of services by defining correspon-
dences between an XMLDSS schema and an ontology. Ontologies in our approach
are typed, i.e. each concept is associated with a data type, and so defining cor-
respondences resolves issues 2 and 4 discussed above.
Step 4: Schema and data transformation. We use the AutoMed toolkit
to automatically transform the XMLDSS schema of the output of service S1 to
the XMLDSS schema of the input of service S2. This is achieved using the two
automatic algorithms discussed in Section 4.4.

If service S1 does not have an accompanying DTD or XML Schema for its
output, sample XML output documents for S1 must be provided, and these must
represent all valid formats that S1 is able to produce, so as to create an XMLDSS
schema that represents all possible instances of the output of S1. If this is not
possible, then an XMLDSS can be extracted at run-time for every new instance
XML document output by S1. The same applies for the input of S2.

4.2 Integration of Approach With Workflow Tools

Our architecture for service reconciliation supports two different approaches
identified below, depending on the preferred form of interoperability between
AutoMed and the workflow tool.

Mediation service. With this approach, the workflow tool invokes service S1,
receives its output, and submits this output and a handle on service S2

to a service provided by the AutoMed system. This uses our approach to
transform the output of S1 to a suitable input for consumption by S2.

 (4)XMLDSS
schema X1

XMLDSS
schema X2

 (3)

Ontology O1

S1 output
XML format

S2 input
XML format

 (2) (2)

 (3)

S1 output
non-XML

format

S2 input
non-XML

format

 (1) (1)

Service
S2

Service
S1

Step 1: format translation to and from XML
Step 2: automatic XMLDSS schema generation
Step 3: manual correspondences definition
Step 4: automatic XMLDSS schema transformation

Fig. 1. Reconciliation of services S1 and S2 using ontology O1.

Shim generation. With this approach, the AutoMed system is used to gener-
ate shims, i.e. tools or services for the reconciliation of services, by generating
transformation scripts which are then incorporated within the workflow tool.

In the following, we provide an overview of the shim generation architecture.
The mediation service architecture is described in more detail in Section 5.

With the shim generation approach, AutoMed is not part of the architecture,
and so it is necessary to export AutoMed’s mediation functionality described and
exemplified in Section 5. This functionality consists of the format converters, the
algorithms for generating an XMLDSS schema from an XML document, DTD
or XML Schema, and the XMLDSS schema transformation algorithms.

Format converters are not a part of the AutoMed toolkit and so can be
used from within a workflow tool, without exporting any AutoMed functionality.
The converters can be either incorporated within the workflow tool, or their
functionality can be imported using services. As an example, a number of shims
in myGrid are format converters.

The XMLDSS schema type is currently used only within the AutoMed sys-
tem, but it does not require AutoMed functionality. As a result, the XMLDSS
schema generation algorithms can be used from within a workflow tool in the
same way as format converters.

The two XMLDSS schema transformation algorithms described in Section 4.4
are currently tightly coupled with the AutoMed system, since they use the BAV
approach, which is currently supported only by AutoMed. To use our approach
without dynamically integrating AutoMed with a workflow tool, we need to ex-
port the functionality of the schema transformation algorithms, in order for this
AutoMed-dependent functionality to be used statically by a workflow tool. To
this effect, we have designed an XQuery query generation algorithm, as detailed
in [25], that derives a single XQuery query Q, able to materialise an XMLDSS
schema X2 using data from the data source of an XMLDSS schema X1, and a
transformation pathway X1 → X2. In summary, to derive query Q, the algo-

rithm first uses AutoMed’s Query Processor to create the IQL view definition
V of each construct c of X2 in terms of constructs of X1, and to translate each
V into an equivalent XQuery query, VXQuery. The algorithm then creates a sin-
gle XQuery query Q, for materialising X2 by following a bottom-up approach
as follows. The algorithm first creates the XQuery queries for materialising the
leaf elements of X2, together with their attributes and child text nodes. These
queries are then used to create the queries that materialise the parent elements
of the leaf elements, together with their attributes and text nodes. This process
is repeated until the root of X2 is reached and the overall query Q is formulated.

4.3 XML DataSource Schema (XMLDSS)

The standard schema definition languages for XML are DTD and XML Schema.
However, both of these provide grammars to which conforming documents ad-
here, and they do not explicitly summarise the tree structure of the data sources.
In our schema transformation setting, tree-structured schemas are preferable as
they facilitate schema traversal, structural comparison between a source and a
target schema, and restructuring of the source schema. Moreover, such a schema
type means that the queries supplied with AutoMed primitive transformations
are essentially path queries, which are easily generated.

The AutoMed toolkit therefore supports a modelling language called XML
DataSource Schema (XMLDSS), which summarises the tree structure of XML
documents, much like DataGuides [6]. XMLDSS schemas consist of four kinds
of constructs: Element, Attribute, Text and NestList (see [23] for details of their
specification in terms of the HDM). The last of these defines parent-child rela-
tionships either between two elements ep and ec or between an element ep and
the Text node. These are respectively identified by schemes of the form 〈〈i, ep, ec〉〉
and 〈〈i, ep, Text〉〉, where i is the position of ec or Text within the list of children
of ep in the XMLDSS schema.

In an XMLDSS schema there may be elements with the same name occur-
ring at different positions in the tree. To avoid ambiguity, the identifier element-
Name$count is used for each element, where count is incremented every time the
same elementName is encountered in a depth-first traversal of the schema.

4.4 XML Schema and Data Transformation using Ontologies

We now describe the two algorithms, the schema conformance algorithm (SCA)
and the schema restructuring algorithm (SRA), used in our approach to trans-
form a source XMLDSS schema X1 and its data to the structure of a target
XMLDSS schema X2. In this setting, these are the XMLDSS schemas of the
outputs and inputs of services. Our own previous work in [23, 26, 27] addressed
the issue of XML schema and data transformation. This section describes an
extended version of the approach of [27], in that the expressiveness of the cor-
respondences used in our approach has been enriched, and the SCA algorithm
has been extended to support this.

The SCA uses manually defined correspondences between XMLDSS schemas
X1 and X2 and an ontology O, in order to automatically transform X1 and
X2 into equivalent schemas X ′

1 and X ′
2 that use the same terms as O. As a

result, transformation pathways X1 → X ′
1 and X2 → X ′

2 are created. By the
bidirectionality of BAV, a pathway X ′

2 → X2 can be automatically derived from
the pathway X2 → X ′

2.
In [27], a correspondence defines an Element, Attribute or NestList of an

XMLDSS schema by means of an IQL query over a typed ontology.3 In par-
ticular, an Element e may map either to a Class c; or to a path ending with
a class-valued property of the form 〈〈p, c1, c2〉〉, where p is the property name
and c1 and c2 are source and target classes; or to a path ending with a literal-
valued property 〈〈p, c, Literal〉〉, where p is the property name and c the source
class; additionally, the correspondence may state that the instances of a class
are constrained by membership in some subclass. An Attribute may map either
to a literal-valued property or to a path ending with a literal-valued property.

We now extend the correspondences of [27] as follows. An XMLDSS scheme
of the form 〈〈i, e, Text〉〉 (where i denotes the order of 〈〈Text〉〉 in the list of children
of Element 〈〈e〉〉) may map to a literal-valued property of the form 〈〈p, c, Literal〉〉.
In addition to 1-1 correspondences, we now also allow 1-n correspondences as
follows. An Element/Attribute may map to more than one path over the on-
tology. In this case, n correspondences are required, each associating the same
XMLDSS Element/Attribute to a different path over the ontology, and specifying
an expression that determines the part of the extent of the Element/Attribute to
which the correspondence applies (an example of this is given in Section 5). This
expression is in general a select-project IQL query. We note that these extended
correspondences are GLAV, in contrast with the LAV correspondences defined
in our own earlier work [27], as an expression over an XMLDSS construct (rather
than just an XMLDSS construct) maps to a path in the ontology.4

The SCA uses correspondences from an Element or Attribute to a single path
over the ontology to rename that construct, ensuring consistency with the termi-
nology of the ontology. In the case of a 1-n correspondence relating to an Element
e with parent p, the algorithm first retrieves all relevant correspondences, then
inserts n Elements under p (in the position previously held by e), named after the
paths specified by the correspondences, and finally deletes e and its underlying
structure. When inserting the n Elements under p, the algorithm also replicates
the underlying structure of the old Element e under each one of the newly inserted
Elements. A 1-n correspondence relating to an Attribute is handled similarly: the
owner Element is replaced by n Elements with the same name, each containing
a different Attribute named after the paths specified by the correspondences. A

3 In principle, it would be possible to use more high-level query languages such as
XQuery to specify correspondences in our setting. Currently, AutoMed provides
an XQuery-to-IQL translator component, capable of translating (possibly nested)
FLWR XQuery queries to (possibly nested) select-project-join IQL queries.

4 Even though BAV pathways could have been used to express these GLAV mappings,
we specify the mappings directly as GLAV rules for compactness.

correspondence mapping an Attribute or a scheme of the form 〈〈i, e,Text〉〉 in the
XMLDSS to a literal-valued property in the ontology is used to perform primi-
tive data type reconciliation: if the data type of the Attribute or scheme in the
XMLDSS schema is not the same as in the ontology, the algorithm replaces the
Attribute or scheme by performing a type-casting operation.

After the transformation of schemas X1 and X2 into schemas X ′
1 and X ′

2

that use the same terms as O, our second algorithm, the SRA presented in [27],
automatically transforms X ′

1 to the structure of X ′
2, producing a transformation

pathway X ′
1 → X ′

2. To do so, the SRA first inserts into X ′
1 those constructs

present in X ′
2 but not in X ′

1. After this growing phase, a shrinking phase follows,
in which the SRA removes from X ′

1 those constructs present in X ′
1 but not in

X ′
2. The SRA is able to generate synthetic structure to avoid loss of data caused

by structural incompatibilities between X ′
1 and X ′

2. The SRA is also able to use
information that identifies an element/attribute in X ′

1 to be either equivalent to,
or a superclass of, or a subclass of an element/attribute in X ′

2. This information
may be produced by, e.g. a schema matching tool or, in our context here, via
correspondences to an ontology.

Consequently, an overall transformation pathway from X1 to X2 can now be
obtained by composing the pathways X1 → X ′

1, X ′
1 → X ′

2 and X ′
2 → X2. This

pathway can be used to automatically transform data that is structured accord-
ing to X1 to be structured according to X2, and an XML document structured
according to X2 can finally be materialised (the pathway X1 → X2 could also
be used to translate queries expressed on X2 to operate on X1).

Note that we do not assume the existence of a single ontology. As discussed
in [27], it is possible for XMLDSS schema X1 to have a set of correspondences C1

to an ontology O1, and for XMLDSS schema X2 to have a set of correspondences
C2 to another ontology O2. Provided there is an AutoMed transformation path-
way between O1 and O2, either directly or through one or more intermediate
ontologies, we can use C1 and the transformation pathway between O1 and O2 to
automatically produce a new set of correspondences C ′1 between X1 and O2. As a
result, this setting is now identical to a setting with a single ontology. There is a
proviso here that the new set of correspondences C ′1 must conform syntactically
to the correspondences accepted as input by the schema conformance process.
Determining necessary conditions for this to hold is an area of future work.

5 Case Study

We now describe our approach in more detail and demonstrate the use of Au-
toMed as a mediation service by specifying a sample bioinformatics workflow.
Note that listings of all service inputs, outputs and XMLDSS, XML Schema and
DTD schemas discussed in this section are given in [25].

Figure 2 illustrates a sample workflow with three services that will be used to
demonstrate our approach. The first service takes as input an IPI (http://www.
ebi.ac.uk/IPI) accession number, e.g. IPI00015171, and outputs the corre-
sponding IPI entry as a flat file using the UniProt (http://www.ebi.uniprot.

getIPIEntry getPfamEntrygetInterProEntry

UniProt
entry

(flat file
format)

InterPro
entry

(flat file
format)

IPI
accession

(string)

InterPro
accession

(string)
T2

InterPro
entry

(XML file
format)

T1

InterPro
accession

(string)

Fig. 2. Sample Workflow.

org) format. The second service receives an InterPro (http://www.ebi.ac.uk/
interpro) accession number and returns the corresponding InterPro entry. The
third service receives a Pfam (http://www.sanger.ac.uk/Software/Pfam) ac-
cession number and returns the corresponding Pfam entry. In this workflow,
two transformations are needed: T1 extracts the InterPro accession number from
an IPI entry using the UniProt format, while T2 extracts the Pfam accession
number from an InterPro entry.

We now apply the mediation service approach described in Section 4.2, for
the reconciliation of the services of the workflow of Figure 2.

Step 1: XML as a common representation format. Service getIPIEntry
outputs a flat file that follows the UniProt representation format and contains
a single entry consisting of multiple lines. Each line consists of two parts, the
first being a two-character line code, indicating the type of data contained in
the line, while the second contains the actual data, consisting of multiple fields.

Since UniProt also has an XML representation format specified by an XML
Schema, we created a format converter that, given an IPI flat file f that follows
the UniProt format, converts f to an XML file conforming to that XML Schema.

Service getInterProEntry outputs an XML file and so there is no need for
a format converter. Concerning the input of the second and the third service,
they each take as input a single string, representing an InterPro/Pfam accession
number, respectively. The input XML documents for these contain a single XML
element, ip acc and pf acc, respectively, with a PCData node as a single child,
as shown below. For these, the format converters implement the functionality of
the XPath expressions /ip acc/text() and /pf acc/text(), respectively.

<ip_acc>InterPro_accession_string</ip_acc>

<pf_acc>Pfam_accession_string</pf_acc>

Step 2: XMLDSS schema generation. After resolving representation format
issues, we now give details on the generation of XMLDSS schemas for our setting.
As discussed above, service getIPIEntry outputs a flat file which is converted to
an XML file that conforms to the UniProt XML Schema. An XMLDSS schema
for the output of this service is automatically derived from that XML Schema.
Similarly, an XMLDSS schema for the output of service getInterProEntry is
automatically derived using the InterPro DTD schema.

Concerning the input of the second and the third service, the corresponding
XMLDSS schemas are automatically extracted by using a single sample XML
document for each, such as the ones given earlier.

Step 3: Correspondences. After generating the XMLDSS schemas for our
workflow, we need to specify the correspondences between these schemas and an
ontology. In this case, we have used the typed myGrid OWL domain ontology.

In general, all XMLDSS elements and attributes should be mapped to the
ontology. However, if an element or attribute cannot be mapped to the ontology,
this construct is not affected by our SCA and SRA algorithms that use the corre-
spondences to transform X1 to the structure of X2. An advantage of this is that
data transformation is still possible with only a partial set of correspondences
from an XMLDSS schema to the ontology. This property is particularly signif-
icant in terms of the applicability and scalability of our approach, as it allows
for incrementally defining the full set of correspondences between an XMLDSS
schema and an ontology: one can define only those correspondences relevant to
the specific problem at hand, instead of the full set of correspondences.

In our example, this means that we only need to specify correspondences
for those constructs of the XMLDSS schema of the output of getIPIEntry
that contribute to the input of service getInterProEntry. Consequently, we
need to specify correspondences for only two constructs, 〈〈dbReference$9〉〉 and
〈〈dbReference$9, id〉〉 (see Table 1). The first models an entry in a bioinformatics
data resource, whose type is specified by 〈〈dbReference$9, type〉〉. The type of a
resource is modelled in IPI using data values, whereas in the ontology it is mod-
elled as classes, and so n correspondences are required for this construct, where
n is the number of types of resources that IPI supports and that also exist in the
ontology. Each of these correspondences maps 〈〈dbReference$9〉〉 to a class in the
ontology representing a bioinformatics data resource record and specifies the part
of the extent of 〈〈dbReference$9〉〉 to which the correspondence applies. For exam-
ple, the second correspondence states that those instances of 〈〈dbReference$9〉〉
whose 〈〈dbReference$9, type〉〉 Attribute has a data value of ‘Pfam’, map to the
〈〈Pfam record〉〉 ontology class. Due to space limitations, but without loss of gen-
erality, we only provide the two correspondences related to InterPro and Pfam.

The XMLDSS schema of the input of service getInterProEntry consists of a
single Element construct, 〈〈ip acc〉〉, which corresponds to class 〈〈InterPro accession〉〉
in the ontology, and of a NestList construct, 〈〈1, ip acc, Text〉〉. The correspon-
dences are given in Table 2. The correspondences for the XMLDSS schema of
the input of the third service, getPfamEntry, are not listed as they are similar.

Step 4: Schema transformation. After manually specifying correspondences,
the SCA and SRA algorithms can automatically transform the outputs of ser-
vices getIPIEntry and getInterProEntry to the required inputs for services
getInterProEntry and getPfamEntry respectively.

Concerning the output of service getIPIEntry, the schema conformance al-
gorithm (SCA) first retrieves all correspondences related to 〈〈dbReference$9〉〉 (in
this case 2 correspondences) and inserts 〈〈InterPro record$1〉〉 and 〈〈Pfam record$1〉〉,
using the correspondences’ expressions to select the appropriate 〈〈dbReference$9〉〉
instances, i.e. those that have a type Attribute with value ‘InterPro’ and ‘Pfam’
respectively. As discussed in Section 4.4, the SCA then replicates under the newly

Table 1. Correspondences between the XMLDSS schema of the output of getIPIEntry
and the myGrid ontology.

Construct: 〈〈dbReference$9〉〉
Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]

Path: 〈〈InterPro record〉〉
Construct: 〈〈dbReference$9〉〉

Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]
Path: 〈〈Pfam record〉〉

Construct: 〈〈dbReference$9, id〉〉
Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;

{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]
Path: [{ir, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;

{ia, l} ← 〈〈datatype, InterPro accession, Literal〉〉]
Construct: 〈〈dbReference$9, id〉〉

Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;
{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]

Path: [{pr, l}|{pa, pr} ← 〈〈part of, Pfam accession, Pfam record〉〉;
{pa, l} ← 〈〈datatype, Pfam accession, Literal〉〉]

Table 2. Correspondences between the XMLDSS schema of the input of getInterPro
and the myGrid ontology.

Construct: 〈〈ip acc$1〉〉
Extent: 〈〈ip acc$1〉〉

Path: [{ia}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉]
Construct: 〈〈1, ip acc$1, Text〉〉

Extent: 〈〈1, ip acc$1, Text〉〉
Path: [{ia, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;

{ia, l} ← 〈〈datatype, InterPro accession, Literal〉〉]

inserted Elements the structure located under 〈〈dbReference$9〉〉 (again using the
correspondences’ expressions to select the appropriate structure), and then re-
moves 〈〈dbReference$9〉〉. Note that this removal is postponed until after any
other insertions are performed, as other insertions may need to use the extent
of 〈〈dbReference$9〉〉 in the queries supplied with the AutoMed transformations.

The SCA then retrieves all correspondences related to 〈〈dbReference$9, id〉〉 (in
this case 2 correspondences) and inserts Attributes 〈〈InterPro record$1,InterPro
record.part of.InterPro accession〉〉 and 〈〈Pfam record$1,InterPro record.part of.Pf
am accession〉〉, using the correspondences’ expressions to select the appropriate
〈〈dbReference$9, id〉〉 instances (as discussed earlier, 〈〈dbReference$9〉〉 has not yet
been removed). Concerning primitive data types, 〈〈dbReference$9, id〉〉 is of type
string, and the same applies for all accession numbers in the myGrid domain
ontology, so there is no need for any type-casting operations.

Concerning the input of getInterProEntry, the SCA uses the first correspon-
dence to rename 〈〈ip acc$1〉〉 to 〈〈InterPro record.part of.InterPro accession$1〉〉, while
the second correspondence, which is a primitive data type reconciliation corre-

spondence, is of no consequence as both the input of the service and the ontology
model InterPro accession numbers using the string data type.

After the application of the SCA, the XMLDSS schema X2 of the input of
service getInterProEntry contains three constructs, 〈〈InterPro record.part of.Int
erPro accession$1〉〉, 〈〈Text〉〉 and a NestList linking these two constructs. The
XMLDSS schema of the output of service getIPIEntry, X1, contains a number
of constructs, but the only ones relevant to those of X2 are 〈〈InterPro record$1〉〉
and 〈〈InterPro record$1,InterPro record.part of. InterPro accession〉〉. The schema
restructuring algorithm (SRA) therefore applies a number of contract transfor-
mations supplied with the queries Void and Any, so as to remove non-relevant
constructs. The only non-trivial transformation is the attribute-to-element trans-
formation: first Element 〈〈InterPro record.part of.InterPro accession$1〉〉 is added
to X1 using the extent of Attribute 〈〈InterPro record$1,InterPro record.part of.Inter
Pro accession〉〉, then NestList 〈〈InterPro record.part of.InterPro accession$1, Text〉〉
is added, again using the Attribute extent, and finally the Attribute is deleted.

After applying the SRA, we finally employ the XMLDSS schema materi-
alisation algorithm defined in [26] to materialise X2, i.e. the input of service
getInterProEntry, using data from the data source of X1, i.e. the output of
service getIPIEntry, using the transformation pathway X1 → X ′

1 → X ′
2 → X2.

The application of Step 4 for the second part of our workflow is similar.

6 Conclusions and Future Work

In this paper we have presented a generic and scalable architecture for bioin-
formatics service reconciliation within a wider data transformation framework.
Our approach makes no assumptions about representation format, primitive data
type usage or the number of ontologies used. Moreover, this approach can be used
either dynamically or statically from within a workflow tool.

The architecture exploits format converters to establish a common XML for-
mat for all service inputs and outputs, thus reducing the overall complexity of
service reconciliation by establishing a common representation format. Service
inputs and outputs are then abstracted using the XMLDSS schema type which
can be automatically generated either from XML documents, or from accompa-
nying DTD or XML Schema specifications using our algorithms.

Our approach is able to use correspondences to multiple ontologies for defin-
ing the semantics of services. This ‘semantic bridge’ is utilised by two automatic
algorithms that use the correspondences to allow data transformation between
services. The schema conformance algorithm is able to use 1-1 and 1-n GLAV
correspondences to ontologies, in order to produce schemas with no semantic
heterogeneity. The schema restructuring algorithm then restructures the source
schema to the target schema. This algorithm is able to avoid loss of information
that may be caused due to structural incompatibilities of the data sources.

While the correspondences to ontologies must be produced manually or semi-
automatically, an advantage of our approach is that correspondence reusability
is promoted by allowing the use of multiple ontologies. Moreover, our approach

does not require a full set of correspondences to be defined, but instead allows
the definition of only those correspondences between the XMLDSS schema and
the ontology that are relevant to the problem at hand - we therefore allow an
incremental approach for the definition of correspondences.

The architecture has been illustrated with a bioinformatics workflow charac-
teristic of those currently available with string-based inputs. Future workflows
with more complex inputs are to be expected, which our architecture will also
readily support.

Concerning the integration of our approach with workflow tools, we defined
two possible architectures. The first, using AutoMed as a mediation service, can
be used from within a workflow tool by invoking AutoMed as a service and
does not require XMLDSS or XQuery support. On the other hand, in the shim
generation architecture AutoMed is used to statically generate shims, which can
then be incorporated into any workflow tool that supports XQuery.

Our current implementation has supported testing of the transformation
pathways underpinning the service reconciliation examples presented within the
AutoMed toolkit. Ongoing work is aimed at integrating our approach with the
Taverna workflow tool. The resulting implementation will be evaluated within
the proteomics grid infrastructure being developed in the ISPIDER project [24].

In future work, we will investigate the necessary conditions under which a set
of correspondences, transformed by a ‘semantic bridge’ defined between multiple
ontologies, adheres to the required format of our schema conformance algorithm.
Other extensions to our work include investigating the effect on our approach
of constraints on XMLDSS schemas and/or the ontologies, and also considering
the effect of the evolution of the inputs and outputs of services.

Acknowledgements. The work presented in this paper is part of the BBSRC-
funded ISPIDER project. The authors would also like to thank the ISPIDER
members and especially Khalid Belhajjame, Suzanne Embury and Norman Paton
for the fruitful discussions that helped shape the work presented in this paper.

References

1. B. Amann, C. Beeri, I. Fundulaki, et al. Ontology-based integration of XML web
resources. In Proc. of Int. Semantic Web Conference, pages 117–131, 2002.

2. B. Benatallah et al. Declarative composition and peer-to-peer provisioning of dy-
namic web services. In Proc. of ICDE’02, pages 297–308, 2002.

3. S. Bowers and B. Ludäscher. An ontology-driven framework for data transfor-
mation in scientific workflows. In Proc. of Data Integration in the Life Sciences
(DILS’04), pages 1–16, 2004.

4. I. F. Cruz, H. Xiao, and F. Hsu. An ontology-based framework for XML semantic
integration. In Proc. IDEAS’04, pages 217–226, 2004.

5. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration.
In National Conference on Artificial Intelligence, pages 67–73. AAAI Press, 1999.

6. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proc. VLDB’97, pages 436–445, 1997.

7. D. Hull et al. Treating shimantic web syndrome with ontologies. In Proc. of
Advanced Knowledge Technologies workshop on Semantic Web Services, 2004.

8. D. Hull, R. Stevens, and P. Lord. Describing web services for user-oriented retrieval.
In Proc. of W3C Workshop on Frameworks for Semantics in Web Services, 2005.

9. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrat-
ing data in the AutoMed toolkit. AutoMed Technical Report 20, July 2003.

10. E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and
optimisation in the AutoMed data integration framework. In Proc. of 6th Baltic
Conference on Databases and Information Systems, 2004.

11. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02,
pages 233–246, 2002.

12. P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-weight architecture for user
oriented semantic service discovery. In Proc. of European Semantic Web Conference
(ESWC’05), pages 17–31, 2005.

13. P. Lord, S. Bechhofer, M. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble, and
L. Stein. Applying Semantic Web services to bioinformatics: experiences gained,
lessons learnt. In Proc. of Int. Semantic Web Conference, pages 350–364, 2004.

14. J. Madhavan and A.Y. Halevy. Composing mappings among data sources. In Proc.
of VLDB’03, pages 572–583, 2003.

15. P. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proc. ICDE’03, pages 227–238, March 2003.

16. P. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both
as view rules. In Proc. Workshop on Databases, Information Systems and Peer-to-
Peer Computing (at VLDB’03), Berlin, 2003.

17. P.J. McBrien and A. Poulovassilis. P2P query reformulation over Both-as-View
data transformation rules. In Proc. of Databases, Information Systems and Peer-
to-Peer Computing (at VLDB’06), page TBC. Springer, 2006.

18. B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid. Composing web services on
the Semantic Web. VLDB Journal, 12(4):333–351, 2003.

19. T. Oinn, M. Addis, J. Ferris, et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

20. B. Srivastava and J. Koehler. Web Service composition - current solutions and
open problems. In Proc. of Workshop on Planning for Web Services (ICAPS’03),
pages 28–35, 2003.

21. L. Stein. Creating a bioinformatics nation. Nature, 417:119–120, May 2002.
22. S. Thakkar, J.L. Ambite, and C. A. Knoblock. Composing, optimizing, and exe-

cuting plans for bioinformatics web services. VLDB Journal, 14(3):330–353, 2005.
23. L. Zamboulis. XML data integration by graph restructuring. In Proc. British

National Conference on Databases (BNCOD’04), pages 57–71, 2004.
24. L. Zamboulis, H. Fan, K. Belhajjame, J. Siepen, A. Jones, N.J. Martin, A. Poulo-

vassilis, S.J. Hubbard, S. Embury, and N.W. Paton. Data access and integration
in the ISPIDER proteomics grid. In Proc. Data Integration for the Life Sciences
(DILS’06), LNCS 4075, pages 3–18, 2006.

25. L. Zamboulis, N. Martin, and A. Poulovassilis. Bioinformatics service reconciliation
by heterogeneous schema transformation. Birkbeck TR BBKCS-07-03, March 2007.

26. L. Zamboulis and A. Poulovassilis. Using AutoMed for XML Data Transformation
and Integration. In Proc. International Workshop on Data Integration over the
Web (at CAiSE’04), pages 58–69, 2004.

27. L. Zamboulis and A. Poulovassilis. Information sharing for the Semantic Web - a
schema transformation approach. In Proc. International Workshop Data Integra-
tion and the Semantic Web (at CAiSE’06), pages 275–289, 2006.

