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Abstract. Since the emergence in the popularity of XML for data 

representation and exchange over the Web, the distribution of XML 

documents has rapidly increased.  Therefore it is a new challenge for the 

field of data mining to turn these documents into a more useful 

information utility.  We present a novel clustering algorithm PCXSS that 

keeps the heterogeneous XML documents into various groups according 

to the similar structural and semantic representations. We introduce a 

global criterion function CPSim that progressively measures the 

similarity between a XML document and existing clusters, ignoring the 

need to compute the similarity between two individual documents. The 

experimental analysis shows the method to be fast and accurate.  

 

 

1. Introduction 

 
 As the World Wide Web (WWW) becomes more prevalent for exchanging 

and discovering information, there is an increasing wealth of knowledge with the 

potential for finding information about anything. Moreover XML (eXtensible Markup 

Language) [35] has gained popularity for the representation and exchange of data over 

the Web. The explosive growth in XML sources presents an enormous opportunity and 

challenge for grouping XML data based on their context and structure for efficient data 

management and retrieval.  

 Clustering of XML documents facilitates a number of applications such as 

improved information retrieval, data and schema integration, document classification 

analysis, structure summary and indexing, data warehousing, and improved query 

processing [3, 25]. For example, the computation of structural similarity is a great 

value to the management of Web data. Many techniques for the extraction and 

integration of relevant information from Web data sources require grouping Web data 

sources according to their structural similarity [9, 11]. Efficient data management 

techniques such as indexing based on structural similarity can support an effective 

document storage and retrieval [25].  

 The clustering process is an unsupervised data mining technique that 

categories a large amount of data source without prior knowledge on the taxonomy 

[11].  Clustering has frequently been used on database objects, flat file data such as 

text files, and semi-structured documents like HTML.  However, clustering of XML 

documents is more challenging.  XML allows the representation of semi-structured and 

hierarchal data, containing not only the values of individual items but also the 

relationships between data items by tagging the pertinent information. Due to the 

inherent flexibility of XML, in both structure and semantics, clustering XML data is 
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faced with new challenges as well as benefits. Mining of structure along with content 

provides new insights and means into the process of clustering.  

 Consider parts of two documents: <craft>boat building</craft> and <craft> 

boat </craft>. The intended interpretation of the former is ‘occupation’, and of the 

latter ‘vessel’.  The similarity of the content does not distinguish the semantic intention 

of the tags.  Use of structural similarity in this case provides probabilities of a tag 

having a particular meaning. For example, the paths \occupation\design\craft and 

\vessel\type\craft assist to determine the appropriate interpretation for such 

homographic tags.  Hence, consideration of structure and content of documents in 

mining assist to clarify in case when two documents appearing similar are actually 

completely different.  

 A variety of clustering algorithms has recently emerged for XML document 

clustering, majority of them are built on pair-wise similarity between documents or 

schemas [4, 5, 8, 10, 15, 17, 21, 24].  The pair-wise similarity is measured using the 

local criterion function between each pair of documents to maximize the intra-cluster 

similarity and to minimize the inter-cluster similarity. Since each document is 

composed of many elements, the similarity between each pair of elements of two 

documents is measured and aggregated to form a similarity measure (distance) 

between two documents. A similarity matrix is generated that contains the similarity 

value for each pair of documents.  This matrix is the input for the clustering process 

using either the hierarchical agglomerative clustering algorithm or k-means algorithms 

[13].  Pair-wise similarity can be computationally expensive when dealing with large 

data sources due to the need of measuring similarity between each pair of data. 

 To reduce the computational efforts while maintaining the accuracy, we 

develop a global criterion function CPSim (common path coefficient) that measures 

the similarity between a XML data and existing clusters of XML data, instead of 

computing pair-wise similarity between each pair of data. The CPSim function 

includes the semantic as well as hierarchical structure similarity of elements. We then 

incorporate CPSim into progressively grouping the XML data.  

 This paper presents the novel Progressively Clustering XML by Semantic and 

Structural similarity (PCXSS) algorithm that quantitatively determines the similarity 

between heterogeneous XML documents by considering the semantic as well as 

hierarchical structure similarity of elements. We show the effectiveness of PCXSS 

with several experiments. The results indicate that PCXSS is much faster than the pair-

wise similarity based method and provides a good quality clustering solution as well. It 

is also not heavily influenced by thresholds such as the clustering and path similarity.   

 The next two sections briefly introduce the XML data and the PCXSS method. 

Sections 4 and 5 explain the pre-processing and clustering phases included in this 

method respectively. Section 6 details the empirical evaluation. Related work is 

covered in section 7. We finally conclude the paper in section 8. 

 

2.  XML Documents and schemas 

 
 XML is a flexible representation language. There are many varieties of XML 

material on the Web. Figure 1 illustrates the relationship between all XML materials. 

Let all textual objects be the set T.  Let web pages containing XML - to be called XML 

material for the remainder of this discussion - be X, such that X ⊆ T.  If D denotes the 

set of XML documents, then D ⊂ X, that is, XML material is not automatically classed 

as XML documents.  Strictly, web pages are classed as XML documents only if they are 

well formed, D = W, where W is the set of well-formed XML documents.  Additionally, 

V ⊆ W, where V is the set of valid XML documents. Finally, this allows the definition 

of ill-formed XML material, given as X ∩   W .  
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  T: textual web objects,  

  X: XML material, 

        : ill-formed XML material, 

  

  W: well-formed XML documents, 

  V: valid XML documents 

  

                                                                                                                                    
   

  Figure 1: Venn diagram of XML 

 

 An XML document has a schema that defines the data definition and structure 

of the XML document [1]. A XML schema provides a definitive description of the 

document, while document instances give a snapshot of what the document may 

contain. The schema includes what elements are (and are not) allowed; what attributes 

for any elements may be and the number of occurrences of elements; etc.  

 To be well-formed, a page’s XML must have properly nested tags, unique 

attributes (per element), one or more elements, exactly one root element, plus a 

number of schema-related constraints. Well-formed documents may have a schema, 

but they do not conform to it. Valid XML documents are a subset of well-formed XML 

documents. To be valid, an XML document must additionally conform (at least) to an 

explicitly associated schema. A schema for a document may be included as both 

internally and externally (located within the same file or a different file, respectively).  

 There are several XML schema languages, but only two are commonly used. 

They are DTD (Document Type Definition) and XML Schema or XML Schema 

Definition (XSD), both of which allow the structure of XML documents to be 

described and their contents to be constrained. DTD is considered limited as it only 

supports limited set of data types, loose structure constraints, limitation of content to 

textual, etc. To overcome the above limitations of DTD, XSD provides novel 

important features, such as simple and complex types, rich datatype sets, occurrence 

constraints and inheritance. Figure 2 illustrates a simple example of XML document 

and its corresponding DTD. Figure 3 shows a respective XML Schema. 

 

Figure 2: Example of a XML document and its respective DTD  

<?xml version=”1.0” encoding=”UTF-8”?> 

<Companies>          <!DOCTYPE Companies [ 

    <Company>     <!ELEMENT Companies (Company+)> 

 <Symbol> Eagle.img </Title>            <!ELEMENT Company (Symbol, Name, 

 <Name> EagleFarm </Name>                   Sector?, Industry, (Profile))> 

 <Industry> Dairy </Industry>   <!ELEMENT Profile (MarketCap,  

 <Profile>      EmployeeNo, (Address),  

        <MarketCap> 1000 </ MarketCap >  Description)>   

       <EmployeeNo> 20 </ EmployeeNo > <!ELEMENT Address (State,City?)> 

       <Address>    <!ELEMENT Symbol(#PCDATA)> 

  <State> QLD </State>  <!ELEMENT Name (#PCDATA)>  

       </Address>    <!ELEMENT Sector (#PCDATA)> 

       <Description> gdsfkls </Description> <!ELEMENT Industry (#PCDATA)> 

 </Profile>    <!ELEMENT MarketCap (#PCDATA)> 

     </Company>     <!ELEMENT EmployeeNo (#PCDATA)> 

 <!-- Some more instances -->   <!ELEMENT State (#PCDATA)> 

 ….     <!ELEMENT City (#PCDATA)> 

</Companies>     ]> 
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 Figure 3: Example of the respective XSD or the above document  

 

 Throughout this paper, we use the term ‘schema’ to express both XML-DTD 

and XML-Schema (XSD) unless clearly specified. Additionally, XML data is used to 

express both XML documents and schemas.  

 

3.  The PCXSS methodology: overview 

 
 Since the documents may be provided without schema, a method of clustering 

XML data should deal both documents and schema. It should work in both ways: when 

a document is standalone; and when a document comes with a schema.  

 Considering this, PCXSS has two phases:  Pre-processing phase and 

Clustering phase. The pre-processing phase first converts every XML document or 

XML schema (if provided) into a tree representation. This representation captures the 

hierarchical structure of XML data defined by its element and sub-element relationship.  

Every XML tree is then decomposed into structured path information called node paths 

(each path contains the node properties from the root node to the leaf node).  

 Figure 4 illustrates a high level view of the PCXSS methodology.  The 

clustering phase groups each XML document into an existing cluster with which it has 

the maximum CPSim or assigns it to a new cluster. This phase consists of two stages:  

structure matching and clustering.  Structure matching is to measure the structure 

similarity as well as semantic similarity of elements between a XML tree and existing 

clusters using their node paths.  The output of the structure matching stage is common 

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema> 
  <xsd:element name="Companies"  > 

     <xsd:complexType> 

        <xsd:sequence> 
            <xsd:element name=”Company" maxOccurs=”unbounded”> 

                <xsd:complexType> 

                    <xsd:sequence> 
                        <xsd:element name="Symbol" type="xsd:string"/> 

                        <xsd:element name="Name" type="xsd:string"/> 

                        <xsd:element name="Sector" type="xsd:string"/> 
                        <xsd:element name="Industry" type="xsd:string"/> 

             <xsd:element name="Profile" > 
            <xsd:complexType> 
                     <xsd:sequence> 

        <xsd:element name="MarketCap" type="xsd:string"/> 

     <xsd:element name="EmployeeNumber" type="xsd:unsignedInt"/> 
     <xsd:element name="Address" > 

          <xsd:complexType> 

                                       <xsd:sequence> 
                                   <xsd:element name="State" type="xsd:string"/> 

                                  <xsd:element name=”City" type="xsd:string"/> 

             </xsd:sequence> 
                             </xsd:complexType> 

                   </xsd:element> 

       <xsd:element name="Description" type="xsd:string"/> 
     </xsd:sequence> 

                        </xsd:complexType> 
                        </xsd:element> 

        </xsd:sequence> 

                   </xsd:complexType> 
                 </xsd:element> 

             </xsd:sequence> 

         </xsd:complexType> 
   </element> 

</xsd:schema> 
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path coefficient (CPSim) between a tree and a cluster.  The CPSim is used in the 

clustering stage to select the best cluster for assigning the new tree to.   

 

Figure 4. PCXSS methodology 

 

4.  PCXSS Phase 1: pre-processing 
  

 This phase sets the way for the clustering process.  The representation and 

pre-processing of XML data in this phase is important in determining the structural 

similarity between a XML data and existing clusters.  There are two types of pre-

processing in the PCXSS method: pre-processing of element names and pre-processing 

of XML data.  
 

4.1. Pre-processing of element names 
 

 With such a heterogeneous and flexible environment like the web, XML tags 

often can be a combination of lexemes (e.g. SigmodRecord, Act_Number), a single 

letter word (e.g. P for person), a preposition or a verb (e.g. related, from, to) that 

makes them syntactically different.  Therefore, to improve the matching between node 

paths, pre-processing of element names is necessary.  Element names in PCXSS are 

pre-processed in two steps: 

1. Tokenization – the element name is parsed into a set of tokens using delimiters 

such as punctuation, uppercase or special symbols.  E.g. PONumber � {P, O, 

Number} 

2. Elimination – tokens that are not letters or digits will be eliminated, as well as any 

extraneous punctuation.  E.g. Act_Number � {Act, Number} 

 The tokens form a token set for each element. A synset for each token is 

generated by retrieving the synonyms from WordNet [6]. WordNet is a thesaurus in 

which each word token is associated with corresponding alternative meanings, known 

as synonym set or synset. The retrieval of the synonym set (e.g. movie → film) is done 

in the pre-processing phase because the cost of accessing the WordNet [6] in the 

clustering phase is too expensive. The synset includes all the synonyms of each token 

by only going down the first synset level of WordNet, thus reducing the time of 

accessing WordNet.   

 Invoking WordNet to measure the semantic similarity in PCXSS can make 

the clustering process slow. To improve the efficiency while using WordNet we imply 

two strategies to invoke WordNet as less as possible.  Firstly, we only create the 

WordNet dictionary once in the pre-processing phase and leave the dictionary open 

until the clustering is finished. Secondly, we use a hash table to store the element 

names that PCXSS has already searched in previous runs. Every time, when a new 

word is searched, the word is first checked in hash table before it starts invoking 

WordNet. The Principle is obvious; search a key in Hash table is much less expensive 

than search a word in WordNet. 
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4.2. Pre-processing of XML data 
 
 The next step is to transform the XML data sources into XML tree 

representations.  Each XML is parsed and modelled as labelled tree. The parsing of a 

XML document to a tree is straightforward. While parsing, the multiple instances of 

values are ignored for an element. This is redundant information for the presentation of 

a structure and, moreover, the occurrence of elements is not important for clustering in 

most cases. The parsing of a XML Schema Definition (XSD) document requires some 

extra processing. XSD consists of three compositor elements: XML:sequence, 

XML:choice, and XML:all.  The functions of the XML:sequence and XML:choice are 

equivalent to an AND, and OR operator, respectively.  These compositor elements are 

ignored in the matching process as they do not facilitate much in measuring the 

similarity between node paths [18]. The attribute of an element is modelled exactly the 

same way as its child elements with the minimum occurrence and maximum 

occurrence assigned to 1.  Each node in the tree contains its properties such as name, 

data type, minimum occurrence and maximum occurrence (cardinality).  It also 

includes the synset of the node’s name which is obtained in the previous step.   

 Figure 5 illustrates the respective XML tree representation of the schema 

shown in Figure 3.  

 
Figure 5. XML tree representation 

 

4.3. Node paths representation 

 
 The XML tree is now decomposed into path information called node paths.  A 

node path is an ordered set of nodes from the root node to a leaf node. For example, 

the node path for the node “Symbol” in Figure 5 equals the set {Companies, Company, 

Symbol}.  Textually, a node path can be expressed with x_path syntax (e.g. 

Companies/ Company/ Symbol) that is shown in Figure 6.  
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Companies/Company/Symbol 
Com Companies/Company/Name 
Companies/Company/Industry 

Companies/Company/Profile 
Companies/Company/Profile/MarketCap 

Companies/Company/Profile/EmployeeNumber 

Companies/Company/Profile/Description 
Companies/Company/Address/State 

Companies/Company/Address/City 

 

Figure 6. Node paths 

 

5.  PCXSS Phase 2: clustering 

 
 The node paths, obtained in the pre-processing phase, are used in the 

clustering phase to measure the degree of structural and semantic similarity between 

XML data. The proposed clustering algorithm does not require to measuring the 

similarity between each pair of trees (a set of node paths). It rather progressively 

measures the similarities between a new XML data and existing clusters by using 

common path coefficient (CPSim).    

 CPSim is determined in the first stage of clustering, i.e., structure matching.  

The structure matching stage measures the structural similarity between XML data and 

existing clusters by measuring the degree of similarity of nodes between node paths.  

The node similarity is determined by measuring its properties such as its name, data 

type and cardinality constraints.  The output of the structure matching stage is a 

common path coefficient (CPSim) ranging from 0 to 1, 0 indicates that they have 

nothing in common and 1 indicates that the XML tree and the cluster are logically 

identical.  The common path coefficient CPSim is used in the clustering stage to group 

XML documents progressively. Each XML document is grouped into an existing 

cluster that have the maximum CPSim or to a new cluster. 

 

5.1. Structure matching stage 

 
Figure 7 shows a high level view of the node paths matching stage.  To measure the 

degree of structural similarity between a tree and existing clusters, node paths are used.  

Each node in a node path of a tree is matched with the node in a node path of existing 

clusters, and then aggregated to form the node path (or structure) similarity.  The node 

similarity is determined by the similarity of its element name, data type and constraint. 

 

 
Figure 7. Structure matching 

 

5.1.1. Name matching. Due to the flexibility in the design of XML documents, similar 

but unidentical elements can represent the same notion. Element names can be 
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semantically similar (if they are in a semantic tag similarity relationship, e.g., person 

or people) or syntactically similar (if they are in a syntactic tag similarity relationship, 

e.g., edit or xedit).  

 Accordingly, PCXSS uses semantic and syntactic measures to calculate the 

degree of similarity between a pair of names.  Semantic measure considers the 

meaning of the nodes’ name to determine the degree of similarity. For this measure to 

be possible, WordNet [7] is used in the pre-processing phase to form a linguistic set 

(synset). In this phase, we find a common element in the synsets of two names.  

 Syntactic measure considers the names syntax to determine the degree of 

similarity. It is good for identifying abbreviation and acronym words that are most 

commonly used in XML data. Sometime, however, it can lead to mismatches of 

element names, e.g, ‘hot’ and ‘hotel’. To reduce the mismatches of element names, we 

use string edit distance and n-gram methods to measure the syntactic relationship 

between names. The average of both methods is used to measure the degree of 

syntactic similarity.   

 String edit distance is based on the cost of transforming one label into another 

label by using the editing operations (insertion, deletion, or substitution) [29].  It is 

defined as: 









−=

)}(),(max{

),(tan_
1),(

21

21
21

tlengthtlength

ttcedisedit
ttsim

 

where edit_distance (t1 , t2)  denotes the string edit distance function between two 

strings t1 and t2.  The n-gram method counts the same sequences of n characters 

appearing between two words [10].  PCXSS uses 2-grams (di-grams). An example of 

2-grams for the word ‘customer’ is cu, us, st, to, om, me, er.   It is defined as: 

)(

2
),( 21

BA

C
ttsim

+
=

 

where A is the number of unique n-grams in the first word, B the number of unique n-

gram in the second word, and C is the number of unique n-grams common between 

two words.  For example, let the two tokens be customer and customer1, then the 

syntactic similarity between two tokens is 0.933: 

933.0
)87(

)7(2
),( 21 =

+
=ttsim

 

 By using both string edit distance and n-gram methods, PCXSS is effective in 

matching acronyms and words with syntactic differences (e.g. PO and PO1).  

     
1. Function sim (t1, t2)   

2.       if either t1 or t2 synset is empty /*Syntactic 

Relationship*/ 

3.           sim = (edit_distance(t1, t2)   + n-gram(t1, t2) )/2; 

4.       else  /* Semantic Relationship*/ 

5.           sim= SemanticSim(t1, t2)   

6.       end      
7.       if sim ≥ threshold return sim; 

8.       else return 0; /* No match */ 

9. end 

Figure 8. Measuring similarity between two name tokens 

 

 Figure 8 shows the pseudo code to combine the semantic and syntactic 

similarity values. The semantic relationship is first applied to exploit the degree of 

similarity between two tokens.  If a pair of tokens is semantically matched then the 
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semantic similarity is returned 0.8. If there exists a case where semantic relationship 

between two tokens can not be measured, syntactic relationship is then applied.   

 In the pre-processing phase, each element name is decomposed into a set of 

tokens. Thus, each element name is defined as a set of element name tokens T. The 

name similarity between two element names, name similarity coefficient (Nsim) is 

defined by the average of the best similarity of each token with a token in the other set:  
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where |T1| and |T2| are the length of the token sets for words N1 and N2, respectively. 

The output of Nsim is in the range [0, 1]. High values correspond to similar strings (i.e. 

1 indicates identical strings), whereas low values correspond to different strings.   

 

Example 1: Consider two elements names N1: author_fname and N2: writerName of 

two schemas. Tokens are derived T1: {author, fname} and T2: {writer, name}. sim (t1, t2) 

is measured between each pair of tokens. (the calculation below does not show the pair 

of tokens where the sim is equalled to 0): 

sim (author, writer) = 0.8 (using the semantic similarity measure) 

sim (writer, author) = 0.8 (using the semantic similarity measure) 

 sim (fname, name) = 0.83 (using the average of string edit and n-gram functions 

        because fname does not have synset) 

sim (name, fname) = 0.83 (using the syntactic similarity measure) 

 

Name Similarity Coefficient: (Nsim): 815.0
22

)83.08.0()83.08.0(
=

+

+++  

 

5.1.2. Data type matching. Data type similarity can make a small contribution in 

determining node similarity while comparing XSDs.  In XSD only the leaf node has 

data type.  XSD supports 44 primitive and derived built-in data types such as string, 

Boolean, token, language etc. Data type similarity coefficient (Tsim) is ranged between 

[0, 1].  Tsim is derived from a type similarity table defined by the system user [26].  

Table 1 shows a portion of the type similarity table. 

 

Table 1. Type similarity table   
Type1 Type2 Tsim 

String String 1 

String Date 0.2 

Date String 0.5 

Decimal Float 0.8 

Float Decimal 0.6 

 

 

Table 2. Cardinality constraint compatible table  
 * + ? None 

* 1 0.9 0.7 0.7 

+ 0.9 1 0.7 0.7 

? 0.7 0.7 1 0.8 

None 0.7 0.7 0.8 1 

 

5.1.3. Constraint matching. Another property of the node that also makes a small 

contribution in determining node similarity in XSDs is its cardinality constraints.  The 

minOccurs and maxOccurs are used to define the minimum and maximum occurrence 

of an element node that may appear in the XML schema in XSDs.  Authors of XClust 
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[18] have defined a cardinality table (Table 2) for DTD constraints. We show the 

mapping between DTD and XSD cardinality operators in Table 3 and adapt the 

cardinality constraint compatibility. The constraint similarity between two nodes is 

defined by constraint similarity coefficient (Csim), ranged between [0, 1]. 

 

Table 3. Cardinality mapping between XML and DTD 
Cardinality 

Operator 

minOccurs maxOccurs No. of child element(s) 

[none] 1 1 One and only one 

? 0 1 Zero or one 

* 0 Unbounded Zero or more 

+ 1 Unbounded One or more 

 

5.1.4. Node Matching. Node matching measures the similarity between the nodes in 

node paths by considering Name similarity (Nsim) of each node. It also includes data 

type similairty (Tsim) and constraints similarity (Csim) between two nodes in the case 

of XSDs.  Node similarity is defined as follows:  

  )max,(min*),(*),(* 3212211 OccurOccurCsimwtypetypeTsimwnamenameNsimwNodeSim ++=  

where weights w1 + w2 + w3=1.   

 The weight determines the importance of the measure in determining the node 

similarity. The default value is set as 1 for w1 (and 0 for other weights) in case of XML 

documents. Default values are 0.8, 0.1 and 0.1 for w1, w2 and w3, respectively in case 

of XSDs. The element name is the crucial information in determining the node 

similarity, so it has been assigned with the highest weight.   

 The degree of similarity between nodes is monitored by node similarity 

threshold.  This threshold determines whether the two nodes are similar. If the 

NodeSim of two nodes exceeds the node similarity threshold then it is used to 

determine the path similarity between two node paths.   

 

Example 2: Let us continue the same two elements names N1: author_fname and N2: 

writerName as in Example 1. We have already derived the Nsim between them as 

0.815.   The other constraints showing the min occurrence, max occurrence, data type 

and synset for these names are as follows:  

1. author_fname (1, 1, string, synset) 

2. writerName (1, 1, string, synset) 

Considering the weights for Nsim, Tsim and Csim as 0.8, 0.1 and 0.1 respectively, the 

accumulated similarity of these two nodes (or tags or element names) is derived at: 

 NodeSim =  0.8 * 0.815 + 0.1 * 1 + 0.1 * 1 = 0.852 

 

5.1.5. Structure Similarity: Putting it all together. The frequency of common nodes 

appearing in two XML structures is not sufficient to measure the similarity of XML 

data. XML is different from other web documents such as HTML because it contains 

the hierarchical structure and relationship between elements.  The order of where the 

element resides in the structure is important in determining the structural similarity 

between XML trees and existing clusters.  

 The structural similarity between two XML data is measured by first finding 

the common nodes between two paths and then finding the common paths between 

two trees. The structure matching process can be advanced by starting at root node or 

starting at leaf node between two paths. The top-down approach starting the mapping 

at the root node misses the matching of lower-level descendants, if the higher level 

elements are not matched [23]. On the other hand, the bottom-up approach [5, 18, 22] 

starting the mapping at the leaf node is able to detect more similar elements within 

structures, however, it is more computation expensive than top down approach.  
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 PCXSS uses bottom-up approach because the main focus of PCXSS 

methodology is to cluster a collection of heterogeneous XMLs with varied structures.  

Structure matching in PCXSS is a process of determining the degree of structural 

similarity between XML trees and existing clusters using node paths.  

 

Common nodes finding. The degree of similarity between two node paths, defined as 

path similarity coefficient (Psim), is measured by considering the common nodes 

coefficient (CNC) between two paths.  The CNC is the sum of NodeSim of the nodes 

between two paths P1 and P2. The pseudo code for computing the CNC is shown in 

Figure 9. Psim of paths, P1 and P2 is the maximum similarity of the two CNC functions 

(P1 to P2 and P2 to P1) with respect to the maximum number of node in both paths, P1 

and P2, defined as:   

),(

),(),,((
),(

21

1221
21

PPMax

PPCNCPPCNCMax
PPPsim =

 

 

Function: ),( 21 PPCNC  

Sim:= 0; for each 
in 1P∈  

   while j not end of
2P  length 

        if(NodeSim(
in ,

jn )) > threshold (defined by user)                        

              Sim += NodeSim(
in ,

jn ) 

              j-- 

              break from ‘While’ loop 

        else 

             j-- 

       end if 

   end while 

end for 

return Sim 

Figure 9. The CNC algorithm 

 

 

 
 

Figure 10. Example of CNC matching 

  

 Figure 10 shows an example of traversing through this CNC function. The 

Path1 1/2/3/4/5/6 contains 6 element names showed as numbers for convenience. Path 

2 1/2/4/5/6 contains 5 elements. The following steps are iterated when calculating the 

CNC function:  
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1. Start at the leaf element of both paths (j=5, i=4).  If the NodeSim coefficient of the 

leaf elements exceeds a threshold (a match) then increase Sim (Figure 9) with the 

NodeSim value and go to step 2 else go to step 3. 

2. Move both paths to the next level (j--, i--) and start element matching at this level.  

If the NodeSim coefficient of these elements exceeds a threshold (a match) then 

increase Sim with the NodeSim value and repeat step 2 else go to step 3. 

3. Move only path 1 to the next level (j--) then start element matching in the original 

level of path 2 (i) to the new element of path 1.   

 

 It is important to note that CNC( P1, P2) is not equal to CNC(P2,P1).  If the 

leaf element from P1 can not be found in P2 then no further matching requires. In some 

case, one path may be a sub path of the other.  If P2 is a sub path of P1, and if the leaf 

element can not be found in P2 then the CNC(P1, P2) returns 0 (Figure 11(a)) however 

CNC(P2, P1) returns 0.83 (Figure 11(b)).   

  Thus, both CNC( P1, P2) and CNC(P2,P1) are computed and the maximum of 

the two is used to measure the degree of similarity between the two paths. 

 

 

(a) 

 

 (b) 

Figure 11. Example of path matching 

  

Psim is monitored by a path similarity threshold.  This threshold determines 

whether the two node paths are similar.  If the Psim of two node paths exceeds the path 

similarity threshold then it is used to determine the structural similarity between the 

trees and existing clusters.  The cost of computing two CNC functions can be 

expensive. To reduce the processing time, the result of the NodeSim for each pair of 

nodes is saved and is reused during the process of calculating the CNC between two 

XML trees.  

 

Common paths finding. PCXSS measures common paths (1) between two trees and (2) 

between a tree and a cluster.   

 

Tree to Tree Matching: Tree to tree matching is the matching between a new tree and a 

cluster that contains only one tree.  Tree to tree matching is defined as: 
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where CPSim is the common path similarity between two XML trees.  The CPSim of 

trees, Tree1 and Tree2 is the sum of the best (maximum) path similar coefficient (Psim) 

of paths, Pi and Pj with respect to the maximum number of paths, |TPath1| and 
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|TPath2| of trees, Tree1 and Tree2, respectively.  The clustering process in PCXSS 

works on the assumption that only one path from Tree1 matches with one path in Tree2.  

Thus, it only selects the maximum path similarity coefficient (Psim) between each pair 

of paths of Tree1 and Tree2. 

 
Tree to Cluster Matching: Tree to cluster matching is the matching between a new tree 

and the common paths in a cluster.  The common paths are the similar paths that are 

shared among the trees within the cluster (normally a cluster must contain at least 2 or 

more trees in the cluster to have the common paths or else tree to tree matching is 

required).  Initially, the common paths are derived in tree to tree matching.  Then every 

time a new tree is assigned to the cluster, the similar paths are added to the cluster if 

paths are not already in the cluster.  Tree to cluster matching is defined as: 
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 Similar to tree to tree matching, CPSim between a tree and a cluster is the 

sum of the best (maximum) path similar coefficient (Psim) of paths, Pi and Pj with 

respect to the number of paths, |TPath| in Tree.   

 

Example: Let us consider an example to compute CPSim using tree to tree matching. 

 

Tree1 
 

P11:Companies(1,1,null,synset)/Company(1,1,null,synset)/Symbol(1,1,string,synset) 
P12:Companies(1,1,null,synset)/Company(1,1,null,synset)/Name(1,1,string,synset) 

P13:Companies(1,1,null,synset)/Company(1,1,null,synset)/Profile(1,1,null,synset)/ 

                                                                                                EmployeeNumber (1, unbound,string,synset) 
P14:Companies(1,1,null,synset)/Company(1,1,null,synset)/Profile(1,1,null,synset)/  

                                                                                                                Description(1,1,string,synset) 

P15:Companies(1,1,null,synset)/Company(1,1,null,synset)/Address1(1,3,string,synset) 

Tree2 

 
P21:Companies(1,1,null,synset)/Company(1,1,null,synset)/Symbol(1,1,string,synset) 

P22:Companies(1,1,null,synset)/Company(1,1,null,synset)/Name(1,1,string,synset) 

P23:Companies(1,1,null,synset)/Company(1,1,null,synset)/Profile(1,1,null,synset)/ 
                                                                                                       EmployeeNo(1,unbound,string,synset)  

P24:Companies(1,1,null,synset)/Company(1,1,null,synset)/Profile(1,1,null,synset)/  

                                                                                                      Description(1,1,string,synset)                                                                                                                                   
P25:Companies(1,1,null,synset)/Company(1,1,null,synset)/Address(1,1,string,synset) 

 

After applying the CNC algorithm, the following shows the best PSim for each pair of 

node paths: 

 

PSim(P11,P21) = Max(CNC(1+1+1),CNC(1+1+1))/ Max(3,3) = 1 

PSim(P12,P22) =Max(CNC(1+1+1),CNC(1+1+1))/Max(3,3) = 1 

PSim(P13,P23) = Max(CNC(0.6+1+1+1),CNC(0.6+1+1))/Max(4,4)= 0.9 

PSim(P14,P24)  = Max(CNC(1+1+1+1),CNC(1+1+1+1))/Max(4,4) = 1 

PSim(P15,P25) =Max(CNC(0.764+1+1),CNC(0.764+1+1))/Max(3,3) = 0.92 

 

These PSim are then used to compute CPSim using tree to tree matching. 

 

CPSim(Tree1,Tree2):  

(PSim(P11,P21)  + PSim(P12,P22) + PSim(P13,P23) + PSim(P14,P24) + PSim(P15,P25))/ 

Max(5,5) = 0.964 
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5.2. Clustering stage 
  

 PCXSS is motivated by incremental hierarchical clustering methods.  It first 

starts off with no cluster.  When a new tree comes in, it is assigned to a new cluster.  

When the next tree comes in, it matches with the existing cluster.  If they match then 

the tree is assigned to that cluster else it is assigned to a new cluster.  The number of 

cluster is generated progressively at run-time according to the data set. 

 Figure 12 shows the algorithm for the clustering process.  Initially, there is no 

cluster.  The first tree, T1 is assigned to a new cluster, C1 (step 1). When the next tree, 

Ti comes in; CPSim is computed between Ti and the existing cluster, Cj (steps 5 to 7).   

Ti is assigned to Cj if Cj has the largest CPSim with Ti and CPSim exceeds the 

clustering threshold (steps 9 and 10). Otherwise assign Ti to new cluster (step 12). The 

node paths of Ti (and Tj if tree to tree matching occurs) that are used to compute the 

CPSim are then added to Cj  if Ti is assigned to Cj (step 11). The node paths in Cj are 

referred to as common paths.  The common paths in Cj are then used to measure the 

CPSim between Cj and new trees.  Since the common paths (instead of all the node 

paths of the trees held within a cluster) are used to compute CPSim with new trees, the 

computation time reduces significantly.  In addition, the cluster contains only the 

distinct common paths (duplicate paths are removed from the cluster). 

 

1. assign the first tree T1 to a new cluster C1 

2. while tree file has more 

3.     read the next tree (i.e. a set of node paths, 

denoted by Ti);  

4.     while cluster C  has more 

5.         if Cj contains only one tree, Tj  

6.            compute sim =CPSim(Ti, Tj); 

7.         else compute sim=CPSim(Ti, Cj) end if   

8.     end while  

9.     if Max(sim) >= clustering threshold 

10.           assign Ti to Cj ; 

11.           add node paths to Cj ; 

12.     else assign Ti to new cluster end if 

13. end while 

Figure 12. PCXSS clustering process 

  

 

6. Empirical evaluation and discussion 
 

 Experiments are conducted on both XML documents and XML schema 

definition documents.  The test data is carefully selected to ensure that the XMLs and 

XSDs are derived from the same and different domains and that each has distinct 

structure. To show the efficacy of PCXSS, the generated clustering solutions are 

evaluated against wCluto clustering solution [30].  wCluto is a pair-wise hierarchical 

clustering algorithm. In order to use wCluto, PCXSS first generated a matrix 

containing the CPSim (common path similarity) coefficient between each pair of trees 

in the data source using path similarity threshold of 0.7.  The pair-wise similarity 

matrix is then fed into wCluto to perform the clustering process.   

  

6.1 Scalability Evaluation  

 

 The computation time for a pair-wise similarity between XML trees is at least 

O(m
2
), where m is the number of elements in XML data that are used for the clustering.  
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This is infeasible for a large amount of data set.  PCXSS measures  the structural 

similarity between a XML tree with existing clusters, therefore the time complexity of 

PCXSS method is O(m*c*n), where m is the number of elements in XML data; c is the 

number of cluster; and n is number of distinct elements in clusters.   

 The documents grouped into a cluster should have similar structures and 

elements. So the number of distinct elements in clusters should always be less than the 

distinct elements in documents. Therefore, if the number of clusters is less than the 

number of documents (that is usually the case) the time cost is linear to the number of 

documents. The good scalability of this method is confirmed by the graph in Figure 13. 

The process time taken to complete the clustering by the PCXSS and by the wCluto 

pair-wise similarity method is compared in Figure 13 using the XSD dataset (Table 4). 

The result shows that the increment in time with the increase of the size of the data set 

is significant less with PCXSS in comparison to wCluto.  

 

 
Figure 13. Clustering processing time for the wCluto pair wise method vs. PCXSS 

 

   

Table 4. Datasets 

Domain No. of XSDs No. of node Nesting 

level 

Car 67 76-89 2-4 

Play (Shakespeare) 31 19-34 2-6 

HITIS Message 17 17-304 3-17 

Enrolment 29 33-102 2-11 

Tei Site 50 29-103 2-10 

Auction 4 32 3-5 

NASA Record 93 85-129 2-10 

SIGMOD Record 35 17-28 2-8 

Time Card 4 13-54 3-7 

Stock Plan 

Participant 

2 36 2-5 

Application 

Acknowledgement 

5 35-46 2-9 

Payroll Instruction 3 24-32 2-7 

Profile 5 13 3-5 

Linux Document 25 21-121 3-13 

 

 

6.2 Quality Evaluation with XSD Dataset  

   

 The validity and quality of the PCXSS clustering solutions are verified using 

two common evaluation methods: (1) the intra-cluster and inter-cluster quality and (2) 
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FScore (combination of recall and precision) measure. The major characteristics of the 

XSD data set are shown in Table 4. Majority of them are derived from the 

Wisconsim’s XML data bank [27]. Figure 14 shows the average XSD similarity of 14 

XSD domains categories. It shows that XSDs are much different even though they 

come from the same domain, and the data is a good example set for clustering.   

  

 
Figure 14. Average schema similarity coefficient 

 

 
Figure 15. FScore measure 

 

 
Figure 16. Intra-cluster Similarity 

 

 
Figure 17. Inter-cluster similarity 
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 Figures 15, 16 and 17 show the FScore, intra-cluster and inter-cluster 

similarity of the dataset respectively over the 20 different clustering solutions of 

PCXSS and wCluto. These results show that the performance of PCXSS is equivalent 

to wCluto, when the cluster number research to its optimal (in this case cluster number 

19). PCXSS determines the optimal number of clusters during its processing, that is 

why, its performance is not as good as wCluto for the solutions before the optimal 

number of clusters. The results indicate that the incremental clustering algorithm 

PCXSS is able to achieve the similar quality results as the pair-wise clustering 

algorithms in much less time.  

 

Sensitivity testing: PCXSS also examines the sensitivity in computing the common 

path similarity coefficient (CPSim). During the experiment on the sensitive of PCXSS 

using the syntactic relationship, it has been discovered that some results can produce a 

worse clustering solution if we involve only one syntactic relationship, i.e. string edit 

distance or n-gram. This shows that element name matching using syntactic 

relationship may lead to mismatches of element name that may cause a poorer 

clustering solution.  However, the effective use of these measures can improve the 

quality of clustering solution. It can be seen from Figures 18 and 19 that the semantic 

relationship plays a more important role than syntactic relationship. 
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Figures 18. Effect of syntactic relationships on clustering 
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Figures 19. Effect of semantic relationships on clustering 

 

 A number of experiments have also been carried out to evaluate the 

performance of PCXSS’s clustering solution using different clustering and path 

similarity thresholds.  The clustering threshold determines which clusters should the 

new XML be put into or a new cluster is needed.  On the other hand, path similarity 

threshold determines the degree of similarity between two paths.  It has been 

ascertained from the experiments (Figure 20) that the clustering and path similarity 

thresholds have an inverse relationship, meaning the higher the cluster thresholds, the 
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better the clustering solution if the path similarity threshold is set to a low value and 

vice versa. In Figure 20, each line represents the value of the clustering threshold on 

which the clustering solution was found with various path threshold values.  
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Figure 20. The effect of clustering and path similarity thresholds 

 

6.3 Evaluation with XML Dataset  
 

 Four movie data sets and XMLFile data set have been used to conduct the 

clustering of XML documents. The movie data sets are from INEX 2006 document 

mining challenge (http://inex.is.informatik.uni-duisburg.de/2006/). Each movie set 

contains 4818 XML files. The four versions (m-db-s-0, m-db-s-1, m-db-s-2 and m-db-

s-3) are the result of a series of transformation for adding the complexity in clustering 

process as we move up.  The original movie data set has 190-200 distinct labels (tags).  

 The XMLFile data set contains 460 XML documents taken from the 

Wisconisn’s XML data bank and the XML repository [31, 32]. The documents are 

from various domains such as (Movie (#Documents: 74), University (22), Automobile 

(208), Bibliography (16), Company (38), Hospitality message (24), Travel (10), Order 

(10), Auction data (4), Appointment (2), Document page (15), Bookstore (2), Play (20), 

Club (12), Medical (2), and Nutrition (1). The number of tags varies form 10 to 100 in 

these sources. The nesting level varies from 2 to 15. Majority of these domains 

consists of a number of different documents that have structural and semantic 

differences. 

 

 Table 5. PCXSS performance over various XML documents 

 

Data set Entropy Purity Fscore Time 

XMLFiles 0.021 0.977 0.965 45 mins 

m-db-s-0-(1) 0.318 0.575 0.623 67 mins 

m-db-s-0-(2) 0.334 0.589 0.637 66 mins 

m-db-s-0-(3) 0.325 0.575 0.623 70 mins 

m-db-s-0-(4) 0.328 0.579 0.629 68 mins 

m-db-s-0-(5) 0.337 0.577 0.628 67 mins 

m-db-s-1 0.328 0.589 0.625 72 mins 

m-db-s-2 0.322 0.576 0.624 74 mins 

m-db-s-3 0.319 0.575 0.624 79 mins 
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 Incremental clustering algorithms are criticised for their sensitivity towards 

the order of inputs. To test the sensitivity of the PCXSS method towards the input 

order, we represented movie data set (m-db-s-0) in many ways such as SortByName, 

ReversedByName, SortByMiddleName, FirstQuarterByName and 

LastQuarterByName. 

 A good clustering solution has low entropy, high purity and high Fscore 

values.  Results in Table 5 show a good performance of PCXSS on XMLFiles. The 

various representations of m-db-s-0 do not significantly alter the quality of clustering 

results. This shows that PCXSS is not sensitive towards the order of input data.  

It is interesting to see that PCXSS performed almost evenly for all movie data 

sets, even though; the transformations have been done so that each series should be 

more difficult to cluster than the preceding. E.g., the second movie data set classes 

have a higher overlap than for the first one to make the clustering more difficult. The 

insignificant impact on the clustering solutions shows the strength of the clustering 

criteria and the approach that PCXSS adapts for clustering.  

 The contingency matrix for all the movie data sets shows that PCXSS can 

group most documents belonging to the same class into one cluster; it seldom puts 

them into separate clusters. However, it sometimes groups documents from several 

classes into one cluster because of their higher level similarity, reflecting the 

somewhat lower values obtained for Purity and Fscore and higher value obtained for 

Entropy. There may be many reasons behind this. Firstly the element labels of the 

movie data sets do not have semantic meanings. They are strings of characters to 

represent the overlapping complexity such as AB, ACB etc.  Also, due to the nature of 

PCXSS, documents are not compared against each other, but, each document is 

compared against the existing clusters. Additionally, PCXSS does not only consider 

the parent-child relationship to measure the structural similarity, but also include the 

ancestor relationships of the data. This makes it more appropriate for clustering the 

heterogeneous data. Therefore, PCXSS performs excellent in heterogeneous 

environment like XMLFiles, but not as good as in the homogenous environment data 

such as movie data sets.  

 

 

7. Related work 

 
 Measuring the structural similarity and clustering can be approached at two 

levels: structure level and element level.   
 Structure level: Many approaches exploit the clustering of XML data at the 

structure level by taking into account the structure of the XML data.  [4, 28] measure 

the structural similarity among XML document using tree edit distance.  [28] suggests 

that although XML documents are derived from the same XML schema (DTD) having 

different size due to optional and repeatable elements will not be recognized to be the 

same by using normal edit distance.  Thus, they develop an edit distance metric that is 

more indicative of this notion of structural similarity.  Whereas, [4] suggests the usage 

of tree structural summaries to improve the performance of the distance calculation.  

This approach extracts the structural summaries from a tree by eliminating the nested-

repeated node (where the name of the non-leaf node is the same as its ancestor) and 

repeated node (node whose path starting from the root down to the node itself).   

 Tree edit distance is not adopted in PCXSS, even though PCXSS 

methodology also represents XML data as tree representations.  Tree edit distance 

method is to measure the structural similarity between two trees; however, PCXSS 

computes the structural similarity between intentional representations of a set of trees.  

The matching criterion in PCXSS is it computes the structural similarity between trees 

by taking into account the importance of semantic of the node’s name and other 
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properties such as cardinality constraint and data type in the case of XSDs.  Element 

name plays an important role in exploiting the semantic of a node; as the result, 

relabelling from one node to another semantic unrelated node will cause an undesirable 

result.   

 [8] takes a different approach, they do not rely on tree or graph matching 

algorithms.  They represent the XML documents as a time series in which each 

occurrence of a tag corresponds to a given impulse.  They also take into account the 

order in which the tags appear in the document.  They analyse the frequencies of 

corresponding Fourier transform to measure the degree of similarity between 

document structures.  This approach only considers the structure of the document for 

clustering.  It does not involve the semantic meaning of different elements from 

different DTDs.  In some cases, documents containing the same information may not 

be considered the same because of their difference in structure.   

 Furthermore, S-GRACE [21] does not compute the distance between two 

trees but compute the distance between s-graphs by measuring the common set of 

nodes and edges appearing in either XML documents.  It then applies ROCK method 

to exploit the links between the s-graphs in selecting the best of clusters to be merged. 

This approach is based on local criterion functions, meaning it needs to compute the 

distance between all pair initial s-graphs that requires O(m
2 

) time, where m is the 

number of distinct s-graphs.   

 To avoid the lost of structure information from the XML documents, many 

techniques such as the one proposed in [17, 19, 20] have utilized the idea of sequential 

pattern mining to extract common paths from a collection of XML trees to measure the 

structural similarity.  These approaches only extract the common or maximal paths to 

measure the structural similarity but they do not address how these can be used for the 

clustering process.  [24] goes a bit further than the above approaches, it use sequential 

pattern mining to extract the frequent paths between XML schemas.  It then uses the 

frequent paths to calculate the similarity between XML schemas; a similarity matrix is 

generated.  It uses wCluto to cluster the XML schemas based on the similarity matrix.   

The main purpose of [24] approach is to generate a similarity matrix that can be used 

in the clustering process.  However, the generation of the similarity matrix may take a 

bit of time since it is based on pair-wise similarity approaches.   

 Developing further, [15] uses sequential pattern mining to also extract the 

frequent paths from the XML documents, assuming that an XML document as a 

transaction and frequent structure of documents as the items of the transaction.  It then 

uses CLOPE [34] and Large Items [12] clustering methods for transaction data to 

cluster a collection of XML documents.  Using sequential pattern mining to extract the 

common paths of the XML documents can be computational expensive. In PCXSS, the 

XML is decomposed into structures path information called node path.  A node path is 

an ordered set of nodes from the root node to a leaf node.  Each node contains its 

properties such as name, constraint, and min and max occurrences.   

 The major difference between PCXSS approach and other approaches is the 

utilization of the common paths.  PCXSS methodology does not only mine the 

common paths to determine the structural similarity between schemas but it also uses 

the common paths to measure the structural similarity between a new tree and existing 

clusters, making a significant saving in computational efforts.  

 Element Level:  element level similarity matching approaches is also known 

as schema matching.  Schema matching is the process of finding correspondence 

elements of two schemas or documents.  Some approaches exploit schema matching at 

the instance level [2, 16], schema level [5, 14, 18, 22] or using both instance and 

schema [6, 33] to determine the semantic correspondence elements.  PCXSS utilizes 

ideas from a number of schema matching approaches [5, 18, 22, 24, 26] on XML data 

to analyse the properties of the element node.  It forms an important part in finding 
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common paths between a tree and existing clusters by analysing the linguistic of the 

node label and its properties such as data type and constraints.   

   

8. Conclusions and future work 

 
 XML has become quite popular in the exchange of a variety of data on the 

Web and in the distribution of information related to various topics as well. With the 

number of XML sources growing rapidly, it becomes necessary to cluster the 

collection of the XML sources for effectively finding important information from them. 

Due to its semi-structured and flexible feature compared to the data in traditional 

databases, it poses challenge to develop an efficient and scalable clustering method.  

 We present a novel clustering method called PCXSS that progressively 

clusters XML data by taking into account the structural and semantic information of 

elements. PCXSS measures the structural similarity between XML data by finding the 

common paths among them. To be applicable to any XML data, the PCXSS approach 

employs a complex method for element matching that not only considers the element 

name but also other properties such as data type and cardinality to ensure the accuracy 

of element matching. It considers both the semantic and syntactic relationship of the 

element name. Furthermore, the PCXSS clustering do not require the similarity 

computation between each pair of data. It compares each new tree with existing 

clusters where each cluster contains the common paths of the trees held within.   

 The empirical analysis shows that PCXSS significantly reduces the 

computational time as compared to pair-wise computation as well as yields good 

accuracy of the results. The several experiments also ascertain that PCXSS clustering 

solution is not heavily influenced by thresholds such as the clustering and path 

similarity.  Furthermore, the syntactic and semantic relationship measurements have 

also been tested.  The semantic relationship has shown to be more important to 

determine similarity. 

 The clustering solution produced by PCXSS can help in reducing the 

complexity of integrating schemas from heterogeneous domains and in improving the 

speed of the integration process.  The structure matching (path matching) in PCXSS 

can be used for finding correspondence element between two schemas that facilitate in 

area such as schema integration. In addition, it can be used to improve the speed and 

accuracy in structure indexing and information retrieval.   

 PCXSS needs some future work to improve its effectiveness.  Both path and 

element matching in this approach is still very complex.  Therefore, it takes longer to 

do the clustering process.  To overcome this problem, path matching can be reduced by 

grouping node paths that have the same ancestors into one path.    
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