55 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Behaviour Profiling using Wearable Sensors for Pervasive Healthcare

    Get PDF
    In recent years, sensor technology has advanced in terms of hardware sophistication and miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into networks centred on human participants, called Body Sensor Networks. Amongst the most important applications of these networks is their use in healthcare and healthy living. The technology has the possibility of decreasing burden on the healthcare systems by providing care at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, machine learning and data mining techniques are developed to estimate medically relevant parameters from a participantā€˜s activity and behaviour parameters, derived from simple, body-worn sensors. The first abstraction from raw sensor data is the recognition and analysis of activity. Machine learning analysis is applied to a study of activity profiling to detect impaired limb and torso mobility. One of the advances in this thesis to activity recognition research is in the application of machine learning to the analysis of 'transitional activities': transient activity that occurs as people change their activity. A framework is proposed for the detection and analysis of transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms to a study of participants undergoing and recovering from surgery. We demonstrate that it is possible to see meaningful changes in the transitional activity as the participants recover. Assuming long-term monitoring, we expect a large historical database of activity to quickly accumulate. We develop algorithms to mine temporal associations to activity patterns. This gives an outline of the userā€˜s routine. Methods for visual and quantitative analysis of routine using this summary data structure are proposed and validated. The activity and routine mining methodologies developed for specialised sensors are adapted to a smartphone application, enabling large-scale use. Validation of the algorithms is performed using datasets collected in laboratory settings, and free living scenarios. Finally, future research directions and potential improvements to the techniques developed in this thesis are outlined

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Automated Measurement of Midline Shift in Brain CT Images and its Application in Computer-Aided Medical Decision Making

    Get PDF
    The severity of traumatic brain injury (TBI) is known to be characterized by the shift of the middle line in brain as the ventricular system often changes in size and position, depending on the location of the original injury. In this thesis, the focus is given to processing of the CT (Computer Tomography) brain images to automatically calculate midline shift in pathological cases and use it to predict Intracranial Pressure (ICP). The midline shift measurement can be divided into three steps. First the ideal midline of the brain, i.e., the midline before injury, is found via a hierarchical search based on skull symmetry and tissue features. Second, the ventricular system is segmented from the brain CT slices. Third, the actual midline is estimated from the deformed ventricles by shape matching method. The horizontal shift in the ventricles is then calculated based on the ideal midline and the actual midline in TBI CT images. The proposed method presents accurate detection of the ideal midline using anatomical features in the skull, accurate segmentation of ventricles for actual midline estimation using the information of anatomical features with a spatial template derived from a magnetic resonance imaging (MRI) scan, and an accurate estimation of the actual midline based on the robust proposed multiple regions shape matching algorithm. After the midline shift is successively measured, features including midline shift, texture information of CT images, as well as other demographic information are used to predict ICP. Machine learning algorithms are used to model the relation between the ICP and the extracted features. By using systematic feature selection and parameter selection of the learning model, promising results on ICP prediction are achieved. The prediction results also indicate the reliability of the proposed midline shift estimation

    A Multiple Instance Learning Approach to Electrophysiological Muscle Classification for Diagnosing Neuromuscular Disorders Using Quantitative EMG

    Get PDF
    Neuromuscular disorder is a broad term that refers to diseases that impair muscle functionality either by affecting any part of the nerve or muscle. Electrodiagnosis of most neuromuscular disorders is based on the electrophysiological classification of involved muscles which in turn, is performed by inferring the structure and function of the muscles by analyzing electromyographic (EMG) signals recorded during low to moderate levels of contraction. The functional unit of muscle contraction is called a motor unit (MU). The morphology and physiology of the MUs of an examined muscle are inferred by extracting motor unit potentials (MUPs) from the EMG signals detected from the muscle. As such, electrophysiological muscle classification is performed by first characterizing extracted MUPs and then aggregating these characterizations. The task of classifying muscles can be represented as an instance of a multiple instance learning (MIL) problem. In the MIL paradigm, a bag of instances shares a label and the instance labels are hidden, contrary to standard supervised learning, where each training instance is labeled. In MIL-based muscle classification, the instances are the MUPs extracted from the EMG signals of the analyzed muscle and the bag is the muscle. Detecting and counting the MUPs indicating a specific category of a neuromuscular disorder can result in accurately classifying the examined muscle. As such, three major issues usually arise: how to infer MUP labels without full supervision; how the cardinality relationships between MUP labels contribute to predict the muscle label; and how the muscle as a whole entity is classified. In this thesis, these three challenges are addressed. To this end, an MIL-based muscle classification system is proposed that has five major steps: 1) MUPs are represented using morphological, stability, and novel near fiber parameters as well as spectral features extracted from wavelet coefficients. This representation helps to analyze MUPs from a variety of aspects. 2) MUP feature selection using unsupervised similarity preserving Laplacian score which is independent of any learning algorithm. Hence, the features selected in this work can be used in other electrophysiological muscle classification systems. 3) MUP clustering using a novel clustering algorithm called Neighbourhood Distance Entropy Consistency (NDEC) which contributes to solve the traditional problem of finding representations of MUP normality and abnormality and provides a dynamic number of MUP characterization classes which will be used instead of the conventional three classes (i.e. normal, myopathic, and neurogenic). This clustering was performed to highlight the effects of disease on both fiber spatial distributions and fiber diameter distributions, which lead to a continuity of MUP characteristics. These clusters can potentially represent several concepts of MUP normality and abnormality. 4) Muscle representation by embedding its MUP cluster associations in a feature vector, and 5) Muscle classification using support vector machines or random forests. Quantitative results obtained by applying the proposed method to four electrophysiologically different groups of muscles including proximal arm, proximal leg, distal arm, and distal leg show the superior and stable performance of the proposed muscle classification system compared to previous works. Additionally, modelling electrophysiological muscle classification as an instance of the MIL can solve the traditional problem of characterizing MUPs without full supervision. The proposed clustering algorithm in this work, can be used as an effective technique in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity

    A survey on classification algorithms of brain images in Alzheimerā€™s disease based on feature extraction techniques

    Get PDF
    Abstract: Alzheimerā€™s disease (AD) is one of the most serious neurological disorders for elderly people. AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages, namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed few existing state-of-art works for AD detection and classification, based on different feature extraction approaches. We have summarized the existing research articles with detailed observations. We have also compared the performance and research issues in each of the feature extraction mechanisms and observed that the AD classification using the wavelet transform-based feature extraction approaches might achieve convincing results

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.
    • ā€¦
    corecore