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Abstract 
In recent years, sensor technology has advanced in terms of hardware sophistication and 

miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into 

networks centred on human participants, called Body Sensor Networks. Amongst the most 

important applications of these networks is their use in healthcare and healthy living. The 

technology has the possibility of decreasing burden on the healthcare systems by providing care 

at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding 

serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, 

machine learning and data mining techniques are developed to estimate medically relevant 

parameters from a participant‘s activity and behaviour parameters, derived from simple, body-

worn sensors.  

 

The first abstraction from raw sensor data is the recognition and analysis of activity. Machine 

learning analysis is applied to a study of activity profiling to detect impaired limb and torso 

mobility. One of the advances in this thesis to activity recognition research is in the application 

of machine learning to the analysis of ‗transitional activities‘: transient activity that occurs as 

people change their activity. A framework is proposed for the detection and analysis of 

transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms 

to a study of participants undergoing and recovering from surgery. We demonstrate that it is 

possible to see meaningful changes in the transitional activity as the participants recover. 

 

Assuming long-term monitoring, we expect a large historical database of activity to quickly 

accumulate. We develop algorithms to mine temporal associations to activity patterns. This 

gives an outline of the user‘s routine. Methods for visual and quantitative analysis of routine 

using this summary data structure are proposed and validated. 

 

The activity and routine mining methodologies developed for specialised sensors are adapted to 

a smartphone application, enabling large-scale use. Validation of the algorithms is performed 

using datasets collected in laboratory settings, and free living scenarios.  

 

Finally, future research directions and potential improvements to the techniques developed in 

this thesis are outlined. 
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Chapter 1 

Introduction 

 

 

 

 

1.1 Introduction 

 

ODERN sensor technology has benefited from continuing advances in the semi-

conductor industry, with a large number of commercially available sensors for a wide 

range of sensing modalities. These sensors are small, increasingly powerful and affordable, 

driven by continuing demand on miniaturisation and on-board processing power. A sign of the 

maturity of sensor technology is the recent success of consumer electronics products, such as 

smart phones and gaming consoles, which utilise a range of different motion sensors to enhance 

user experience. These developments strongly suggest the suitability of the pervasive sensing 

paradigm, with which sensors are transparently embedded into our everyday environments for 

continuous data collection. An instance of this technology is that of Body Sensor Networks 

(BSN) for providing ―ubiquitous and pervasive monitoring of physical, physiological, and 

biochemical parameters in any environment and without activity restriction and behaviour 

modification.‖ [1]. 

 

One of the most important target domains for BSN-based pervasive sensing is healthcare. The 

population of the developed world is ageing. Trends indicate that the population of the 

developed world will mostly consist of older people within 50 years  [1, 2]. Older people require 

significantly greater healthcare resources, for both treatment and management of ailments. Due 

to modern medicine, a large number of diseases that used to be fatal are now treatable. 

However, many of these, such as diabetes and hypertension, remain chronic conditions that 

M 
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require continued management over the lifetime of the patient. This has resulted in a strain on 

healthcare systems in almost all Western countries [3]. The financial burden of burgeoning 

healthcare needs has led to research into effective, low-cost alternatives to traditional medical 

practice. The adoption of pervasive technology is one such approach, an example application 

being the monitoring of key indices of well-being for chronic disease sufferers at home. The 

potential benefits of pervasive sensing in healthcare are not just financial. Providing care at 

home increases convenience and independence for patients and social carers. Avoiding frequent 

visits to healthcare facilities also reduces exposure to dangerous hospital infections. Post-

operative recovery can also be measured at home [4], reducing hospital admission times after 

surgery. Finally, the ability to continuously monitor patient health, physical and physiological 

data opens up the possibility of a paradigm shift in healthcare, moving away from snap-shot 

assessment of health to a richer understanding of the behaviour of patients in their home 

environments, and the relationship between changes in behaviour and exacerbations in disease. 

Traditional data collection on the other hand has relied on episodic data collection, which 

necessitates the data collection by care providers, which only offers a snapshot of patient‘s 

health status or wellbeing. The contrasting properties of the two approaches are shown in Figure 

1.1. 

 

 

 

 

Figure 1.1The main differences between episodic and continuous monitoring and how the traditional 

episodic way of patient information management can be avoided by using pervasive sensing. 
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As pervasive systems are adopted in such applications, a key enabling technology will be the 

development of flexible, light-weight methods for automatically analysing the continuously 

sensed data. It is unsurprising that the volume of data engendered by pervasive sensing is 

beyond the processing capacity of human interpreters, therefore pervasive systems also need to 

include powerful data mining tools to render this data comprehensible to both expert and non-

expert users [5]. It needs to be emphasised that for these systems to be cost effective, the data 

analysis sub-systems must also be lightweight, in order to simultaneously cater for a large 

number of users. 

 

One important goal of data analysis in healthcare is behaviour profiling [6]. The onset or 

complication of a disease may be preceded by changes in patterns of behaviour or activity. 

Changes in sleeping patterns, social activities or eating, for example, can be due to gastro-

oesophageal reflux, heart disease and urinary tract infections, amongst others. Changes in gait 

can indicate recovery from injury or exacerbation of it, or according to recent research, even 

neurodegenerative diseases such as dementia [7]. The main focus of this thesis is on behaviour 

profiling in the context of pervasive healthcare applications. 

 

In this chapter, we will discuss in detail major challenges that pervasive healthcare systems need 

to meet, particularly concerning those of requirements and technology. A description of 

behaviour profiling for healthcare in pervasive sensing environments follows, including an 

outline of the key areas that this research intends to target and the main structure of the thesis. 

 

1.2 Challenges in Pervasive Healthcare Systems 

 

As pervasive systems move from research labs into people‘s homes, addressing real healthcare 

concerns, it is very clear that there is a wide scope and range of challenges that need to be 

addressed [8-10]. Some of the system level challenges any pervasive healthcare system must 

meet are described below. 

 

1.2.1 Clinical Requirements 

 

The healthcare domain where pervasive computing can play a major role has so far been reliant 

on physical health assessment by professional care providers. Systems like National Healthcare 
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Service (NHS) employ community matrons to periodically check up on vulnerable or 

chronically ill patients [11]. A pervasive healthcare system needs to regard the needs of these 

care providers as very important use cases. Any medical care provided to the patient as a result 

of the pervasive sensing will most likely come from a care provider being able to track the 

wellbeing of patients both remotely and during visits. It is important therefore that the 

visualisations provided by the system be easily interpretable, abstracting out human 

understandable information from raw sensor data. Decision support systems need to be provided 

wherever possible, taking into consideration the risks of false positives and false negatives.  

 

The need to abstract and simplify the data is counterbalanced by the need for data in its highest 

detail for research purposes. This involves collecting contextual data along with the sensor data. 

For example, it is insufficient to collect sensor data from ten people over a period of time to 

assess their risk for a particular disease. The data may provide some insight, but for a complete 

analysis, a large amount of metadata is needed in the system. Information about the participants 

such as age, ethnicity, weight and much more is all relevant when it comes to analysing sensor 

data from a medical perspective. This is especially true if the aim is to mine the data and analyse 

for trends and correlations automatically, over the long term.  

 

This leads to a very different and conflicting concern, specifically that of privacy. There are 

stringent standards for storing and transmitting user information that need to be adhered to, 

some of which preclude the extensive meta-data collection that would be desirable for 

behaviour profiling. We note here that behaviour profiling hasn‘t always been regarded in a 

positive light. Due to books like George Orwell's '1984' [12], popular imagination associates the 

notion with authoritarian regimes tracking citizens in order to control them. There is therefore a 

strong possibility that the idea of tracking behaviour over long periods may be met with 

resistance, even in the context of healthcare [13]. People will however accept intrusions of 

privacy when benefits are well-understood. Beach et  al. [14] found that people who reported 

current disability were more accepting of recording and sharing sensor data than non-disabled 

adults. They suggested that people with greater needs will be more willing to trade privacy for 

the benefits technology can bring. As these studies suggest that privacy will remain a significant 

factor in regulations concerning pervasive sensing, it is important that systems for data mining 

and behaviour profiling in healthcare explicitly address these concerns [15]. Strategies for this 

can include high security data transmission, user anonymity, privacy preserving data analysis, 
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and also by giving users control over what is sensed and for what purpose, explaining the 

benefits of any perceived privacy violation. 

   

Data collection needs to be suitable for the patient‘s health condition. A disease such as Chronic 

Obstructive Pulmonary Disease (COPD) will have very different sensing requirements 

compared to monitoring someone who is recovering from surgery. Some people spend most of 

their time indoors, others lead an active life, and the system needs to allow for both and assume 

neither. 

 

1.2.2 Technology Opportunities 

 

Pervasive healthcare needs to economically scale to hundreds of thousands, possibly millions of 

users, if it is to account for a substantial reduction in the healthcare costs mentioned above. This 

mandates that every component of the system, from the sensor to the visualisation of the data be 

designed with a view towards scalability.  A useful idea here is incremental processing. A 

substantial gain in performance can be achieved by processing the data as it arrives as close to 

the source as possible and updating these derived statistics when new data arrives [16]. As 

sensor technology gets cheaper, some of the load can be reduced by performing on-board 

processing and rejecting data that would otherwise be rejected much further down the 

transmission pipeline, having incurred the security, transmission and processing cost [17].  

 

The distributed nature of pervasive systems, varying requirements and the need for incremental 

processing mandates a flexible, customisable yet lightweight software infrastructure. Sensors 

tend to have diverse data formats, operating frequencies and meta-data requirements. To 

incorporate the resulting diverse range of information unifying data formats are required to 

facilitate seamless integration with processing components. Systems should also be able to 

support a range of information visualisation devices, such as off-the-shelf smartphones. There 

are a large number of vendors of healthcare products, resulting in a need for platforms that can 

support the integration of these heterogeneous software and hardware components with minimal 

effort. XML standards, distributed design patterns, operating system and programming language 

independence should be a part of this system [15, 18]. 
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Fault tolerance is another critical requirement. Pervasive systems should be robust against local 

failure [19]. People‘s health and lives could depend on the successful, reliable, long-term 

functioning of the system. This includes resistance to hardware failure and software crashes 

[20]. Data redundancy is extremely important, as are audit trails to ensure that any failures are 

quickly diagnosed and rectified. Components must be decoupled so that the failure of one 

component does not cause a ripple effect in the system.  Communication failure should be 

detected, and wherever possible memory buffering should store any sensor data locally until 

communication is restored [15]. 

 

Thus far, different streaming infrastructures have been developed that cater for some of these 

requirements [15, 21-23]. Shared features of these systems include OS independence, interfaces 

in multiple languages, a design oriented towards facilitating fault tolerant and decoupled 

distributed interactions, portability to different hardware platforms, support for other popular 

distributed frameworks, visualisations components for both computer screens and handheld 

devices and support for a number of sensors [24].  

 

One promising technology to assist with the metadata requirement is Electronic Medical Record 

(EMR) systems [25]. Increasingly medical records are computerised in developed countries, or 

are in process towards computerisation [26]. Integrating pervasive healthcare systems with 

EMR systems could provide a wealth of metadata to supplement sensor data, which can be used 

by behaviour profiling and data mining algorithms [27]. Another technology worth exploring is 

the field of medical ontologies, such as Unified Medical Language System [28]. As pervasive 

systems discover deeper medical information, capturing that and sharing with the biomedical 

community in a standardised format will be important.   

 

1.2.3 Data Analysis Requirements 

 

Technological advances such as miniaturised sensors, ubiquitous computing, streaming 

networks and integrated medical databases need to be exploited with optimised data analysis 

algorithms. Furthermore, the special needs of the healthcare domain and the nature of the often 

heterogeneous sensor data imposes significant data processing challenges.  

 

While it is intuitively plausible that the incorporation of multiple information sources will 

provide a stronger, more robust analysis, care must be taken in the addition of each data source. 
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If certain sensors provide better quality information, the analysis must be biased towards this 

information. The noise characteristics of each sensor should be taken into account during fusion. 

As the number of dimensions in the data increases, data must be pre-processed for example by 

being mapped into a reduced dimensionality space, or by discarding less useful ‗features‘. 

 

Data in pervasive systems is by definition continuous and temporally varying. Analysis 

algorithms should take into account the temporal evolution of data. Furthermore, as opposed to 

the traditional paradigm where data is first collected, then processed in large batches, 

continuous data should be processed as it arrives. It is far too expensive to repeatedly process 

entire databases; therefore results from previous processing must be updated with new sensor 

data.  

 

Much of behaviour is determined by a range of factors [29]. People of a certain age, of a certain 

gender, or geographic residence, with a particular ailment, may all have similarities in their 

behaviour. As more metadata becomes available, analysis needs to be multidimensional. Data-

warehousing allows for the organisation and analysis of data in different dimensions to reflect 

distribution with respect to such groups. 

 

1.3 Problem Statement 

 

In light of the above research challenges, this thesis investigates a number of issues for 

behaviour profiling in pervasive sensing in a health and wellbeing context. The goal of this 

research is to develop a rich understanding of behaviour in a pervasive sensing environment by 

presenting analysis and visualisation of sensor data collected in experiments designed to 

highlight healthcare applications. The research has been divided into three parts. The first 

considers the application of machine learning methodologies for the analysis of activities of 

daily living for detection of impairment through sensor data. The second part develops 

methodology for the analysis of transitions between activities with a view to characterise post-

operative recovery. The third part concerns the abstraction of activity into a higher granularity, 

with a view towards visualising vast amounts of human behaviour data and quantitatively 

analysing an individual‘s routine. 
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1.4 Organisation of the Thesis 

 

The rest of this thesis is organised as follows. Chapter 2 describes the data flows of a pervasive 

sensing environment, presenting related work and providing an overview of the methods 

proposed.  

 

Some of the techniques outlined in Chapter 2 are concretised in Chapter 3, which demonstrates 

the analysis of activities of daily living for the study of impairment, through laboratory 

simulation of impairment.  

 

The analysis of activities of daily living is extended with the detection and analysis in manifold 

space of transitional activity, described in Chapter 4. Validation is performed based on data 

collected from participants recovering from knee replacement surgery to categorise stages of 

improvement. 

 

 In Chapter 5, an algorithm to abstract routine from activity is described. The goal here is to 

abstract from classification of activity to the processing of historical data. A first step for this is 

the presentation and representation of routine in a concise data structure, which we call the 

routine tree.  

 

The analysis of activity and behaviour to pervasive healthcare is then mapped to smartphone 

users in Chapter 6. The existing consumer base of smartphones can be used for activity and 

behaviour profiling where the use of specialised sensors is not feasible, or difficult to adopt. We 

demonstrate the feasibility of this approach through supervised and unsupervised categorisation 

of activity, and through the long term mining of routine. 

 

Measuring differences in routines is discussed in Chapter 7, with a view towards quantitatively 

and visually grouping routines discovered through simple activity classification. A technique is 

proposed for measuring the difference between two time-periods in a routine, and deriving a 

distance matrix from the comparison of corresponding time periods in a set of routine trees. We 

will present analysis of data from two sources: a long-term study of chronic patients monitored 

at their homes with wearable and ambient sensors in the SAPHE [5] and the ActiveMiles project 

which collects data continuously from smartphone software developed during the course of this 

PhD.  
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Finally Chapter 8 concludes the thesis and presents directions for future research.  

 

1.5 Original Technical Contribution of the Thesis 

 

This thesis extends the state of the art in two main areas: transitional activity analysis and 

profiling of routine in the context of pervasive, long-term monitoring of health and wellbeing. 

The technical contributions of the thesis are as follows: 

 Application of well-established machine learning methods to healthcare through 

laboratory collected data simulating impaired mobility at the knee and abdomen. The 

feasibility of behaviour profiling for healthcare applications is demonstrated with this 

case study.   

 Proposing a detection and analysis methodology for short-duration transitional activities 

that are not commonly studied in activity recognition research. The algorithms are 

applied to a real world study of people undergoing knee arthoplasty surgery, to track 

their recovery based on the change in performance of transitional activities. 

  Development of a routine-specific data structure, mined from long-term activity data, 

which can be used for qualitative analysis and visualisation of routine activity patterns. 

A further utility lies in the compression achieved from the analysis, enabling efficient 

retrieval and processing of routine related data. 

 Extension and adaptation of activity and behaviour profiling methodologies developed 

for specialised wearable sensors to widely used smartphone technology. In addition to 

the analysis algorithms, a software platform for Android™ capable smartphones has 

been developed for the collection of activity and behaviour relevant sensor data. 

 Application of behaviour profiling methodologies to real world sensor data including 

from: knee surgery participants at six stages of recovery, chronically ill users at home 

wearing activity sensors and normal participants profiled using consumer phones. 

Quantitative methods were developed for profiling routine and structure in routine using 

the routine tree data structure. 

 

The work presented in this thesis has resulted in the following publications in peer reviewed 

international journals and conference proceedings: 
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Chapter 2 

Behaviour Profiling with 
Pervasive Sensing  

 

 

 
2.1 Introduction 

 

EALTHCARE is a key challenge for most countries due to the demographic shift of the 

ageing population and larger numbers of people living alone with chronic diseases [30]. 

For the management of chronic diseases such as diabetes and COPD, for example, the 

functional status of patients is important, particularly for elderly patients, and those recovering 

from trauma or surgery. To this end, a promising approach is to provide continuous home 

monitoring through pervasive sensing and smart environments [8].  This approach ensures a 

lower demand on limited healthcare resources and more efficient monitoring of patient status. 

Furthermore, it opens a new way for proactive treatment of disease through continuous 

monitoring, rather than episodic measurement, of physical and physiological features that may 

be indicative of gradual exacerbation [31]. The technology can also be employed to ensure 

progress in the recovery of patients, for example from surgery [32], thus reducing time spent at 

the hospital whilst ensuring appropriate post-operative monitoring and care. 

 

Clinically, activity is an important indicator of health and well-being. Activity and changes in 

activity have been linked to the onset of disease and changes in life expectancy [33, 34]. 

Decreased or unusual patterns of activity can signal worsening of condition [35, 36] and poor 

recovery [37, 38]. People in high-risk age groups are encouraged by healthcare providers to 

increase their activity through individual and community based efforts [39-41]. A selected set of 

activities, commonly termed Activities of Daily Living (ADL) [42] are used to infer the 

H 
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functional ability of the elderly to live independently. Automatic activity recognition, therefore, 

is an important and widely researched problem [43-45].  Thus far, a wide range of sensors have 

been used for activity detection, ranging from ambient sensing with cameras [46, 47], 

miniaturised wearable sensors such as MEMS accelerometers and gyroscopes [48, 49], to a 

combination of ambient and wearable sensing [50, 51]. The choice of sensing technology 

determines the range of activities detected. Complex systems however, particularly those which 

may affect wearability, can inhibit adoption of the technology. There are also privacy concerns 

[52] associated with ambient sensors that rely on cameras. There is, therefore, significant value 

in extracting activity information from unobtrusive wearable sensors. Table 2.1 lists some of the 

commonly studied ADL, along with representative studies on detecting and/or analysing them. 

For certain activities, such as kitchen activities and falling down, it is often useful to combine 

wearable sensing with inexpensive and, relative to cameras, privacy-preserving location sensors.  

 
 

Activity Types of Sensing used in Study 

Walking Wearable [53], Vision [54], Vision + Wearable [55] 

Sitting Wearable [56], Vision[57], Vision + Wearable [58] 

Reading Wearable [59], Vision [57], Vision+Wearable [60] 

Kitchen Activity Vision [61], Location+Wearable [51] 

Running Wearable [62] 

Eating Wearable [63], Vision [64] 

Using Stairs Wearable [62], Vision [65] 

Falling down Wearable [66], Vision [67], Wearable + Location [68] 

Office work Wearable [56], Vision [69] 

 

Table 2.1Activities of daily living commonly studied in existing research using wearable, vision based and 

location sensing modalities. 

The need to continuously gather and process large volumes of sensor data, coupled with 

repeated querying of the database, would introduce significant computational and storage 

demands. This problem is compounded when a large number of users need to be catered for at 

the same time. As a result, algorithmic and system- and functional-level complexities comprise 

significant challenges to pervasive healthcare system developments. In this case, rigid software 

architectures designed to be application specific cannot cope with the diverse and evolving 

requirements of this rapidly evolving field of research and development. Recently, a number of 

light-weight software methodologies suitable for scalable data processing, transmission and 

storage have been introduced [52, 70]. Synopsis structures [71, 72], for example, can act as 

substantially smaller visualisation and querying surrogates for the actual data for a specific set 
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of queries. Techniques such as wavelets, histograms, sketches and sub-sampling can also reduce 

the resource utilisation of data dramatically, thus freeing up main memory, lowering access 

rates at the database, and improving responsiveness for web clients. For these reasons, there has 

been an increasing interest in efficient methods for synopses for data streams, and there is a 

similar need to explore such representations for sensor data streams in a healthcare context. 

 

One important aspect of human behaviour is routine. Key indicators of wellbeing can be 

inferred from daily routines, including sleeping habits, social interaction, regular eating, 

changing of clothes, exercise. A noticeable change in these can indicate a health issue [4]. 

Behaviour profiling in the context of healthcare refers to the understanding a person‘s routines, 

activities and habits often in order to track change over the long term. Physiological measures, 

such as blood oxygenation, are generally not used to characterise behaviour, although they may 

be combined with behaviour information to get a more complete picture. Sensors that detect a 

user‘s activities and location are more relevant. This includes both body-worn and 

environmental sensors. 

 

Sensor data in pervasive environment is often transmitted as a data stream. A data stream, 

loosely defined, is a contiguous sequence of data, usually time-stamped, often continuous, or at 

least very large.  Data streams represent a very different model of data from the traditional 

database point of view, in that it is not feasible to collect the entire data in a storage space and 

then process it [73]. Instead, mechanisms are needed to process the data as it arrives to achieve 

processing goals. This can include generating easily understood visualisations, data compression 

and indexing, detecting changes and anomalies, and supervised or unsupervised learning. 

 

Data collected from sensors is often noisy and incomplete. This can be due to malfunctions in 

operation, errors in communication, or motion artefacts in wearable sensors. At the very least, 

algorithms must be designed to be resistant to such error sources. Alternatively, the issue can be 

addressed by correcting noisy and incomplete data by using multiple sensors [60, 74]. Missing 

or noisy data from one sensor is ‗corrected‘ based on values from other sensors taking into 

account the relationship between the sensors. 
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Figure 2.1Data flow for behaviour profiling in a pervasive sensing environment. Raw sensor data is 

progressively refined and abstracted as it passes through the machine learning framework. 

 

Figure 2.1 shows the data flow in a behaviour profiling system. An appropriate sensor for 

monitoring activity is selected. Raw data from this sensor is transformed into representations 

suitable for storage and processing, which can then be processed online. This could be, for 

example, to perform activity analysis. Activity information can then be mined to understand 

behaviour. The arrows between these three components are bidirectional: online processing and 

data mining can lead to compressed representations suitable for high level behaviour. These 

compressed representations, referred to as synopsis structures (Section 2.3.1), have much 

smaller size, and can be used in place of the raw data for a specific set of queries. For example, 

information mined regarding a person‘s routine, mined from sensor data, can be fed back to 

activity recognition components to provide context allowing more specific classification.  

Finally, a behaviour profiling system tracks changes in behaviour over time, to detect changes 

and make predictions about future behaviour. 

 

 

2.2 Sensing Modalities 

 

Table 2.2 summarises the features of some of the sensors used in pervasive sensing 

environments. Different sensors can capture information within each broad category, for 



32 

 

example activity, at different levels of detail. A wearable accelerometer, such as in Figure 2.2(a) 

will provide very specific information about the current activity of the user, whether he is 

walking, running or sitting. Visual sensors, such as the blob sensor in Figure 2.2(b) can provide 

detailed user activity information, although their wider applicability has so far been restricted 

due to privacy concerns. Infrared sensors, such as the PIR sensor (Figure 2.2(c)) can track the 

movement of a user from room to room, which can be used to characterise typical room 

occupancy and movement over a person‘s day. 

 

It is often possible to estimate the activity of the user from sensors that do not provide activity 

information as their primary measurement. For example, although PIR or GPS sensing is 

specifically for tracking user location, activity can be inferred based on location. Similarly, 

changes in heart rate can indicate exertion along with general physiological state, which can be 

used to infer certain activities such as exercise and sleeping.  

 

 

          Sensor     Type   Information Measured Information Extracted 

Accelerometer Wearable Acceleration Activity, Motion, 

Posture 

Sound Ambient Sound, Voice Location, Activity 

Blood Oxygenation Wearable Blood Oxygen Physiology 

Contact Switch Ambient Opening of doors Activity, Location 

Flow Ambient Flow of water for example in 

Kitchen or Toilets 

Activity, Location 

GPS Wearable Satellite based Positioning Location, Activity 

Gyrometer Wearable  Angular motion Activity, Motion, 

Posture 

Infrared Ambient Obstruction of infrared light Activity, Location 

Magnetometer Wearable Strength of magnetic fields Orientation, Location 

Pedometer Wearable Hip movement Activity 

Pulse Wearable Heart Rate Physiology, Activity 

RFID Ambient, 

Wearable 

Identification of objects or user Activity, Location 

Temperature Wearable Skin Temperature Physiology 

Video Ambient Video, Image Activity, Location, 

Movement, Inclination, 

Posture 

 

Table 2.2Sensors commonly used in pervasive sensing applications categorised in terms of sensor type, 

information measured and information extracted. 
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As an example, the e-AR (Ear-worn Activity Recognition) sensor, shown in Figure 2.2(a) 

utilises a three axis accelerometer to capture activity and mobility, while also sensing heart rate 

and blood oxygen saturation. The sensor is based on the BSN platform, which consists of a 

Texas Instrument MSP430 processor, a ChipCon CC2420 radio transceiver, an Atmel 512KB 

EEPROM, along with a MEMS (Micro Electro-Mechanical Sensor) accelerometer. Balance in 

human beings is largely regulated on the basis of the vestibular system in the inner ear, a natural 

motion sensor. The positioning at the ear is an evolutionary insight. In addition to detecting 

head movement, shock waves transmitted along the spine are also picked up every time the 

wearer‘s foot strikes the ground.  This insight is utilised by the e-AR sensor, which is worn at 

the ear. The e-AR sensor has been used to track post-operative recovery [31, 32], changes in 

gait [75] and various sports and well-being applications such as rowing, swimming and 

climbing [76-78].  

 

 

Figure 2.2Sensors for behaviour profiling – wearable e-AR sensor (a), camera based ambient sensor (b) and 

Passive-Infra Red (PIR) sensor (c). 

 

Higher quality analysis can be achieved by using fusing data from multiple sources. Yang [1] 

notes the following improvements of using multiple sensors versus single sensor systems: 

• Improved Signal-to-Noise-Ratio (SNR) 

• Enhanced robustness and reliability in the event of sensor failure 

• Extended parameter coverage 

• Integration of independent features and prior knowledge 

• Increased dimensionality 

• Improved resolution, precision, confidence and hypothesis discrimination 

• Reduced uncertainty 
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The utility of fusing multiple modalities is demonstrated in [50] through an extension of a 

classifier originally designed for an activity sensor by incorporating Passive-Infrared Sensors 

(PIR) and Vision based Sensors into the classifier. PIR sensors provide event-based readings 

allowing an estimate of the most recent user location.  They can therefore allow better 

discrimination between activities that could be confused by incorporating the sensor‘s context, 

with fewer concerns related to privacy than camera based sensors [79].  On the other hand, 

camera-based sensors provide both location and a different modality for activity, based on the 

change related to motion in the camera images. Fusing these modalities allows for greater 

specificity in the type of activity performed. Privacy concerns resulting from such image based 

sensors, and pervasive sensors in general, can be mitigated to an extent by transforming raw 

sensor data into representations that increase the data abstraction, reduce resource utilisation 

while aiding in data analysis [80]. 

 

The noise and reliability characteristics of sensors can significantly influence the performance 

of analysis algorithms. For instance, classifiers relying on fused data may be unusable if a 

sensor fails, or goes temporarily offline. To accommodate for such sensor failures, Atallah et al 

[74] propose a Gaussian-Process (GP) based algorithm for the prediction of missing values from 

a failed sensor channel by using sensor channels that are operational. GP regression is a 

Bayesian approach that assumes a GP prior over the function to be estimated. A GP is a 

collection of random variables for which any subset of variables has a joint, multi-variate 

Gaussian distribution.  The channels of an accelerometer sensor are modelled as GP. With 

known covariance and means from training data, errors can be corrected by estimating the 

missing data from the GP regression on the remaining sensor channels. 

 

2.3 Sensor Data Representation 

 

A consideration for pervasive sensing is representing the data in the system, optimising it for 

processing in machine learning algorithms and for storage. Raw, unprocessed data is likely to 

assume unwieldy proportions, incurring both higher storage cost and higher retrieval times.  

Furthermore, reducing the size of the data may also benefit classification and mining algorithms 

in terms of reducing dimensionality. This can be seen as a pre-processing step that usually 

results in representations that are significantly smaller than the original data. 
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When considering time-varying sensor data, it is also important to consider how much temporal 

context is needed, which in turn determines how much information is packaged in a single input 

vector for a data classification or mining algorithm. Short time window analysis is a simple 

mechanism for breaking the signal into small segments. A window function with a chosen width 

is shifted across the signal, each segment forming a frame, or input for further analysis. The 

window function can be uniform, or biased to emphasise a particular portion of the data. A 

further parameter determines the number of temporal units the window is shifted by. This, along 

with the width, determines the resolution of the input data. The smallest shift is one unit, in 

which case for each data point a frame is created. On the other end of the scale is the case where 

the shift equals the window width. In this case the number of frames is equal to the size of the 

input data set divided by the width.   

 

Data representation can be considered from two perspectives. From the perspective of database 

research, synopsis structures are representations of data that are significantly compressed, and 

are suitable for querying aspects of the original data. These are called synopsis, and are 

reviewed in 2.3.1. The second perspective is from the field of machine learning, where 

information is extracted from the raw data to make it more suitable for data analysis. These fall 

under the topic of feature extraction, reviewed in 2.3.2. There is considerable overlap between 

synopsis structures and feature extraction in the methods used. The difference mainly lies in the 

motivation and emphasis of methodologies. 

 

2.3.1 Synopsis Structures 

 

Synopsis data structures [72] are substantially smaller representations of the data that can act as 

surrogates for the data for a set of queries. There has been considerable interest in efficient 

methods for synopsis structures of data streams [71] since these continuous sequences of data 

are voluminous in raw form. 

 

Sampling is one of the simplest ways of reducing the size of the data. Considerable research 

exists in generating representative samples of the entire data while only processing a segment of 

the data at a time, and without knowing the size of the entire dataset. A representative approach 

here is to maintain a fixed reservoir of data from which the sample can be generated [81]. 
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Histograms are a very commonly used summarisation mechanism, where frequency counts are 

calculated for different ranges. Figure 2.3(b) shows a histogram representation of a data series. 

A histogram is useful in situations where we wish to visualise the spread of the data as can be 

seen in the example. There has been work on online construction of histograms [82] for data 

streams.  

 

Wavelets [83] allow a multi resolution representation of the data that incorporate time and 

frequency information. Wavelets are curves containing one or more oscillations confined in a 

finite interval. They are defined by so-called ‗mother functions‘ that determine the shape of the 

curve, and are designed with mathematical properties that permit decomposition of signals. 

During a wavelet transformation a windowed basis function (based on the mother function) is 

progressively applied to achieve coefficients at multiple levels. The data can be reconstructed 

perfectly through an inverse transformation using the complete coefficient set. By discarding 

coefficients with less information (i.e. higher order coefficients) the data can be compressed 

significantly, as shown in Figure 2.3 (c)  Furthermore, as most of the information is contained in 

a small number of coefficients, the transformed signal can be encoded much more efficiently 

using lossless compression techniques such as run-length encoding. The transformation can also 

be used for smoothing the signal, by discarding higher-order coefficients that represent noise 

instead of actual data. A more detailed description of wavelets is provided in Appendix B.  

 

A simple representation that has been compared favourably with the Wavelet Transform is the 

Symbolic Aggregate Approximation (SAX) [84].  In this algorithm data is divided into 

segments, the aggregate of each segment is calculated to get a Piecewise Aggregate 

Approximation (PAA).  A time series x of length n  can be approximated by w segments, where 

a segment 
i

s can be calculated by the equation: 
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This is essentially equivalent to a sliding window, with each window represented by the mean 

value of the data falling within it. The PAA segments are then discretised into a symbol string 

with a given alphabet size. Discretisation is performed by thresholding against a fixed statistical 

table. Under a Gaussian assumption, the PAA can be expected to discretise into equal-sized 

bins. Figure 2.3(d) shows a SAX representation of the data. 

 

 

Figure 2.3Accelerometer Sensor Data (a) represented as data histogram (b), wavelet coefficients (c), and 

SAX Representation (d). Histograms represent data in terms of counts associated with signal values. 

Wavelet and SAX representations can significantly reduce numerosity by representing information with 

fewer data points, as shown in the figure. 

(a) 
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The SAX transform results in a reduction of the number of values (cardinality) used to represent 

the data. The input data has numeric values, whereas the output data is a representation of the 

data with a much smaller alphabet. This can help machine learning algorithms scale up. In 

addition to reducing cardinality, the numerosity (i.e. size of the data stream) can also be 

significantly reduced. As data is represented by a smaller alphabet, and in data series with 

infrequent variations the alphabet is likely to be repeated often, the series can be represented by 

recording changes to the current symbol, similar to the run-length-encoding compression 

algorithm. The size of the output data set depends on the parameter chosen for segment size. 

However, the data is represented with fewer symbols and a smaller size alphabet. A 

disadvantage of SAX is that the data is no longer in Euclidean space, and therefore special 

functions need to be used to estimate the distance between data points.  

 

2.3.2 Feature Extraction 

 

During data analysis, instead of raw data, abstractions called features can be used that can 

accurately and concisely represent the original information while maximising discriminative 

power. These abstractions are usually significantly smaller than the raw data, and therefore be 

considered as synopsis structures. The aim however, is not storage, but to maximise the 

accuracy of classification and identification tasks. 

 

Yang [1] classifies signal features into time-domain, frequency domain and hybrid categories. 

This is shown in Table 2.3. Time domain features include signal statistics such as mean, 

standard deviation, and basic waveform characteristics.  

 

Frequency domain concentrates on periodic structures, such as Fourier components. The 

wavelet transformed is a hybrid approach combining both time and frequency properties. 

Features may also be extracted from multiple signals, for instance cross-correlation between two 

signals.  

 

While it is intuitively plausible that the incorporation of multiple information sources and a 

combination of features from each source will provide a stronger, more robust analysis, care 

must be taken in the addition of each data source. If certain sensor features provide better 

quality information, the analysis must be biased towards this information. This is known as the 
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feature selection problem.  This involves a combinatorial optimisation over the feature space to 

select subsets of features. Greedy search strategies [85] can seek to begin with the entire feature 

set, eliminating redundant features (backward elimination) or begin with the most relevant 

feature and increase the feature set size until the accuracy criteria is met (forward selection). For 

large feature sets, heuristic approaches have been proposed to make the search efficient, 

including Genetic Algorithms [86] and Tabu search [87]. The feature evaluation mechanism can 

be broadly categorised into  wrapper and filter types. 

 

Filter algorithms [88] select features based on an evaluation function that relies on properties of 

the features for separating classes. The evaluation function is independent of the learning 

algorithm and may rely on  information theoretic [89] and statistical  [90] aspects of the feature 

space. Commonly used metrics for measuring dependence between features include mutual 

information, covariance and cross-entropy distance. The optimal subset has minimal inter-

dependence between features. An alternative strategy is taken by margin-based algorithms [91] 

that search for features that maximise the ‗margin distance‘ statistic. The margin gives an 

indication of the class separation in the selected feature space. Feature selection is predicated on 

whether a given feature increases the margin.  

 

Wrapper algorithms [92] use a supervised learning algorithm to evaluate feature subsets for 

classification accuracy.  Some wrapper methods can perform simultaneous feature selection and 

classifier training [93, 94]. The complexity of the algorithms however is usually high, as 

evaluations require testing against a trained classifier. Practical considerations may limit the 

complexity of the classifier to avoid rendering the computation intractable [95]. Filter 

algorithms are faster and offer the advantage of independence from any particular classification 

algorithm‘s weakness. Conversely, wrapper methods can offer superior classification accuracy 

[96] because of the use of the associated classifier instead of a fixed evaluation function.  

 

Atallah et al. [97] use the margin-based Simba [98] algorithm to select wavelet-based features 

that are most relevant for analysis of gait impairment. A related effort has been on the optimal 

placement of sensors for general activity recognition, and for application specific analysis. For 

instance, King et al. [99] compare Simba with the Relief [100] and Minimum Redundancy 

Maximum Relevance [101] algorithms for the placement of sensors for activities of daily living. 

In their study, all three feature selection algorithms achieved comparable performance.   Further 

discussion and evaluation of feature selection for activity recognition is provided in Chapter 3. 
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While feature selection algorithms have been successfully applied to a wide range of activity 

classification tasks, one disadvantage lies in the necessity of class labels. The feature space can 

be drastically reduced using a Dimensionality Reduction algorithm that proceeds by mapping 

the full feature space into a reduced dimensionality that preserves the essential variations of the 

dataset. Well known examples of such algorithms includes Principal Components Analysis 

(PCA) [102] and Multidimensional Scaling (MDS) [103]. The effect of dimensionality 

reduction is to be able to present data in a concise form that nevertheless retains the most 

significant information from the complete feature space.  

 

Dimensionality reduction techniques that assume relationships between distances can be 

expressed using straight-lines incorporate no information from the structure of the data. Feature 

space is assumed to be unconstrained, and therefore linear relationships such as Euclidean 

distance and variance can be preserved in the optimal low-dimensional space. However, if the 

feature space is assumed to contain structural constraints, straight-line distances are no longer 

valid. The class of techniques known as Non-linear Dimensionality Reduction (NLDR) [104] 

performs non-linear transformations on the feature space data. In Chapter 4 we use an instance 

of NLDR: manifold-based data clustering and low-dimensional embedding. 

 

Time Domain Frequency Domain Hybrid 

 Waveform characteristics  such as 

slope, amplitude, envelope, rise time, 

width, maxima-minima locations, 

pulse duration and zero crossing rate 

 Periodic structures 

in the frequency 

domain 

 Wavelet 

Representation (e.g. 

Gabor wavelet 

features) 

   

 Waveform statistics such as mean, 

standard deviation, peak to valley 

ratio, kurtosis and energy 

 Fourier 

coefficients 

 Wigner-vill 

distributions 

   

 Information theoretic statistics such as 

entropy, complexity, compression 

 Chebyshev 

coefficients 

 Cyclostationary 

representations 

   

 Chaotic models and fractal features  Spectral peaks  

   

 Ringing, overshoot phenomena, and 

pulse ambient noise floor relationship 

 Power Spectral 

Density 

 

  

 

Table 2.3Features used in sensing applications, adapted from [8]. To capture the complete information in the 

signal it is often necessary to utilise a combination of features. 
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2.4 Behaviour Profiling 

 

One of the most widely developed applications of pervasive sensing are smart home 

environments. Smart home technology [105] relies on (usually ambient) sensors to provide 

intelligent environments that can assist occupants, typically elderly occupants. This includes 

projects such as MavHome [106], PlaceLab [107] and the Gator environment [108].  The home 

may also facilitate the operation of devices in the house based on sensed information. The 

sensors utilised in these projects include temperature, water flow and utility usage sensors as 

well as pressure sensors on furniture, proximity sensors for tracking user position in rooms as 

well as devices for monitoring vital signs. Data from these sensors can be analysed to observe 

patient behaviour or detect the occurrence of critical events such as falls. For instance, Lühr et 

al. [109] mine activation of these sensors to detect abnormal behaviour. 

 

Tracking these changes also falls under the purview of the field of Lifestyle Monitoring [110], 

where the time horizon under consideration is typically smaller, generating alarms if a particular 

sort of behaviour deviates from normal patterns. Lifestyle monitoring typically relies on 

ambient sensing, i.e. environmental sensors such as PIR sensors and sensors that can detect 

sleep quality when placed under the mattress. Activity is characterised in terms of the activation 

of the PIR sensors and sensors on objects.  

 

Atallah et al. [50] note the limitations of using ambient sensing alone for tracking user 

behaviour. For example, the analysis is complicated by the presence of other users in the sensed 

environments. Detailed changes in activity and physiological data are difficult to obtain. In 

addition, wearable devices can also track the user outside their home environments. Ambient 

and wearable sensors are combined to track the movement of a user across rooms, modelled 

with HMMs. They also study the similarity of users by visualizing the activation of these 

models in a reduced dimensionality space. 

 

There has been some use of monitoring through wearable or ambient sensors to encourage 

specific types of behaviour. For instance, in the field of assisted living, elderly people are given 

advice on ways to improve their lifestyle on the basis of sensor information [111].  In obesity 

monitoring, for example, people are helped to keep track of calories spent during activity in 

order to lose weight [112]. This however has been difficult to do with external sensors, and 
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subcutaneous devices have been proposed. Previous research related to this thesis can be 

categorised as relating to analysis of activity and analysis of behaviour.  

 

2.4.1 Activity Analysis 

 

Activity monitoring has been an intensely researched area over the past decade [113-115]. In the 

context of studying behaviour, it is important not only to detect the user‘s activity, but also to 

assess how this activity is being performed. For example, the gait of a user could be indicative 

of exacerbations in medical conditions. The activities performed can also characterise the extent 

to which a person is capable of living independently. The Katz Activities of Daily Living (ADL) 

index [116] is one such measure of the autonomy of a person. Participants are required to fill a 

questionnaire that assesses their ability to perform a set of activities that includes bathing, 

dressing, toileting, transferring (transitioning between postures), continence and feeding. The 

assessment results in a score determining the functional independence of the participant. A goal 

of pervasive healthcare is to substitute such questionnaires with objective processes, such as 

sensor-based data [117]. The sensor signal obtained when a participant performs some of these 

activities is shown in Figure 2.4. 

 

In general, activity analysis can be divided into two broad tasks. The first is activity detection, 

which is the near-instantaneous detection of current user state based on a typically small time 

horizon. Subsequently, temporal aspects can be introduced, which is called activity modelling. 

To some extent, the distinction between the tasks can be seen on the basis of complexity. In 

activity detection, ―atomic‖ activities such as standing, sitting, walking etc. are detected 

possibly for subsequent profiling and analysis. In activity modelling, more complex activities 

temporally composed of atomic activities may be detected, for example, food preparation and 

eating. Activities can be interleaved, suspended and resumed, or performed concurrently. 

 

A first step in any system aimed at behaviour profiling is to detect atomic activities of users. 

This can range from providing specific information about the user‘s current activity, such as 

brushing teeth or reading, to abstracted, yet still medically relevant information such as the 

current intensity of activity. An example of this type of activity recognition is the work by Ravi 

et al. [62],where the activities recognised include standing, walking, running, climbing upstairs 

and downstairs, sit-ups, vacuuming, and brushing teeth. Activities were detected using data 
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collected from a triaxial accelerometer worn on the pelvic region. Four features are extracted 

from the data for each axis: mean, standard deviation, correlation, and energy. The authors 

compare the performance of different classifiers using these features. 

 

 

Figure 2.4Activities of daily living can be detected using wearable sensors such as the ear-worn activity 

recognition sensor. The change in sensor data can be seen for each activity performed by the participant. 

 

While precise information about a user‘s activity provides valuable information for further 

mining, a pragmatic reason for avoiding this is the issue of user privacy. Lo et al. [115] have 

developed a multivariate Gaussian Bayes classifier that produces an activity level from an ear 

worn accelerometer. The classifier defines activity in four values, the lowest of which indicates 

almost no movement (e.g., sleeping) and the highest indicates an activity involving vigorous 

movement (e.g., running). Quantitative measures of activity have been used in cardio-
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respiratory fitness studies [118] and postoperative recovery [31, 54, 119]. Low levels of activity 

have also been associated with type-II diabetes [120]. 

 

It is worth noting that most of the existing work on activity recognition is limited to detecting 

atomic activities. Sequences of atomic activities can be temporally composed into more 

complex activities through generative models such as hidden Markov model (HMM) [121]. In 

addition to their modelling power, HMMs amortise the computation cost and can be trained 

offline and deployed online with relatively small computation cost. The HMM shown in Figure 

2.5 (a) contains two layers: an observable and a hidden layer of states. The hidden states are 

governed by a Markov model—a model where future behaviour depends only on the present 

state. Transitions between such states are determined by state-transition probabilities. At any 

point in time however, the state is not directly accessible. Instead, the agent has access to 

observations, which are related to the hidden states through observation probabilities; i.e. the 

probability of encountering an observation in a particular state. There is furthermore a prior 

state probability distribution. Given these parameters it is possible to  

 Generate a sequence of observations consistent with the HMM. For this reason models 

such as HMM are called generative models. A learned HMM model can be used to 

generate behaviours consistent with the model. 

 Determine the probability of an observation sequence. A  HMM can be used to compare 

against new sequences to determine difference. This has been one approach taken to 

compare behaviours, as in [60] where anomalous behaviours are detected. 

 Probability of the current state. An HMM can be used to determine the likely state of 

the participant following a sequence of observations. This is a common use-case during 

the behaviour profiling applications that will follow, and can be computed efficiently 

using the ‗forward algorithm‘.  

 

In Figure 2.5(a), A1 can represent a simple activity, such as preparing breakfast. The hidden 

states, shown as circles, indicate separate stages that comprise preparing breakfast, for example, 

preparing ingredients, cooking food, and serving it. Example observations would be sensor 

readings that can probabilistically indicate each of these hidden states. 

 

Extensions of HMMs allow modelling of more complex and interleaving activities. For 

example, a coupled HMM [122], shown in Figure 2.5 (b), allows the modelling of concurrent 

activities by utilising a collection of HMMs. In this case, the model can ―switch‖ between 
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independently evolving Markov models, A1 and A2. Another extension of HMMs is that of 

hierarchical models. Hierarchical approaches for modelling activity and behaviour mirror 

research in the field of ethology (the biological study of behaviour) where hierarchy has been 

shown to be underlying certain kinds of behaviour [123]. One example of such an extension is 

work is the abstract hidden Markov model (AHMM) [124]. Plan recognition is the artificial 

intelligence problem of inferring an intelligent agent‘s plans—a hierarchy of actions that allow 

an agent to carry out its goal. These actions however are deterministic, and the observations are 

error free. This limitation is resolved by the AHMM, where policy states are connected to an 

underlying HMM. A system based on AHMM discriminates between sequences of actions, such 

as different strategies of movement in an office space. Based on this, the user is classified as 

having a particular ―plan‖ based on a predefined plan library. AHMM offers a powerful model 

for defining how low-level activities compose into higher level plans and allows the inference of 

the goals of participants based on their behaviour. 

 

 

 

Figure 2.5HMMs used in activity recognition: (a) illustrates a simple activity, such as preparing breakfast, 

where the circles represent the constituent tasks involved in the overall process and shaded boxes represent 

observations made by sensors. For more complex activities, a coupled HMM (b) allows a collection of 

HMMs to represent multiple interleaving activities. 

(a) (b) 
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The computational capacity of sensors has made the idea of placing analysis algorithms on the 

sensor itself feasible. The benefit of this is significant. Not only does incremental processing 

decrease processing costs further down the pipeline, but transmission and security costs can be 

saved if data is processed on board and sent in a reduced form.  For instance, if the activity state 

of the user can be reliably detected, this information can be used to adapt resource utilisation of 

the pervasive system. With domain specific information on the usefulness (or utility) of 

particular activity states,  the resource utilisation of sensors can be adjusted according to the 

current state with a view to maximizing utility [125, 126]. In this case, several sensors are used 

to monitor a patient‘s state, with known utility for specific states. Utilizing a genetic algorithm-

based controller, the operation of sensors is adjusted in order to match the quality of information 

with the utility of the patient state. Here quality is measured in terms of both the sensing 

modality and the sampling rate. While one method relies on a centralised controller residing on 

the gateway [126], the controller is shifted to the nodes themselves by Anand et al. [17], relying 

on a simpler Markov model to perform resource management. The controller is also shown to 

operate in more dynamic environments; the controller meets design imperatives (e.g., a 

minimum operating life) when the system model is not close to the real deployment conditions. 

 

Changes in how specific activities are performed can indicate a change in the mental or physical 

state of participants. For instance gait changes can suggest injury or impairment, but are also 

associated with certain neurological conditions; for instance it is notably an early indicator of 

Alzheimer‘s disease [7]. Using inexpensive wearable sensors, it is possible to detect changes in 

walking.  Yoshida et al. [127] use a waist-worn accelerometer to detect leg injury by analysing 

signal frequency in the anterior plane. Atallah et al. [97] develop a broader approach using 

wavelets to capture frequency and time-domain information from a tri-axial accelerometer worn 

at the ear. The most relevant planes of motion are selected automatically using feature selection, 

instead of using a fixed feature set. 

 

2.4.2 Transitional Activities 

 

A recent direction of research has been to analyse the transitions between activities. Joint 

diseases such as arthritis, trauma or other conditions such as obesity, can impair the ability of 

patients to fluidly transition between activity states. More than two million people over 65 are 

estimated to experience difficulty in rising from a chair [128]. This difficulty has been 
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associated with the likelihood of falls [129, 130].  The Sit-to-Stand (STS) transition also been 

studied in association with stroke [131, 132], neuromuscular conditions [133], Alzheimer‘s 

[134] and chronic lower back pain [135]. A natural application therefore arises to detect 

impairment in mobility based on this transition. A further application is compliance with 

physiotherapy guidelines on the optimal method of transitioning for such patients. Examples of 

such transitional activities are shown in Figure 2.6. 

 

 

 

 

Figure 2.6Participant performing transitional activities demonstrating the gradual postural change between 

different stable states. 

 

While there is abundant clinical research in laboratory settings, there has been limited work in 

developing pervasive systems to detect transitions. Recently, a decision-tree classifier is trained 

to discriminate between sit-to-stand strategies based on single and multiple camera sensors in 

Allin and Mihailidis [136]. The strategies studied were divided into arm and foot strategies 

simulating movement patterns adopted by people suffering from impairment. Arm strategies 

include: no use of arms while rising, use of arms to push from the seat, and generating 

momentum by swinging the arms. Foot strategies were comprised of extension of the knee at 

80, 90 and 100 degrees. Using image features C4.5 based decision trees were trained to 

recognise strategies. The authors found it was possible to achieve high accuracy levels when 

multiple cameras were used.  
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Najafi et al. [137] use a gyroscope to record STS transition extracting the average and standard 

deviation of transition durations and the occurrence of abnormal successive transitions. The 

measures extracted were correlated with risk of fall determined by standard biomechanical 

metrics such as the Tinetti score [138]. In both of these studies, participants performed 

exclusively sit-to-stand transitions in controlled settings. A challenge in translating laboratory 

research into home environments lies in detecting transitions in activities of daily living, and 

analysing transitions performed at patient‘s own home environments. 

 

In Chapter 4 we propose a methodology for the detection and analysis of transitions in e-AR 

sensor data, applied to the tracking the recovery of knee-replacement surgery patients. Our 

methodology is not tailored towards any particular transitional activity, which is an advantage 

when compared to approaches [139, 140] that focus on detection of specific transitions using 

supervised classifiers. Furthermore we rely on a single unobtrusive sensor, designed for long-

term home-monitoring with a view towards proposing a procedure that can be used to record 

recovery from home with significantly reduced dependency on laboratory data collection. 

 

2.4.3 Modelling Behaviour 

 

With the emergence of pervasive sensing technologies, the goal of behaviour modelling is 

shifting from modelling and detecting individual activities to understanding the typical structure 

of a person‘s activities. One instance of this is capturing daily routines. Living beings have 

circadian rhythms [141], 24-h cycles in their behavioural, biochemical, and physiological 

processes. Healthy people have characteristic circadian rhythms, deviations from which can 

indicate a change in the state of health.  

 

Differentiation between behaviour and complex activity can be somewhat difficult, with the 

same activities being referred to in literature as activity and behaviour. Many techniques for 

behaviour modelling can be seen as extensions of hierarchical activity modelling techniques 

discussed in the last section. There is theoretical basis for grounding behaviour models in 

hierarchical approach as this mirrors research in the field of ethology (the biological study of 

behaviour) where hierarchy has been shown to be underlying at least certain kinds of behaviour. 

For further information on ethological and psychological methods for studying behaviour we 
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refer the reader to Dawkins [123] and Martin and Bateson [142]. Examples of such models of 

behaviour include Layered HMM [143] and Factorial HMM [144], compared in [145] and [6].  

 

A limitation of these approaches however, is the need to develop and train models in the first 

place. Furthermore, since there is considerable variety in the behaviour expressed by an 

individual, and each type of behaviour has significant complexity, specialised models may be 

needed for particular activities. For example Chen et al. [144] devise a Factorial HMM method 

for analysing gait. While this allows very detailed analysis, it may be impractical to apply this in 

a pervasive home-monitoring scenario, given the volume of the data, and the lack of access to 

detailed annotations. 

 

A related effort to discover social behaviour using simple sensors was conducted by Wren [146] 

where simple ambient sensor firings were used in a crowded office environment. The challenge 

here lies in the discovery of more complex information from sensor events in a complex 

environment. The first step undertaken by the researchers was to uncover a map of the sensors 

by analysing the co-occurrence of sensor activations. Using Multi-Dimensional Scaling on a 

matrix of Co-Occurrence times, the approximate locations of the sensors was determined. The 

subsequently associated journeys undertaken by office workers were modelled as sequences 

using a composite hidden Markov model. A similarity matrix is first derived from paths taken in 

the office environment by training simple HMMs for each sequence. The HMMs thus trained 

are used to find sequence distances, similar to the approach taken by Atallah et al. [50]. These 

distances are used to cluster the sequences. Each of these clusters is used to train a composite 

HMM.  

 

Dynamic Bayesian Network (DBN) [147] represents sequences of variables in a Bayesian 

Network. HMMs are a simple form of DBN. The unrestricted nature of DBNs in general makes 

them hard to solve in certain configurations, for instance in the case of loopy graphs. DBN 

based solutions are particularly suitable for cases where multiple modalities need to be fused 

together to perform classification. For instance, DBN is used to model motion at multiple 

granularity in [148] by differentiating between global features and local features. Hierarchical 

DBNs can model complex activities by the composition of simpler activities at lower levels. 

Low-level activities can be automatically discovered using clustering, as in [149], where a  

hierarchical framework is applied to discover unusual behaviour from a video database. A 

hierarchical DBN is used in [150] to model travel using GPS readings, information from bus 
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stops, along with features extracted from the motion of the traveller (such as mode and velocity 

of transport).  

 

Behaviour is manifested over a period of time, and therefore methods designed to analyse large 

datasets, such as those developed in the field of data mining, can be utilised. Frequent pattern 

mining [151] is one such problem in data mining, related to searching for frequently repeating 

patterns in a database. A pattern is considered to be frequent if its occurrence in the database 

(called support) is above a user-specified threshold. The first applications of these algorithms 

focused on supermarket data, which is one reason why the algorithms are also known as 

‗market-basket analysis‘. This problem has exponential complexity if performed with a brute 

force search. Algorithms for efficiently solving the problem focus on pruning the search space. 

Extensions may also seek to find more complex patterns; for instance Lühr et al. [109] use an 

extension of frequent pattern mining in a smart home to model temporal relationships in 

activities. Data are obtained from activations on object sensors. Associations between these 

activations are mined over the long term, and the extended mining algorithm allows these 

associations to span database transactions.  

 

An example of these approaches can be learning typical paths taken by users in moving between 

rooms or the sequence of objects activated during a typical kitchen task. One of the key 

problems in behaviour profiling is to determine which manifestations of behaviour actually 

indicate the onset of an adverse event as opposed to normal variations. This relates to the 

concept of Interestingness, i.e., the importance of discovered knowledge to the application at 

hand. Ohsaki et al. [152] consider this with respect to the analysis of medical data. Recent work 

by Jorosziewicz [153] has sought to improve the accuracy of automatic approaches based on 

pattern mining by involving a domain expert when to select interesting sequences from 

automatically found patterns to train HMMs interactively. While the authors proposed the 

technique for mining web logs and protein databases, characterising the utility of patterns in a 

BSN environment is essential to train models to be used by non-specialist users.  

 

Structure in social behaviour was identified in [154] by using mobile-phone data during the 

`reality mining' study. The study utilised Bluetooth, phone usage and location data, and 

extracted principal components of the dataset. A weighted sum of these components 

approximated an individual‘s behaviour. The study used this measure, termed Eigenbehaviours, 
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to cluster people and analyse social groups, for instance to analyse friendship and work group 

affiliations.  

 

Routine activity is an important aspect of behaviour. One of the main influences on daily routine 

is the circadian rhythm, a natural regulation of hormones that determine rest and activity cycles. 

There has been research primarily in the smart-home area for associating ambient sensor 

statistics with the circadian rhythm, with anomalies detected for significantly large variations in 

the expected activity [155, 156]. 

 

2.4.4 Detecting Anomalous Behaviour 

 

Anomaly detection algorithms seek to find deviation from normal behaviour in a data stream. It 

involves detecting meaningful change in the activities, transitional activities, or routines of the 

user. The variable nature of human activity and behaviour makes this is a challenging area of 

research. 

 

The movement of a user from room to room can be represented as a sequence of symbols on a  

temporal grid. Two such activity grids are shown in Figure 2.7 to illustrate different behaviours. 

Figure 2.7 (a) shows the grid for a user who spends most of their time in the living room and 

kitchen while Figure 2.7 (b) shows the grid for a user who stays either the bedroom or toilet. 

The latter case may be indicative of a health issue in need of intervention. One complication in 

comparing behaviours is the alignment of sensor sequences. Participants may perform the same 

behaviour differently, or with small variations. In this case it is a challenge to compare the 

difference between sequences of sensor data. One approach is to find the distance between 

sequences using HMMs. For each sequence, an HMM is trained on a selected reference 

sequence from the dataset. These trained HMMs can then be used to analyse new sequences 

based on the distance of the given sequence to the trained models. Sequences with large 

distances can be identified as anomalous. Another commonly used technique for aligning 

sequences is to use Dynamic Time Warping (DTW) [157], which finds the optimal match 

between two sequences through a recursive application of simple operations such as insertion of 

the same component, or deletion of a component. DTW has been used in the context of anomaly 

detection by Kan and Dailey [158] to detect anomalous behaviour in a video surveillance system 

to cluster sequences of features extracted from video data before training an HMM to model the 
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clusters. DTW has also been used for activity recognition in ambient sensing environments 

[159] by matching low-level sensor activation sequences with templates, a technique that allows 

for variations in the activation sequences and stored templates due to noise. 

 

 

 

 

Figure 2.7Intuitive activity grids used to visualise a user‘s overall behaviour pattern in a home environment. 

These two simulated activity grids illustrate contrasting behavioural patterns: (a) the user spends most time 

in the living room and (b) more time is spent in the bedroom and toilet indicating anomalous behaviour. 

 

Li and Parker [160] utilise a Fuzzy-ART (adaptive resonance theory) neural network 

supplemented with a Markov model to detect abnormal events generated by ambient sensors. 

The neural network categorises raw sensor data, with each category representing a state in the 

Markov model, which then learns the state transitions during normal behaviour. Detection of 

anomalous behaviour is based on state occupancy time by recording the average time spent in 

each state during normal behaviour. 

 

One such approach is a behaviour profiling system for elderly patients residing in a smart home 

[161]. The smart home is equipped with ambient pyroelectric (i.e., location) sensors tracking the 

time a patient spends in each room. Behaviour is tracked by maintaining a Gaussian mixture 

model (GMM) of room occupancy duration at different time periods. Changes are detected at 

two scales. The first is at the level of ―local anomaly‖ where an outlier detection algorithm is 

used to detect behaviours with unlikely timing or duration. For example, an inordinate time 

spent in the bedroom would be classified as an anomaly. The second is a ―global anomaly‖ 

where changes in the model are tracked over longer time periods. Daily differences in behaviour 

are computed and an anomaly is flagged if a sudden change in one day exceeds a threshold after 

discounting for seasonal variations.  

(a) (b) 
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Virone et al. [155] associate circadian activity statistics of elderly participants in a smart home 

with every hour of the day, while Barger et al. [156], while not associating explicit statistics 

with every hour, also begin their analysis with clusterings of hourly firings of ambient sensor 

data. Generating hourly mean and standard deviation values for activity levels with a view of 

approximating circadian rhythms may be too limited a framework to account for real-life 

variability in routines. This variability can stem from many factors, such as social, personal, and 

environmental. Models that articulate routines only in terms of circadian activity conceptually 

ignore such factors. Night-shift workers are an example where circadian activity is not the main 

driver of routine activity. Furthermore, hourly statistics impose artificially rigid boundaries on 

human schedules, which are actually comprised of activity patterns that often have irregular 

starting times and variable duration. This exaggerates differences between similar, but 

temporally shifted routines. Finally, human behaviour can be expressed only to a limited extent 

in terms of average hourly activity or room occupancy times. While such metrics may be 

reasonable for simpler ambient sensors such as PIR, more expressive models should be 

considered for camera and wearable sensors that provide more information. In Chapters 5-7, we 

will develop a multi-resolution data structure for routine behaviour that associates time periods 

with patterns of activity. 

 

The distance of a data-point from the ‗normal‘ distribution can be measured in different ways. 

The simplest distance utilised, which assumes a spherical distribution of data is the Euclidean 

distance, which assumes spherical data distribution. A more powerful technique is the 

Mahalanobis distance, which takes into account the covariance of the data. If the covariance 

matrix is an identity matrix, the Mahalanobis distance reduces to the Euclidean distance. 

Formally for a group of size p  with mean 
1 2 3

( , , , . . . . . , )
T

p
      and covariance matrix 

 the Mahalanobis distance 
M

D is defined for a data point 
1 2 3

( , , , ...., )
T

p
x x x x x  as: 

 

1
( ) ( ) ( )

T

M
D x x x 


    

 

Tarassenko et al. model a dataset using a GMM, and use the smallest Mahalanobis distance 

between a data-point and existing Gaussian mixtures to determine whether or not to add a 

Gaussian unit during training. Their method has been demonstrated to work with high accuracy 

to detect epileptic seizures based on EEG data [162].    

 

(2.2) 
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Parzen windows approximate a training dataset with a linear combination of kernels, which are 

frequently chosen to be Gaussians, centred on observation points. Formally, for 
1 2 3
, , , ...,

N
x x x x

variables belonging to distribution f , the Parzen window approximation is 
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N

i

h

i

x x
f x

N h h





   

 

where h is the bandwidth or smoothing parameter and   is a kernel function. This 

approximation is particularly useful when there is not enough training data to accurately 

construct parametric models such as GMM. Tarassenko [163] used Parzen windows for the 

detection of masses in mammograms. The method has also been applied for network intrusion 

[164]. 

 

2.5 Conclusion 

 

As pervasive systems move from research laboratories into people‘s homes and from toy 

problems to addressing real health-care concerns, key areas of research emerge in applying 

sensor data to profile behaviour.  

 

The first problem any data-mining algorithm has to contend with is the problem of data scale, 

and limited annotation. Conversely, it is not always feasible to deploy completely automatic 

methods, as the domain knowledge and end-user status belongs with groups that are unlikely to 

understand abstract labels. Algorithms should seek to combine supervised with unsupervised 

machine learning methods.  The trade-off between the difficulty of precise annotations and the 

comprehensibility of algorithm output needs to be carefully explored, with real-world 

deployment scenarios in mind.  

 

There is considerable research towards developing scalable algorithms to detect and track 

behaviour from wearable and ambient sensors, with applications ranging from the detection of 

atomic activities, to the modelling of complex behaviour. An emerging area in this field is that 

of transitional activities: subtle activities that occur at the boundaries of commonly studied 

activities of daily living. Once such activities have been classified, a subsequent step is the 

analysis of change in their performance over time, which can indicate the presence or 

exacerbation of a patient condition requiring intervention. 

(2.3) 
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Hierarchical models can abstract from simple to more complex activities, leading the way to the 

analysis of longer term behaviour. It is necessary to cater for the scale of the data as pervasive 

sensing systems collect data over larger durations. Data structures that present the summary of 

the user‘s behaviour without necessitating the reprocessing of the activity stream will need to be 

developed. Such structures will need to serve the dual purpose of compressing the activity 

stream as well as enabling mechanisms for the long-term profiling and classification of the 

participant‘s routines. 

 

The purpose of this thesis is to propose techniques for the analysis of wearable sensor data, 

supplemented with location information, to analyse behaviour at the small scale of transitional 

activities, to long-term mining of behaviours to detect changes in routine. One of the main goals 

will be the scalability of methods, and the reliance on semi-supervised approaches by combining 

the strengths of clustering with supervised learning based classification. One of the main goals 

of long-term care is the timely provision of emergency care. An important use-case is therefore 

the detection of anomalous activity or behaviour. This applies equally to short-term activities 

and long-term behaviour.  We will therefore demonstrate at each stage of our analysis the ability 

to detect unusual patterns in the sensor data.  

 

In the next chapter we concretise the above surveyed research with a case study of a medical 

application that highlights the strengths of existing research. The study is based on an existing 

laboratory dataset. Aspects of the study will allow us to highlight opportunities for research that 

this thesis will pursue. 
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Chapter 3 

Detection and Classification of 
Activities of Daily Living 

 

 

 

 

 

3.1 Introduction 

 

In the last chapter, we have outlined the key technical challenges related to activity monitoring 

and behaviour profiling with pervasive sensing. In this chapter we will concretise some of the 

concepts reviewed in the last chapter by applying machine learning and pattern recognition 

techniques in controlled laboratory experiments. The purpose of this chapter is to present some 

of the main data processing techniques that will be used in the remainder of this dissertation.  

 

Machine learning approaches for activity analysis typically adopt a number of standard steps, 

which include both supervised and unsupervised techniques. For supervised classification 

techniques, analysis usually begins with visual inspection of the raw data, to select segments of 

the data most relevant for the analysis goal. This introduces a complexity when considering 

large volumes of data. Due to resource constraints, it may only be feasible to examine and label 

a small subset of the data. Furthermore, manual labelling introduces the risk of human error. 

Several automatic segmentation techniques have been proposed to deal with this problem, 

offering the possibility of a ‗mixed mode‘, whereby segmentation and even labelling task is 

partially done automatically. 

 

Once data is labelled and segmented, the first consideration is selecting the most useful 

information from the raw-data. As discussed in the previous chapter, a large number of features 

can be extracted from the sensor signal. The goal of feature extraction is to accurately and 
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concisely represent the original information while maximising discriminative power. 

Subsequent classification and modelling of activity may operate on the complete set of features, 

or may seek to reduce it by using class labels to select the most relevant features. This is 

referred to as feature selection. For instance, Atallah et al. [97] use feature selection to select the 

optimal wavelet scales for classifying changes in gait. Dimensionality reduction algorithms 

complement feature selection by mapping the full feature space into a space that is both lower in 

dimension, and concisely representative of the true or intrinsic dimensionality of the dataset. 

The algorithms typically do not require class labels, which is an attractive property in 

continuous home-monitoring scenarios. Related to the problem of feature selection is that of 

sensor placement. Sensor placement studies, such as [99] have classified body locations based 

on classification accuracy for ADL recognition using inertial sensing. In addition to data 

quality, however, where the sensor is placed on the body is determined by comfort and 

ergonomics and safety. Complex systems involving multiple sensors may discourage adoption. 

For this reason, in this thesis we will focus on developing analysis based on single devices. 

Although multiple sensors are used in Chapter 6, they reside on the same device. 

  

If multiple sensors are being used, one design consideration is the stage at which the signals can 

be fused to produce a consolidated input for analysis. There are three stages where the fusion is 

typically performed: 

 

 Data level – The raw sensor signals may be aligned based on the timestamp. This is also 

referred to as data alignment.  The consolidated data is used to generate features. An 

example of this is in King et al. [165], where data from multiple sensors is synchronised 

before features are extracted. 

 

 Feature level – Features may be extracted separately from the sensor signals and 

consolidated before classification or clustering, as in the approach taken by Pradhan and 

Prabhakarn [166] the fusion of body-worn accelerometer and orientation sensor derived 

features for human activity or 

 

 Decision level – Classifiers may be trained separately for each sensor, with a higher 

level classifier for fusing classification labels from each source. This is the approach 

taken by [167] for the correlation of ambient and wearable sensor data streams. 
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In addition to these commonly used techniques, it is also possible to utilise information from a 

sensor, or a sensor channel to improve the quality of the data from other sensors. For instance, 

Atallah et al. [74] use a Gaussian process to correct for noise or missing data in one channel 

from other channels. Similarly, Talukder et al. [168], balance the bias induced from low-quality, 

inexpensive sensing and conserve power of high-quality, expensive sensors using the covariance 

of the sensors for specific participant states.  

 

The next step in the machine learning pipeline is to apply classification or clustering algorithms 

on the features extracted from the data. The choice between classification and clustering is a 

trade-off between specificity of analysis output versus independence from the annotation. 

Within these two broad categories, there is significant overlap of methodologies, and 

specialisation of algorithms for particular applications.  

 

Machine learning algorithms tend to draw on extensively developed sources: function 

approximation algorithms such as artificial neural networks; statistical inference based 

algorithms most significantly Bayesian learning; decision tree based algorithms such as C4.5. If 

a model for generating new data is included in the algorithms, they are referred to as generative 

models. Examples of this include Gaussian Mixture Models, Hidden Markov Models, 

Probabilistic Context Free Grammars. If the probability distribution of the labels to data is 

modelled directly, as in neural networks or decision trees, the algorithms are known as 

discriminative models. While there are known algorithms that outperform others for specific 

applications, it is difficult to know beforehand which algorithm will be best suited for a given 

machine learning application. 

 

In summary the typical activity detection pipeline, shown in Figure 3.1, broadly consists of: 

 

1) Preparing sensor data for analysis, performing preprocessing (e.g. fusion, filtering) 

if necessary. 

2) Extracting features from the raw sensor data, and optionally reducing the 

dimensionality of the data fed to subsequent steps using feature selection or 

dimensionality reduction algorithms. 

3) Generate labels for the data using classification or clustering algorithms. 
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Figure 3.1Typical machine learning pipeline in machine learning applications. ‗Data‘ refers to sensor data, 

or features extracted from sensor data. Typically preprocessing is required before the data can be further 

analysed. Feature analysis can consist of selecting optimal feature sets or reducing the dimensionality after 

feature extraction. Finally, machine learning tools can be applied for particular applications. 

 

Once labels are generated, the goal of the analysis is to proceed from a stream of labels to a 

higher level output. This can be in the form of information richer labels; for instance the change 

between sequences such as ―Walking, Standing, Sitting, Sitting, Standing, Walking‖ to ―Going 

home‖. A number of probabilistic algorithm based techniques were surveyed for this analysis in 

Chapter 2.  

 

In this section we will apply some of the techniques surveyed so far to concrete problems. This 

will illustrate the strengths of current research and allow us to highlight the novelty of research 

proposed in the remaining chapters. Home-based healthcare and profiling wellbeing are target 

applications of our work. To demonstrate the use of sensing for such applications we 

demonstrate the detection of disability from profiling of activities of daily living, in a simulated 

home environment. 
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3.2 Activity Detection and Classification 

 

In this section, we will examine in depth some of the components of the machine learning 

pipeline. The techniques used will be briefly reviewed, with references provided for further 

reading. We will also describe our sensing devices, the features extracted from the raw sensor, 

and the subsequent learning algorithms applied to the sensor data.  

 

3.2.1 Sensing Hardware 

 

 

 

 

Figure 3.2Participant wearing e-AR sensor (circled in red and shown separately), with raw sensor data 

showing the participant sitting, transitioning, walking to TV, transitioning to sitting again. Regions for 

sitting, transitioning and walking are coloured on the data plot as blue, brown and red respectively. 

 

The main device used for data collection in our experiments is the e-AR sensor [4], which is a 

three-axis accelerometer built on the Body Sensor Network (BSN) sensing platform. The typical 

data rate for experiments in this research is 50 Hz. The e-AR sensor is inspired from the human 

body‘s natural mechanisms for posture and balance control. Evolution has determined the 

location of the ears as very well placed for feedback to the brain on movement. Yang et al. [1] 

describe the propagation of the shock wave along the spine, which is the acceleration picked up 
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by the accelerometer. Furthermore, changes in orientation can also be found in the e-AR data, 

based on the mean of the sensor channels.  

 

Figure 3.2 shows an example of sensor data where a participant is watching TV while sitting, 

gets up to change the channel, and sits back down. The moving to TV and changing channels is 

a complex activity, involving a combination of walking and manipulation of the TV‘s buttons.  

 

The sensor signal also shows the transitional periods that are of interest but have received 

relatively little research focus in comparison to general activity recognition. One difficulty for 

automatic analysis of such brief activities is that it is difficult to label them accurately, even in 

laboratory settings. In the dataset considered in this chapter, for instance, the experiment did not 

label transitional activities. In Chapter 4, we propose a methodology for automatically 

segmenting transitional activities for analysis.  

 

3.2.2 Feature Extraction 

 

The signal is partitioned using the sliding window technique, with each window corresponding 

to two seconds of data, sliding every half a second. For each window, we extract commonly 

used features for studying activities and change in activities. The features extracted from each 

channel are summarised in Table 3.1. In addition to these, three cross-channel features are also 

extracted. The features can be broadly categorised as statistical and wavelet. Statistical features 

are widely used in activity recognition and have previously been used for general activity 

recognition [62, 99, 169] and also for the classification of particular activities such as gait [170]. 

Wavelet based features have also been used to study gait and changes in gait [97] in addition to 

general activity recognition [171, 172]. As we will demonstrate visually, change in activity 

induces corresponding changes in each feature. These changes can sometimes be correlated, 

which means we do not gain information by including them in our analysis. It is difficult to 

predict beforehand which features will be effective for the classification task. In this chapter we 

consider simple approaches for reducing the dimensionality. In Chapter 4, an alternative 

approach will be explored, with the goal of uncovering parameters associated with human 

motion that underlie change in features. 
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Table 3.1Features extracted from e-AR sensor signal. 

The first statistical feature is signal energy. Given a window X comprised of n samples, the 

energy E can be computed as: 

The mean  of the window gives its average value, while the variance 2
  gives the average 

deviation from the mean. The sum of variances of the accelerometer signal has been used to 

characterise recovery from surgery in [115]. 

Skewness and Kurtosis are higher-order moments that can be used to characterise the 

asymmetry and shape of the signal relative to the normal distribution, and have been used for 

analysis of gait [173]. Skewness and kurtosis for a window are defined as: 

 

 

 

   

 

 

 

 

 

Figure 3.3 shows the statistical features extracted from the data shown in Figure 3.2. It is 

obvious that not all of the features are informative for a given activity. For instance, the signal 

mean is virtually flat for each channel, which can be understood as there being no baseline 

changes to the channel data, suggesting that orientation did not change. In contrast, both the 

Feature 

Number 
Channel Feature Feature Type 

1 Energy Statistical 

2 Mean Statistical 

       3 Variance Statistical 

4 Kurtosis Statistical 

       5 Skewness Statistical 

     6 - 13 Mean and Standard Deviation of wavelet coefficients, 

level 1-4 
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signal energy and the variance peak when the participant starts walking. This suggests that these 

features will be most useful for discriminating between these two activities. 

 

 

 

Figure 3.3Waveform statistics extracted from accelerometer sensor data shown in Figure 3.2. Energy and 

variance are strongly indicative of activity intensity. 

The second type of features extracted from the signal is of wavelet features. Wavelets extend 

FFT by incorporating frequency and time information through a multi-resolution data structure. 
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The signal is decomposed using a wavelet defined by a ‗mother wavelet‘ and a scale. The 

Discrete Wavelet Transform (DWT) is defined by the following equation: 

 

where s represents the scale, i  represents time, and  refers to the basis function defining the 

wavelet, which is called the mother function. Appendix B provides further background on 

wavelets. 

 

We compute the Haar wavelet coefficients across four time scales, as proposed by Atallah et al. 

[97] using a moving window. The coefficients are summarised using the mean and standard 

deviation of the wavelet coefficients. Therefore for each channel we have eight wavelet 

features.  Figure 3.4 shows the wavelet features computed for the sensor signals introduced in 

Figure 3.3. It is evident that the walking activity is separated from the sitting activities.  

 

 

Figure 3.4Features extracted from wavelet analysis. X and Y-axes plot window numbers and feature values 

respectively. At each level the mean and standard deviation from the wavelet coefficients is extracted as the 

feature. 
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The remaining features represent cross-channel information. The accelerometer data is 

significantly correlated for particular activities. We represent this using the covariance between 

each pair of channels. Given N observation the covariance between channels x  and y can be 

computed according to the equation 

 

The covariance features computed for the three sensor channels are shown in Figure 3.5. The 

covariance between channels 1 and 2 in 3.5 (a) suggests an association with the sitting down 

transition. On the other hand, none of the covariance features can be used to reliably detect the 

walking activity. 

 

 

Figure 3.5Pairs of sensor channels and their associated covariances, channels 1 and 2 (a), 1 and 3 (b) and 2 

and 3 (c). 
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With the features discussed above extracted per-channel, the dimensionality of the data is 

considerable. In addition to increasing computational complexity, higher dimensional data 

requires more labelling in order to train reliable classifiers. There is a significant degree of 

redundancy in the features, as can be seen in Figure 3.4. The features for different levels of 

wavelet classification are highly correlated for the activity shown.  

 

Therefore it is useful to reduce the feature space, either by selecting features most useful for 

classification, or transforming the data into a reduced dimensionality space that preserves the 

properties of the full feature set.  

 

3.2.3 Dimensionality Reduction 

 

A category of algorithms known as feature selection can be used to select the optimal signals for 

a given classification task. As the search space is comprised of every combination of features 

available, increasing dimensionality results in drastically large search spaces. However, 

algorithms can utilise heuristics to approximate an optimal solution. For instance margin-based 

algorithms seek to maximise a margin-function that measures the confidence of a classifier in 

making a decision. Let w be a weight vector over a feature set P , the margin of a point x can 

be written as 

 

Near-hit and Near-miss points denote the nearest points to x with different and same labels 

respectively. A gradient based algorithm is used to find the weight vector w . The algorithm is 

of polynomial complexity. The Simba algorithm [98] has been used with success in previous 

work on e-AR sensor data analysis [99], and will be used in this work. 

 

An alternative to reducing the feature space is to morph the data into a lower-dimensionality 

space representing important variations in the dataset. One of the most commonly used 

algorithms for this is the Principal Components Analysis (PCA), which through an eign-

decomposition of the covariance matrix represents data in the dimensions of maximum 
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variance. A related algorithm that has been shown to be mathematically equivalent to PCA is 

Multidimensional Scaling (MDS). MDS projects data into a low-dimensional space that 

preserves the distance between each pair of points. When this distance is expressed as Euclidean 

distance, MDS is equivalent to PCA. Formally, given a set of n  objects with  i j


 the distance 

between points i and 
j
, MDS finds points in transformed space with distance i j

d
, minimising 

the following function, called the stress function 

We will present results using the MDS algorithm, and compare its effectiveness against the 

feature selection approach. 

 

3.2.4 Generating Class Labels 

 

In machine learning, if class labels are available, we will train supervised learning based 

classifiers. Given participant variability, it is sometimes necessary to train per-participant 

classifiers, and per-activity classifiers. We present results for classifiers covering three broad 

areas of classification: inductive learning based decision trees, probabilistic inferencing based 

Naive Bayes algorithms and Artificial Neural Network based Multi-Layer Perceptrons. For a 

full review of these algorithms we refer the reader to [174, 175], a brief description follows: 

 

1) C4.5 –Decision tree algorithms construct a tree structure wherein the data is 

partitioned into sets, with inclusion criteria based on the value of attributes. The 

goal of the partition is to split into sets enriched in one class or the other. An 

example decision tree is shown in Figure 3.6 (a). A decision tree can be said to 

generalise the data if it is able to describe the data with a small number of decision 

nodes. The C4.5 algorithm [176] bases the partitioning criterion on the information 

theoretic concept of entropy: at each partition the partition is chosen to maximise 

the resulting information gain. The information gain for a set S on attribute A  is 

computed as follows: 

 

(3.9) 

1

2
2

,

2

,

( )
i j i j

i j

i j

i j

d

S tr e s s





 
 

 
 

 
 







68 

 

where
iA

S denotes the subset of S with 
i

A A , 
iA

S  denotes the frequency of 
iA

S  

in S and E denoting the entropy of the set. At every iteration the attribute 

maximising information gain is selected, resulting in a new branch of the tree, with 

the same procedure applied to child sets falling either side of the decision 

boundary. Decision tree classifiers are especially good for handling data with 

redundant or irrelevant features. At each decision point, the attribute providing the 

most information gain is used to partition the data. It can be seen as including a 

built-in feature selection mechanism. 

 

2) Naive Bayes – Naive Bayes [177] is a simple probabilistic classifier that can be 

trained very efficiently by exploiting strong independence assumptions between 

features. In practice these have been observed to outperform more complex 

classifiers for many problems [178]. Probabilistic classifiers seek to learn a 

conditional probability model 1 2
( | , . . . , )

m
p C A A A  of the class label C , over 

attributes 
1 2

, , . . . . .
m

A A A . By Bayes Rule the probability can be written as  

The complexity of Bayesian classification lies in computing 1 2
( , , ...., | )

m
P A A A C . 

The conditional independence assumption of Naive Bayes is that 

( | , ) ( | )
i j i

P A C A P A C  for any i and j . Given this independence assumption 

1 2
( , , ...., | )
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P A A A C is simplified as shown below: 
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where Z is a scaling constant. Figure 3.6 (b) shows an example of a Naive Bayes 

model. 

 

3) Multilayer Perceptron – Artificial Neural Networks (ANN) are computational 

models inspired from biological neural processes, where data flows through a 

connected network of distributed processing nodes. Learning algorithms train the 

network learn weights for the connections in order to meet the classification goal. 

Multilayer perceptron [175] is a feedforward artificial neural network with an input 

layer of neurons corresponding to the input data, one or more hidden layers, and an 

output layer corresponding to the classification or regression task. Hidden layers 

allow the neural network to learn non-linear decision boundaries. An example of 

this type of network is shown in Figure 3.6(c). The backpropagation algorithm is 

used to train the perceptron. A large number of parameters can influence the 

performance of the network, ranging from the number of hidden layers to the choice 

of transfer functions used in the neurons.  

 

 

Figure 3.6Examples of classification algorithms.  The decision tree (a) partitions the dataset at each node 

based on attribute values. The Naive Bayesian (b) model shows the conditional independence assumption 

graphically, where the arrows indicate dependence. The Multi-Layer Perceptron (c) shown here has a single 

hidden layer has an activation layer corresponding to the attributes, a single hidden layer with two neurons, 

and an output layer giving the classification.   
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3.3 Laboratory Experiment Setup for Activity Classification 

 

Two comparative simulated datasets of normal versus impaired mobility were acquired for this 

study. 16 participants (11 male, 5 female) performed a circuit comprising of household 

activities. Their average age was 27 years with a standard deviation of 1.86 years. In the first 

dataset participants performed the circuit naturally. For the second dataset lower limb mobility 

was mildly impaired using Tubigrip, and truncal mobility was impaired with an abdominal 

brace system (Orthomerica Air Back™ Spinal Support System).Participants wore an e-AR 

sensor on their right ear, secured using a headband. Figure 3.7 shows a participant wearing the 

impairment simulation system. Table 3.2 lists the activities analysed in this chapter, along with 

the instructions given to the participant. 

 

 

 

 

Figure 3.7 A participant performing the washing up activity while wearing the braces system designed to 

impair lower limb and truncal movement (a), and the corresponding sensor data (b). 
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Activity 

Number 

Activity 

Name 
Instructions Given to Participant 

1 Walking Walk to dining table holding a tray 

with food 

2 Eating Eat a banana sitting at dining table 

3 Drinking Drink tea, taking 5 sips 

4 Washing up Throw rubbish in bin and wash 

dishes 

5 Operating 

Television 

Stand up, go to television, change 

channel, sit down 

6 Use Stairs Climb a staircase with ten steps 

 

Table 3.2Activities performed by participants in the impairment detection experiment. The circuit was 

repeated with and without braces. 

3.4 Results 

 

Table 3.3 lists five features selected by Simba for the detection of impairment based on the 

specified activity. The algorithm was run for 500 iterations.  The higher moments of kurtosis 

and skewness are selected most often: the skewness of atleast one channel is selected for every 

activity.  In contrast, the wavelet features tend to be excluded, with only one feature selected for 

the six activities.  

 

 

Activity 

Number 
Features Selected 

1 Kurtosis (2), Covariance(1,2), Skewness (1), Covariance(2,3), Kurtosis (1) 

2 Kurtosis (1), Kurtosis (2), Skewness(1), Skewness (2), Mean(3) 

3 Covariance(1,2), Covariance(1,3), Skewness (1), Kurtosis (1),  Mean(3) 

4 Kurtosis (2), Skewness (2), Mean (1), Skewness (1), Mean (3) 

5 Variance (2), Mean (1), Skewness (3), Skewness(1), Mean(3) 

6 Variance (1), Wavelet L1 Mean (1), Kurtosis (3), Skewness (1), Mean (3) 

 

Table 3.3Features selected by the Simba algorithm for classification of impairment. The channels from 

which the feature is extracted is specified in brackets. For example Kurtosis (2) refers to the kurtosis of 

channel 2, while Covariance(2,3) refers to covariance between channels 2 and 3. 
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Figure 3.8 shows Simba and PCA reduced features for each activity.  Visually, neither 

algorithm performs consistently better than the other, although the impairment labelled data 

may be better visible for a particular instance in the table; for example PCA offers better 

separation than Simba for the walking activity, while being more mixed for the washing up 

activity. On the whole it is clear that in three dimensions neither approach is able to separate the 

classes. One reason for this is that participants adapted differently to the impairment. When 

participants are plotted separately, the normal and impaired data points cluster more distinctly 

for a number of activities, as shown in Figure 3.9. While training a single classifier for all 

participants enables deployment without the need for retraining for new participants, 

customizing the algorithms for each participant is likely to improve accuracy. We will 

demonstrate this quantitatively in the next section. 

 

 

Figure 3.8Impairment detection data in first three dimensions of reduced feature space for all participants 

together. Red indicates simulated impairment, while blue indicates normal data.  
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Figure 3.9Impairment detection data in first three dimensions of reduced feature space for a single 

participant. Red indicates simulated impairment, while blue indicates normal data. Impaired and normal 

data points cluster more distinctly compared to the full feature space shown in Figure 3.9. 

 

3.4.1 Classification of Impairment 

 

C4.5, Naive Bayes, and MLP classifiers were separately used to detect impairment in 

performing each activity, with ten folds cross validation.  Results for PCA and Simba reduced 

features are shown in Figures 3.10 (a) and (b) respectively. In general using Simba features 

results in an average 9.9 % increase in classification accuracy, which is a significant 

improvement. With the exception of the walking activity, where there is a noticeable decrease in 

performance relative to the PCA derived features. For both PCA and Simba features, C4.5 and 

MLP classifiers have similar performance, and generally outperform Naive Bayes classifiers. 
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Figure 3.10Classification accuracy for impairment detection using PCA reduced features (a) and Simba 

selected features (b). Using Simba features leads to an average 10% increase in accuracy. 

 

 

3.4.2 Impact of Dimensionality 

 

To investigate whether increasing the number of features selected by Simba impacts the 

classification performance a C4.5 classifier was trained while varying the number of features. 

The results are shown in Figure 3.11. In general there is a small increase in classification 

accuracy, although as in the case of the ‗Use Stairs‘ activity, adding features can result in a 

decrease in performance. There is a significant increase in the classification accuracy for the 

walking activity. This is to be expected, as the initial accuracy was poor. This is an instance 
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where information from more features is needed to correctly classify the data, which is why 

PCA performed better than Simba for this activity.  

 

 

 

Figure 3.11Classification accuracy of C4.5 classifier with increasing number of features selected using the 

Simba algorithm. In general there is a small gain in classification accuracy with increasing number of 

features. 

 

3.5 Conclusions 

 

In this chapter, we have applied components of a machine learning pipeline to sensor data from 

an impairment detection study. The analysis focused on activities of daily living performed in a 

simulated home environment. The results show that it is possible to detect impairment using off 

the shelf classification algorithms. There is also significant value in reducing the number of 

features. Not only may this improve classification accuracy, it is also beneficial from a systems 

perspective to compute, transmit and store a smaller number of features.  

 

While analysis of ADL for impairment is promising, there are a number of directions in which 

research can be further developed. Changes in activity are usually marked as instantaneous in 

usual data collection protocols. For example, in the dataset considered in this chapter, the 

participant was asked to get up from sitting and start walking. Whereas this was labelled as a 

single activity, this is in fact comprised of two activities: the walking activity and a transition 

between sitting and standing. Not only is it more correct to consider this transition separate from 
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walking, the nature of the transition can be medically relevant. Labelling such short lived 

transitions accurately as it occurs is difficult. While it is possible to retrospectively label the 

data, the process is prone to errors in judgement, and requires an expert to gauge where a 

transition is occurring in the sensor signal. In Chapter 4 we propose a methodology for the 

automatic detection and analysis of such transitional activities. The medical relevance of 

transitional activities will be demonstrated by tracking the change in the performance of specific 

transitions by participants recovering from a knee replacement surgery.  

 

A further direction of research lies in progressing from analysis of activity at small scales to the 

mining of historical activity data. This is the type of data that can be expected to result from 

deployments of pervasive sensing systems in real-world scenarios. As there is likely to be little 

annotation available, an exploratory machine learning strategy will need to be employed. In 

Chapter 5, we propose a data-mining based technique for representing an individual‘s daily 

routine from a database of activity. The proposed analysis algorithms are adapted to non-

specialised sensors on smartphones in Chapter 6.  Finally in Chapter 7 quantitative analysis of 

routine is demonstrated.  
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Chapter 4 

Analysing Transitional Activities  

 

 

4.1 Introduction 

 

LTHOUGH the use of wearable sensors for activity classification has been explored 

extensively in recent years, as mentioned in the last chapter that an area that has received 

relatively little attention is transitions between commonly studied activities. For example, many 

elderly people face difficulties in rising from a chair [179]. As functional mobility is impaired 

with age, disease, disability or injury, transitional movements such as these can become more 

laboured and distinct. The ability to perform transitions with ease has been suggested as a target 

for rehabilitation [180, 181] and as an indicator for musculoskeletal strength and motion 

coordination [131]. Not only can they be used to indicate restrictive and impairing quality of 

life, they can also be used to infer the status of health and the onset of certain age related 

musculoskeletal and neuro-degenerative diseases. For example, transitions from sitting to 

standing have been shown to be indicative of the likelihood of falls [130, 182]. They have also 

been studied in association with stroke [183, 184], neuromuscular conditions [133], and found 

to be an indicator of difficulty in movement due to obesity [185].   

 

Thus far, clinical and rehabilitation studies typically focus on Sit-to-Stand transitions conducted 

in laboratory and hospital settings. These rely on expensive, specialised equipment often with 

human observations included in the assessment. A goal of pervasive sensing research is to 

translate such research into home environments, reducing both the cost of sensors and human 

intervention. In previous work, Allin and Mihailidis [136, 186] developed such a video-based 

A 
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system using multiple web-cameras to study the kinematics of the Sit-to-Stand transition in 

‗natural‘ environments. Other systems have also been developed using generic wearable sensors 

[139, 140, 187]. These studies typically involve multiple sensors, and the analysis focuses on 

the detection of specific transitions. 

 

In this chapter, we will extend previous research by focusing on transitional activity recognition 

and present a framework for both detection and analysis of transitional activities. The 

framework uses a single ear-worn Body Sensor Network (BSN) [115] node, and is applied to 

tracking post-operative recovery and impairment detection. Figure 4.1 shows data from the BSN 

node as a participant performs the transition from standing to sitting. 

 

 

 

Figure 4.1BSN sensor data from a participant performing the Stand-to-Sit transition. Data morphs from 

standing to sitting in a distinctive pattern. 
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It is important to note that transitions between activities in natural behaviour may not be sharp 

(or instantaneous) with distinctive boundaries. Instead, one activity may morph into another. 

Typically, tools developed for experimental data collection allow the user to place markers in 

the data stream as a means of ground truth during the course of the experiment. For prolonged 

transitions, the marking of the boundary can be subjective and error-prone. One of the goals of 

this study is therefore to segment activities and transitions automatically, thus reducing 

subjective error and improving subsequent analysis.  

 

The purpose of this chapter is to describe a semi-supervised approach for flexible yet consistent 

transitional activity recognition and analysis. The analysis will be applied to the problem of 

impairment detection and postoperative recovery. Unsupervised and semi-supervised techniques 

are attractive in that the structure in the data can be effectively utilised, decreasing the reliance 

on explicit labels. The main contributions of this chapter can be summarised as follows: 

 

1) Transitional activity detection using a single ear-worn sensor from un-segmented 

data. 

2) The development of a framework for categorisation and analysis of transitions in 

manifold space. 

3) Application of framework to impairment and post-operative recovery studies. 

 

 

4.2 Analysis Framework for Transitional Activity Recognition 

 

Pervasive sensing environments generate a significant volume of data. As described in Section 

3.2, a large number of features can be computed from the raw sensor signal. It may not be 

possible to manually annotate such data, particularly after deployment in homes. With the 

limited availability of class labels, it is important to maximise what can be learnt from the 

structure of the data itself, and to perform effective classification it is important to map data into 

dimensions that reflect its intrinsic variations. In this section we develop such a framework for 

transitional activities. 

 

Technically, the proposed framework consists of the following main steps:   

1) Feature Extraction: Features are extracted from fixed size windows of data.  
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2) Transition Detection – Transitions are detected using a spectral bisection based 

algorithm 

3) Dimensionality Reduction: Transitional activities are embedded in a lower-

dimensional space reflecting each activity‘s intrinsic structure.  

4) Transition Categorisation and Analysis: Utilizing supervised learning methods 

transitions found in step 3 are placed into categories and analysed for specific 

healthcare applications.  

 

Until Step 4 the analysis performed is without the use of class labels. Our analysis is enabled by 

the modelling of activity using the geometric concept of manifolds, both for detecting 

transitions in activity and reducing dimensionality. In the following manifolds are briefly 

introduced, followed by their use for transition detection and dimensionality reduction. 

 

 

Figure 4.2Overview of Transition detection and analysis methodology, with unsupervised learning based 

preprocessing before classification and labelling of transitions is performed. 

 

4.3 Manifold modelling of Transitional Activity 

 

Structure in sensor signals recording human activity may result from constraints on how 

activities can be performed by participants. Such structures can be modelled using the geometric 
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concept of manifolds. Points in feature space are mapped to a manifold. The location of each 

point on this manifold expresses its relationship to the dataset as a whole. Regions of the 

manifold will be associated with types of activity. Transitions can be detected by segmenting 

out strongly clustered regions. 

 

The coordinate system of the manifold can be expressed in considerably fewer dimensions than 

the feature space, depending on the complexity of the dataset. This is referred to as the intrinsic 

dimensionality of the data. Manifold embedding algorithms, such as Isomap [188], map high-

dimensional data into this low-dimensional manifold space.  We use a manifold representation 

in order to uncover lower-dimensional, intrinsic structure from features extracted from sensor 

data, with the coordinates of this structure representing the dimensions of transitional activity. 

 

 

4.3.1 Representing Activity with Manifolds 

 

Manifolds are topological spaces that can express complex geometrical structure with well-

understood mathematical properties. The space near each point is locally Euclidean, referred to 

as its neighbourhood. The global structure of manifolds comprised of such points can be 

complicated. For instance, Osinga and Krauskopt [189] represent the structure of chaotic 

systems using a manifold.  Using a manifold model, they were able to construct a three 

dimensional object useful for understanding and explaining the dynamics of the Lorenz 

equations modelling weather systems. Manifold representations are useful where complex data 

is generated by a small number of parameters. For instance, while Lorenz Equations generate 

chaotic systems, the equations are described by three parameters. The Euclidean 

neighbourhoods around each point are in the space of these parameters, which comprise the 

dimensionality of the manifold. A fuller review of manifolds is provided in Appendix A. 

 

Euclidean neighbourhoods in sensor data can be modelled by selecting for each point either a 

fixed number of points closest to it, or by selecting points within a fixed radius. A distance 

matrix is computed from the points in feature space. As it is difficult to specify a neighbourhood 

radius beforehand, the k nearest neighbours around each point are selected. This is a parameter 

in our framework that needs be selected and validated empirically.  
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Points lying close together on an activity manifold represent data-points generated from similar 

sensor signals. A strongly connected region of the manifold may represent signals characteristic 

of a particular type of activity. Activity transitions are detected from the movement of 

participants from one region of the manifold to another. Figure 4.3 (a) shows signals of an 

accelerometer worn by a participant approaching a bed and lying down. The manifold 

corresponding to this is shown in Figure 4.3 (b), with distinct regions for each activity, and a 

transitional region connecting them. These regions of the manifold can be found using the 

algorithm described in the next section. 

 

 

 

 

Figure 4.3Participant approaches bed and lies down: sensor signal (a) and in a manifold visualisation (b). 

The two activities cluster distinctly in manifold space. 
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4.4 Detecting Transitional Activity 

 

The neighbourhoods of a manifold can be represented as a graph, where data points correspond 

to vertices, edges correspond to a neighbourhood relationship, and edge weights correspond to 

distances. Strongly connected regions of the manifold can be found by partitioning this graph. 

 

Graph Partitioning is the problem of dividing a graph into k  parts, such that the parts are close 

to having the same number of vertices, and there are minimum connections between the pieces. 

Given a graph with vertices
1 2 3

{ , , , ......, }
n

V v v v v , and an edge set E  with W specifying the 

weight for each edge, find  k  disjoint subsets of V whose union equals V , minimising the 

following cost function produces the optimal partition. 

 

,

( , )
a b a b

ij

V V i V j V

i j E

C o st W

  



    

Graph Partitioning is an NP-Complete problem. Heuristic techniques exist for efficiently 

computing reasonable partitions however, as described below. 

 

Spectral Graph Theory[190] analyses graphs in terms of their eigenvalues and eigenvectors. 

Given the adjacency matrix A  we can compute the degree matrix D , which is a diagonal matrix 

such that an entry 
ii

d  corresponds to the sum of edge weights incident on vertex i . The graph 

Laplacian is defined as a matrix with entries as per the definition: 

 

 if  

1  if   a n d  ( , )

0  o th e rw ise

ii

ij

d i j

L i j i j E




   




 

L can be computed as L D A  .The spectral properties of L are well-studied [190-192]. Let 
1



, 
2

 ,...,
n

 be ordered eigenvalues of L . Let the corresponding eigenvectors be 
1

y , 
2

y ,...,
n

y . For 

a fully connected graph the first eigenvalue 
1

  is zero, with the corresponding eigenvector equal 

to a vector of ones. The second eigenvalue 
2

 , and corresponding eigenvector 
2

y  have been 

studied by Fiedler [191] and have found to have properties useful for studying the graph‘s 

connectivity. 
2

y is sometimes referred to as the Fiedler vector. Fiedler proved that sets 
1

V  and 
2

V

defined as 

 

(4.1) 

   (4.2) 
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1 2

2 2

{ , ( ) 0}

{ , ( ) 0}

V v V y v

V v V y v

  

  
 

are both connected subgraphs. Therefore using the Fiedler vector we can partition the graph into 

components that will be connected themselves. Furthermore, it is however possible to 

demonstrate that these components are also good approximations of the optimal bisection. 

 

Assuming we have two partitions 
1

P  and 
2

P  let p  be a vector such that 

 

1

2

1 if  

1  if  

i

i

i

v V
p

v V

 
 

 

 

For two partitions, equation 4.1 can be minimised by minimizing the size of cut-set, defined as   
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It can be shown that this is equal to 
T

p L p  by the following derivation.  
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By the sum of components and the definition of L in equation 2 this is equal to
T

p L p  . 

Therefore 

 
2

( , )

( )
T

i j ij

i j E

p Lp p p W



   

C is minimised by finding the eigenvector associated with the minimum eigenvalue of L . The 

trivial solution, associated with 
1

  places all the vertices into the same partition, as the 

associated vector is a vector of ones. The smallest non-zero eigenvalue is 
2

 and the associated 

Fiedler vector 
2

y minimises C . 

 

(4.3) 

  (4.4) 

  (4.5) 

  (4.6) 
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It remains to discretise 
2

y to compute p . This can be done by thresholding on a cut-point.  This 

is referred to as spectral bisection. Labels are assigned based on a threshold value. This 

threshold can be zero as suggested by Fiedler himself [191], which is guaranteed to generate 

partitions that are themselves connected graphs. Other choices exist for the threshold, for 

instance for load balancing applications typically the median value is used, to get balanced 

partitions. Our approach is to select the cut-point automatically using clustering, as in [192]. 

This leads to strongly connected components selected as activities. 

 

A bisection on an activity manifold partitions it into two ‗types‘ of activity. A transition is 

specified as when a participant moves from activity in one partition to the other. To correct for 

over-segmentation and incorporate the idea of ‗principal activity‘ as discussed in section 3.1, an 

activity segment must be of a minimum size. This analysis is performed recursively for 

activities of above the minimum size, detecting progressively smaller partitions. The manifold is 

recomputed at each level of recursion, ensuring that the graph has sufficient connectivity.  

 

As published in [193] we allow the recursion to segment transitions from activity segments 

automatically. This however has the disadvantage of not explicitly specifying a segment as a 

transitional activity. It was shown by Belkin [194] that the Fiedler vector can also be used to 

map a manifold to a line with relative proximity corresponding to strong connectivity. Therefore 

the values of the Fiedler vector can be used to find intermediate sections between the transitions. 

If a participant transitions from an activity with a cluster center
1

c to an activity with a cluster 

center
2

c  a membership function u can be computed as:   

 

2 1

2 2

( )

( )
i

y i c
u

y i c





 

We refer to using this membership function to identify transitional segments as explicit 

labelling. The membership function can be seen as an adaptation of the cluster membership 

function used in Fuzzy C-Means clustering [195].  

 

Algorithm 1 describes the overall methodology. 

     (4.7) 
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4.5 Using Manifolds to Capture Intrinsic Dimensionality 

 

As discussed in Section 3.2.1, a large number of features can be extracted from just one channel 

of a single sensor. As the complexity of the sensors increases along with the number of sensors, 

the number of dimensions of data needed to be processed by a learning algorithm is very high. It 

is difficult to know apriori which features will be useful.  To enable efficient classification 

Algorithm 1: Detect Transitions 

Input:  Set X of elements indexed by sample number, distance matrix D , neighbourhood size 

k , cluster membership threshold t , minimum segment threshold s  

Output: Set of transitional activity T and principal activities P  

1. Compute graph G from D with k nearest neighbourhood function 

2.  Compute L and the Fiedler eigenvector 
2

y  

3. Find two clusters on 
2

y with function ( )C x specifying cluster membership of x  

4. Compute a set of segments S such that for all 
i

S S : 

{ , , ( ) ( ) , 1}
i a b a b

i

S x x X C x C x b a

a n d

S s

    


 

5. If  transition labeling is explicit: 

a. For each pair of consecutive segments 
i

S and 
j

S  

i. Compute u . If 
t

x is the datapoint where cluster membership changes, 

the transitional activity 
i j

T is defined as  

{ , , , , 1}
a b

i j a b x x

t i j

T x x X u t u t b a

a n d

x T

     



 

ii. 
i j

T T T  , ( ) ( )
i ij j ij

P P S T S T      

b. Else P S  

6. For each 
i

P P  where P r ( )
i

D etectTransitions P  
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therefore, it is necessary to project the data into spaces with fewer dimensions using 

dimensionality reduction.  

 

 

Figure 4.4Two-dimensional embedding of Sitting to Walking sensor data (top) with first two dimensions of  

PCA and Isomap (bottom). Isomap preserves transitional activity relationship in embedded space, which is 

lost in PCA reduction. 

 

Manifold based dimensionality reduction algorithms can preserve the shape of the data better in 

comparison to linear techniques such as Multidimensional Scaling (MDS) and Principal 

Components Analysis (PCA).  Figure 4.4 shows embeddings for features extracted from sensor 

data when a participant transitions from sitting to walking. The manifold embedding algorithm 

Isomap is able to better preserve the morphing of sensor data in the transformed space compared 

to PCA. In case of PCA, the walking and sitting activities are projected close together, in 

accordance with straight-line distance. The transitional activity is scattered in the embedding, 

with its embedded points lying far from both walking and sitting points. In contrast, Isomap 

captures the transformation of the signals into two clearly separated activities with a transitional 
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region connecting them, as it incorporates information about the structure of the data 

distribution. 

 

4.5.1 Isomap 

 

Isomap preserves structural relationships as shown in Figure 4.4 by approximating the geodesic 

distance in manifold dimensions. Distance along the surface of a manifold is called geodesic 

distance. This may be significantly different from straight-line distance. As PCA preserves pair-

wise Euclidean distances (hence its equivalence to Euclidean MDS), Figure 4.4 can be used to 

compare Euclidean and geodesic distance relationships. Signal corresponding to sitting can be 

closer to walking than the transitional activity in unconstrained space. In contrast, on a manifold 

model of the activity, to go from sitting to walking the transitional region must be encountered. 

This would result in a higher geodesic distance. 

 

Isomap embeds data in space that preserves the geodesic distance between each pair of points. 

The manifold neighbourhoods are used to construct a graph representation of the data and graph 

distance is used to approximate geodesic distance. Given n  points, a pairwise distance 

preserving low-dimensional embedding Y  will minimise the cost function 

 

2( ) ( )
G Y L

E D D    

where
G

D represents pair-wise geodesic distance, 
Y

D represents pair-wise Euclidean distance in 

the embedded space and  is an operator designed for efficient optimisation defined for distance 

matrix D  as follows: 

 

   
2

( )
2

:

1

  1 ,  1

n

ij ij

H S H
D

w h e r e

H I
n

S D fo r i n j n

  

  

    

 

where  
ij

S and  
ij

D refer to the 
th

i row,
th

j column components of matrices S and D respectively, 

n
I is the identity matrix, O  a matrix of n n  ones. Eq. (8) can be minimised by setting Y  as the 

top  eigenvectors of  ( )
G

D
. 

 

   (4.8) 

   (4.9) 
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The primary complexity in Isomap lies in estimating the geodesic distances between each pair 

of points. For large datasets it can be time-consuming to construct a graph representing the data 

and find shortest paths on it. There are other techniques that do not preserve pairwise distances, 

such as  Locally Linear Embedding (LLE) [196] and Laplacian Eigenmaps [197].  These are 

described in more detail in Appendix A. While both LLE and Laplacian Eigenmaps are faster 

than Isomap, both attempt to preserve locality instead of a global property like pairwise 

distance. As Isomap preserves global properties, under certain theoretical assumptions it is 

guaranteed to uncover the optimal embedding representative of underlying manifold 

dimensions. This is important as we intend to analyse transitional activities and differentiate 

between them both visually and quantitatively. Therefore we use the more computationally 

intensive algorithm of Isomap in our analysis.  

 

4.5.2 Estimating Intrinsic Dimensionality 

 

Tanenbaum [188] develop the idea of using residual variance to estimate the extent to which a 

low-dimensional representation captures the high-dimensional data. This is computed using the 

cross correlation between pair-wise distance matrices in the full feature space D  and low-

dimensional space 
e

D  for an embedding e .  Residual variance is defined as  

 
2

1 ( , )
e

R co rre la tio n D D   

It is demonstrated that residual variance decreases exponentially with increasing dimensions; 

initially adding dimensions decreases error significantly, with smaller subsequent gains. The 

‗elbow‘ of such an exponential curve i.e. the point at which further dimensions result in little or 

no reduction in residual variance, can be regarded as the intrinsic dimensionality of the data. 

This measure can also be used to compare the performance of dimensionality reduction 

algorithms. 

 

An alternative is to consider the classification accuracy of algorithms using the manifold 

embedded data. This may allow us to use fewer dimensions than the intrinsic dimensions of the 

data for our analysis, as only some of the intrinsic dimensions may be relevant to the 

classification task. 

   (4.10) 
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4.5.3 Representing Learned Manifolds as Models 

 

While an important application of manifold embedding is the visual exploration of a historical 

dataset in its intrinsic dimensionality, it is important in our application to handle new data 

without requiring a re-computation of the manifold model. There are two main approaches for 

this. The first is to learn a manifold from a sample of the data, and map new points to this 

manifold through its nearest neighbours as in Landmark-Isomap [198] and FR-Isomap [199]. 

The second approach relies on training regression classifiers such as Generalised Regression 

Neural Networks (GRNN) [200] and Radial Basis Function (RBF) [201] neural networks with 

feature vectors as inputs and manifold vectors as outputs. The advantage of this is that once the 

models are learned, it is faster to map incoming data into manifold space than to map new points 

to an existing manifold using, for instance, Sammon‘s mapping in FR-Isomap. As the intended 

use of this work is in pervasive sensing environments with continuous data collection, it is 

infeasible to run an expensive algorithm at runtime. Therefore we adopt the latter approach, and 

show results for three classifiers in Section 3.4: a linear regression classifier, a GRNN classifier 

and an RBF classifier. 

 

4.6 Categorisation and Analysis 

 

With segments mapped to low-dimensional space, subsequent processing aims to categorise 

them into the transition types, and analyse the transitions within their categories. In previous 

work [136, 139, 140, 186, 187], fixed sized windows have been used for classification of 

activities that included transitions. In contrast, we will utilise variable length windows 

comprised of the segmented transition found in the previous step. There are several advantages 

for taking this approach. Given the high variability in the length of transitions, it is difficult to 

fix a window size beforehand for the transitions, particularly when dealing with a range of 

transition types, as involved in this work. Furthermore, utilizing windows found in the previous 

step directly may potentially remove the need for manually placed markers, allowing a seamless 

progression from transition to categorisation to analysis.  

 

One solution to this is to learn a mapping from the feature space to a reference manifold space 

using a subset of the transitions [202]. Features described in Table 4.2 are extracted from these 

transitions. This is mapped into low dimensionality space using Isomap. For each dimension, a 



91 

 

linear regression model is learnt, mapping from the feature space to the manifold. New data can 

be mapped to the manifold using these models.  

 

The categorisation problem is the mapping of transitions into broader categories described in 

Table 4.1 and subsequent analysis is performed within each category. In the following sections, 

we provide results using the three well-established classification algorithms introduced in 

Chapter 3: C4.5 based decision trees, a Naive Bayes based probabilistic classifier and a 

Multilayer Perceptron.  

 

 

4.7 Experimental Setup 

A wireless ear-worn activity recognition sensor incorporating  a three-axis accelerometer is used 

for this study [115]. Previous work has shown that positioning the sensor on the ear provides an 

effective means of capturing trunk motion, shock wave transmission through the body, and thus 

allows the classification of ground reaction force and gait [50, 97]. Data is time-stamped and 

can be visualised in real time. A sampling rate of 50 Hz was used in all experiments. During 

experiments, the software also allows for both online and offline visualisation and annotation.  
 

 

Transition 

Number 

Transition 

Category Transition 

1 Stepping Step up onto bench 

2 Stepping Step down from bench 

3 Sit/Stand  Sit on bench 

4 Sit/Stand Stand from bench 

5 Pick 

Object 

Pick up a 4kg weight after 

walking to it  

6 Sit/Stand Stand up from chair 

7 Sit/Stand Sit down on chair 

 

Table 4.1Categories of transitions performed by participants in Study I and Study II. 

 

The proposed method is evaluated on transitions selected from the DynaPort KneeTest® [203] 

protocol. The protocol has been validated for assessing quality of movement of patients 

recovering from knee replacement surgery [204] through comparison with observations by 

physiotherapists. Although the protocol consists of 23 activities of daily living in total, 

transitional activities listed in Table 4.1 were selected for detection and analysis. The DynaPort 
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system collects data using trunk and leg-worn accelerometers, while our experiments used a 

single ear-worn sensor. 

 

Two studies were performed, hereon referred to as Studies I and II. In Study I, ten normal 

participants performed the protocol under controlled laboratory settings. The mean age of the 

participants was 27.1 years, with a standard deviation of 3 years, seven of whom were male and 

three were female. Their mean Body Mass Index (BMI) was 22.6 
2

/k g m with a standard 

deviation of 3.1 
2

/k g m . Additionally, the transitions listed in Table 4.1 were repeated four 

times to provide the training data for classification. Impairment was subsequently simulated for 

the sit/stand and step category transitions using abdominal and knee braces.   

 

In Study II, we evaluate our methods on data collected from five patients undergoing total knee 

replacement surgery, with ethical approval from St Mary‘s Research Ethics Committee 

(reference number: CI/2007/0043). The mean age for the patients was 64.8 years, with a 

standard deviation of 4.3 years, three of whom were male, and two were female. Their mean 

BMI was 31.3 
2

/k g m , with a standard deviation of 6.5 
2

/k g m . Data was collected 1 week 

before the operation, then at 1, 3, 6, 12 and 24 weeks after the operation. The stepping up and 

down bench transitions were performed for both left and right legs. Similarly, picking up the 

weight was performed on the left and right side.  In the stepping up and down and sitting at the 

bench transitions, two benches were used, with respective height being 30 cm and 40 cm. 

Due to the nature of the operation, patients were not always able to complete all the tasks. 

During the first few weeks after the operation, patients had very restricted range of motion in 

the operated knee. Patients usually found it impossible to stand up from benches without 

assistance. Similarly, it was difficult for patients to complete step up and step down transitions 

while placing weight on the operated leg. 

 

Figure 4.5 shows some example data from the accelerometer when the step up and down from a 

bench transitions are performed. The topmost plot shows data collected from a healthy 

participant, whereas the bottom two plots show data from a patient at 3 and 24 weeks after the 

surgery. While at 24 weeks the recovering patient‘s data is similar to the healthy participant‘s 

data, at 3 weeks the transitions are extended, and illustrates a different pattern pertaining to the 

recovery phase of the patient. 
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Figure 4.5Accelerometer data from participants stepping up on, and down from a 20cm high bench. The 

signals show a difference between healthy participants and participants moving with difficulty after 3 weeks 

of surgery. 

 

4.8 Results 

 

Results are presented for each step of the framework for Studies I and II.  While the same basic 

protocol is used in both cases, Study I allowed more detailed analysis because it was collected 

in controlled laboratory environment, with additional steps in the protocol to simulate 

impairment. Study II is significantly more challenging than Study I, owing to the varied 

environments of patient homes, and the difficulty of performing activities during post-operative 

recovery and the variation in patterns of patient recovery. Patients often needed assistance 

during the protocol to perform activities, or were not able to complete it.  In particular, 

transitions 3 and 4 were difficult for patients to complete. Data was not available for patient 2 

during 1 week after the operation. To ensure safety of the patients, a member of staff was 

always in close proximity to them to prevent falling. Our analysis focuses on the Step Up, Step-

Down transitions, which did not require assistance beyond that. 
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4.8.1 Feature Extraction 

 

Feature extraction from the e-AR sensor consists of the extraction of a set of features from each 

axis of the accelerometer.  A fixed size moving window of 100 samples is used (comprising 2 

seconds of sensor data) with an overlap of 30 samples between consecutive windows. Table 4.2 

lists features extracted from each axis. These are commonly used features for activity detection 

[62, 205, 206], including statistical features, wavelet features and frequency features derived 

from Fast Fourier Transform (FFT) analysis. Chapter 3 discussed statistical and wavelet features 

for activity recognition. Instead of extracting statistical features from raw data, they are 

extracted them from normalised data. While these features are going to have the same shape as 

those extracted from raw data we may correct for baseline changes in the data, which may 

induce shortcut edges in the manifold approximation. The baseline of the accelerometer 

channels can shift based on factors such as sensor orientation, placement and battery power.  

Therefore signal energy, mean and variance are extracted from data normalised with respect to 

historical mean and standard deviation of the full dataset. In addition to statistics from 

normalised data, we also include variance from raw data, as this statistic has previously been 

used for characterising recovery post-surgery [115]. The FFT feature has been used in previous 

studies for sit-to-stand analysis [207] and activity recognition [208].  As in Chapter 3, cross-

channel features are extracted in addition to the channel features. These included the channel 

cross correlation, and ratios of the means of each channel with the other two. The total number 

of features extracted is 36. 

 

 

Feature 

Number 
Channel Feature 

1 Energy of normalised data 

2 Mean of normalised data 

3 Variance of normalised data 

4 Variance of raw data 

5 Mean of wavelet transform at level 1 

6 Standard deviation of wavelet transform at 

level 1 

7 Mean of wavelet transform at level 2 

8 Standard deviation of  wavelet transform at 

level 2 

9 FFT feature – maximum signal power  

 

Table 4.2Features used for Impairment Detection from Activities of Daily Living.  
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4.8.2 Transition Detection 

 

Transitions detected automatically are compared against labels placed manually. Annotations 

were done in parallel to data collection for each activity in the protocol. Transitions within 

activities were labelled offline. Transitions detected by the algorithm are labelled according to 

the ground truth label with the most overlap. Tables 4.3 and 4.4 show results for this analysis on 

the two datasets. Performance is sensitive to the recursion level to which the algorithm is 

executed. Figure 4.6 shows aggregate accuracy values for each level. 

 

 

Figure 4.6Levels of Accuracy, Precision and Recall against recursion level in Transition Detection 

Algorithm for Study I. Both statistics are influenced by level of recursion. 

 

 It can be seen that the recall metric is sensitive to the recursion level in particular. This is due to 

the fact that with increasing recursion depth, the segment boundaries grow tighter. There is a 

smaller false-positive rate compared to the manual annotations, and therefore the rate of recall 

improves. This corresponds to a decrease in under-segmentation. Conversely, precision 

decreases with recursion; this reflects over-segmentation, where a transition may be split into 

more than one segment. An example of this is given in Figure 4.7, showing a participant 

transitioning between standing to sitting and then standing again. The first transition is 

segmented completely at two levels of recursion. The second transition is under-segmented at 

the second application of recursion, but over-segmented at the next level. 
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Figure 4.7Transitions detected using recursive partitioning method at different levels of recursion. The Sit-

to-Stand transition is under-segmented when the recursion depth is 2, and over-segmented at the next level. 

 

It can be seen in Figure 4.7 that there is a trade-off between precision and recall with increasing 

level of recursion in the first three levels. However there is not a significant difference between 

Level-4 and Level-5 recursion statistics. Since this offers the highest average precision and 

recall, Level-5 segments are used in to compute accuracy in Tables 4.3 and 4.4, and used for 

subsequent analysis. 
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Transition 

Number 
Transition 

 

Precision 

(%) 

 

Recall 

(%) 

1 Step up onto bench 99.1 74.2 

2 Step down from 

bench 
99.6 72.6 

3 Sit on bench 92.8 80.3 

4 Stand from bench 77.7 80.0 

5 Pick up a 4kg 

weight after walking 

to it  

92.9 78.6 

6 Stand up from chair 96.5 78.6 

7 Sit down on chair 85.7 77.2 

 

Table 4.3Accuracy of Transition Detection Algorithm for Study I. 

 

Transition 

Number 
Transition 

 

Precision 

(%) 

 

Recall 

(%) 

1 Step up onto bench 79.7 71.9 

2 Step down from 

bench 
78.6 71.6 

3 Sit on bench 86.3 74.3 

4 Stand from bench 88.4 73.9 

5 Pick up a 4kg 

weight after 

walking to it  

87.9 72.1 

6 Stand up from chair 89.5 72.3 

7 Sit down on chair 86.2 73.3 

 
Table 4.4Accuracy of Transition Detection Algorithm for Study II. 

 

4.8.3 Dimensionality Reduction 

 

The manifold assumption can be validated empirically by comparing performance with a 

popular linear algorithm Principal Components Analysis (PCA). The residual variance metric is 

used as a measure of the error. Averaged error for separate embeddings of the seven transitional 

activities is plotted in Figure 4.8.  The Isomap algorithm reduces residual variance significantly 

within four dimensions. As discussed in 4.5.2, the ‗elbow‘ of the residual variance indicates the 

intrinsic dimensionality of the data. Isomap is able to represent the essential variations in the 

data with fewer dimensions, and lower residual variance.  
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Figure 4.8Comparison of the performance of Isomap against PCA using residual variance. Isomap achieves 

low residual variance with fewer dimensions compared to PCA. 

In order to map new data to the manifold we train regression classifiers to learn the manifold 

dimensions from input feature vectors. Linear regression models are computationally the 

simplest, followed by GRNN and RBF.  

 

Figure 4.9 shows the residual variance errors for the three learned models for each activity. 

Classifiers were trained for ten dimensions of the manifold, and the residual variance of the 

model output is compared. While all the classifiers considered achieve low residual variance, 

Surprisingly however, the linear models achieve comparable performance to the more complex 

classifiers, outperforming the radial basis function classifiers for all the transitions. Generally 

the RBF models achieve good quality approximations of the manifold. Given the high accuracy 

as well as their efficient implementation it may be more feasible to use linear models in 

scenarios such as continuous home monitoring. This would allow fast online approximation into 

manifold space of streaming data. 
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Figure 4.9Residual Variance of classifiers learning embedding for different activities. Linear algorithms are 

used based on this analysis as they are low in computational cost and achieve low residual variance. 

 

4.8.4 Transition Categorisation 

 

Transitions are divided into three categories shown in Table 4.1.  Data was sampled from each 

participant in Study I to construct the reference manifold from which models were trained to 

embed the remaining data. Each classifier was validated with ten-fold cross validation, results 

for which are summarised in Table 4.5. All three classifiers obtain results with comparable 

accuracy. 

 

 

 
C4.5 

Neural 

Networks 

 

Naive Bayes 

Accuracy 79.6 77.3 72.7 

Precision 70.5 75.8 71.0 

Recall 79.6 77.3 72.7 

 

Table 4.5Accuracy of Transition Categorisation for Study I. 

 

4.8.5 Transition Analysis 

 

A goal of our analysis is to analyse differences within transitions of the same type. In our 

protocol, the sit/stand transitions are performed at different sites, at benches of different heights 

(20 cm and 30 cm) and a chair. Chair height has been observed to be a significant influence in 
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performance of  sit/stand transitions [209], particularly for elderly participants [210].  Table 4.6 

shows classification results for distinguishing between transitions at the benches and those at the 

chair.  C4.5, Neural Networks and Naive Bayes are trained with ten-fold cross validation, with 

C4.5 outperforming the other classifiers. We can therefore estimate where the participant is 

sitting based on the transitions type. An application of this would be the ability to determine 

whether the living environment of elderly or recovering patients is suited to their condition.   

 

Impairment was simulated on participants using abdominal and knee braces. Participants 

performed the step on and off bench transition, repeating it five times from each bench leading 

with the left and right legs alternately, with and without impairment. The transition was 

therefore performed up to forty times for each participant. A sample of 250 transitions was used 

to train classifiers to detect impairment. It was observed during data analysis that transitions 

performed by participants were distinctive, and furthermore participants adapted to the 

simulated impairment in different ways. Figure 4.10 illustrates this, showing transitions 

performed by three participants with and without impairment. In both embeddings transitions 

performed by a participant cluster together, suggesting the feasibility of participant-specific 

classifiers.  

 

 

 

Figure 4.10Manifold embedding of three participants performing the step transition naturally (a) and with 

impairment (b). The clearly separated clusters correspond to each participant. 

(a) (b) 
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Table 4.6 shows accuracy measures for participant-specific classifiers for five participants. 

Decision tree, neural network and Naive Bayes classifiers were trained for each participant, 

resulting in fifteen classifiers in total. Accuracy statistics in Table 4.6 have been aggregated by 

classifier type. Though the classifier trained on the complete dataset achieves acceptable 

accuracy, participant-specific classifiers perform better. 
 

 

 
C4.5 

Neural 

Networks 

 

Naive Bayes 

 

Classifiers trained with the complete dataset 

 

Accuracy 76.0 76.7 76.3 

Precision 76.9 77.4 76.4 

Recall 76.0 76.8 76.4 

 

Participant Specific Classifiers 

 

Accuracy 82.7 85.4 77.6 

Precision 83.6 85.6 77.2 

Recall 82.8 85.5 77.5 

    

 

Table 4.6Impairment detection using the Step Transition in Study I. Higher accuracy can be achieved by 

training participant-specific classifiers. 

 

Three stages of mobility were observed in patients during data collection. The mobility of 

patients decreased significantly in the early stages of recovery, which gradually went back to 

pre-operative levels. A significant improvement was observed at the 12 and 24 week data 

collection stages. Figure 4.11 shows the stepping transition in the first two dimensions of the 

manifold space for patients performing the step-up and step-down transitions. These embedding 

for this transition mirror some of the patterns observed during data collection. Transitions for 

each stage of data collection are close to each other. Stages of recovery observed during data 

collection can be seen; early recovery (1-6 weeks) and late recovery (12-24 weeks) tend to 

cluster at a distance. The pre-operative data points exhibit more variability but tend to cluster 

closer to the late recovery stage. This is because patients have different levels of impaired 

mobility before surgery. 
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Figure 4.11Stepping transitions for patients at different weeks of recovery embedded in separate spaces. 

Figures (a)-(e) show Participants (1-5). Early recovery (1-6 weeks) and Late Recovery (12-24) stages are 

embedded closer together. 

The separation between early and late recovery can be seen in all five patients, as shown in 

Figure 4.12 (a) and (b) for the step and stand to sit transitions. Patient 5 showed greater progress 

during early weeks of recovery, which is reflected in both the completion of step activities after 

just one week, and the proximity of the clusters for each week. It is worth noting that Patient 4 

underwent a hip replacement before week 24 of the study, and therefore the data collection was 

terminated. 
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Figure 4.12Transitions from five patients recovering from surgery. Figures show embedding of all patients 

together, with Step-up transitions in (a), and Stand-to-Sit transitions (chair) in (b). Clusters correspond to 

two stages of recovery observed during data collection. 

 

However, care must be taken in interpretation of this data. There are relatively few points for 

each transition. For instance, in Figure 4.12 (a), the post-op (1-week) transition is relatively 

close to transitions at six weeks. The patient however was able to perform the transition only 

once, and was unable to perform it with the impaired leg, or with the higher bench.  The 

distance and the embedding alone do not reflect this difficulty. It is therefore more suitable to 

see the figures as indicative of changing patterns where small differences in distance should not 

be seen as significant.  

 

While Sit-to-Stand is the most commonly studied transition, patients were usually unable to 

perform it from the standard sized benches after the operation. The protocol included an 

additional transition to and from a chair. This however, introduces variability, given the inability 

to control chair height and armrest use at patient homes. These patients are often unable to 
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perform the transition. When the transition is performed, patients may require assistance in 

performing it, leading to uncertainty in interpretation.  

 

Conversely, these patients were able to perform the step-up and step-down transitions with 

greater ease. It was possible to visualise the transitions in manifold space, and observe patterns 

similar to those seen during data collection. If more data is collected for this transition at each 

week, it may be possible to train impairment detection classifiers similar to those trained for 

Study I. 

 

4.9 Conclusions 

 

In this chapter, we have presented a transition detection and analysis framework that utilises a 

single lightweight wearable sensor to detect and analyse transitional activity in a pervasive 

monitoring context. The framework is designed to reduce human error and involvement, by 

utilizing unsupervised learning methods for automatic segmentation and dimensionality 

reduction.  The key contribution of this chapter lies in a novel application of manifold 

modelling, partitioning and embedding to sensor data for transitional activity analysis.  

 

Using data collected in laboratory settings, the framework was evaluated for the detection and 

categorisation of transitions. Manifold-based dimensional embeddings of these transitions were 

used to train classifiers for detection of seat type and simulated impairment. It should be noted 

that the results shown for three classifiers are meant to demonstrate applicability of our 

approach to generic classifiers, however they are not meant to demonstrate the superiority of a 

particular type of classifier for this problem. For instance, C4.5 has a performance advantage 

over Naive Bayes ranging between 4-7%. Decision trees are however, susceptible to overfitting 

and learning over-complex rules. In contrast Naive Bayes chooses to simplify the classification 

problem by assuming independence between classes. Therefore, the performance difference 

does not necessarily mean C4.5 is more suitable for analysis of transitions than Naive Bayes.It 

was observed that participant specific classifiers are more suitable for the impairment detection 

problem because participants performed transitions and adapted to impairment differently. 

 

The framework was also applied to a study of patients recovering from knee replacement 

surgery. The low-dimensional embedding of the automatically detected transitions allowed a 
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visual analysis of the patient‘s recovery. While Sit-to-Stand is studied extensively in clinical 

rehabilitation studies it showed less promise as a recovery measure owing to difficulty in 

performing the transition from standard sized benches, and variability in chairs at patient homes. 

Conversely the Step transition was performed with more reliability and ease while also showing 

patterns of recovery. It is therefore indicated that the Step transition may be a useful metric for 

post-operative recovery in future research.  

 

The proposed study advances from simple activity categorisation to detailed transitional 

analysis. We believe this is more meaningful for clinical studies for assessing the efficacy of 

therapeutic procedures or the gradual deterioration of chronic symptoms. The ability to monitor 

these changes continuously in a normal environment represents a unique strength of BSN. With 

such a framework, it is also possible to perform classification of transitions amidst a broader 

range of confounding activities, such as those performed in home environments. 

 

So far we have considered the analysis of activities at short time-scales, in a scenario where 

class labels are available. In chapter 5 abstracted pictures of routine are derived from 

classifications of activity with a view towards mining historical data collected from participants 

living in pervasive sensing environments. 
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Chapter 5 

Discovering Routines from Activities 

 

 

 

 

 

5.1 Introduction 

 

s pervasive healthcare technology matures with more real life systems beginning to be 

deployed, methodologies for profiling user behaviour over the long term have come into 

sharper focus. While considerable science exists in identifying what users are presently engaged 

in, characterising their behaviour over the longer term remains a relatively open area.  This 

chapter describes a system, presented at [211] for visualizing an important aspect of the user‘s 

behaviour: their routine. 

 

Though there is considerable variation in a person's daily activities, there may be a repeating 

temporal structure over the long term in the pattern of activities during the course of a day, 

which is referred to here as routine. Beginning with knowledge of the user‘s activities, which 

can be discriminated in pervasive environments, such as sitting, walking, exercising, sleeping, 

getting  dressed etc, we aim to characterise the patterns of activities that occur during a day in 

someone‘s life. Thomas Nagel in a famous essay on consciousness [212] asked, ―What is it like 

to be a Bat?‖ Although our research aims are by no means comparable to addressing the mind-

body problem, we may at least attempt to give care providers, who currently rely on 

questionnaires, to get a good idea of what a day for one of their care recipients is like. The range 

of medically relevant information encapsulated in a person‘s routine includes eating habits, 

sleep schedules, exercise durations and timings, day of the week effects and much more.  

 

A 
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There is a second concern we address in this chapter, that of synopsis structures [71]. The 

volume of data modern computer systems need to handle is extraordinary. Most of this data 

however is presently not processed and is stored in large server farms. Though the business 

value of this data has always been clear, the question has always been one of data volume 

outstripping analysis tools. Pervasive systems, such as BSN based pervasive healthcare 

environments, will generate by design continuous, multidimensional data streams. Much of this 

data will be experimental in nature in the beginning and will therefore be archived for the long 

term. On the other hand, in order to scale up, these systems will need to employ synopsis 

structures (see Section 2.1) that can act as surrogates for the data for most queries, only 

retrieving the raw data when necessary. It is also a good strategy to perform this incrementally, 

shifting the processing cost over time and over computational resources. 

 

This chapter proposes a system, for constructing a synopsis structure specifically for describing 

routine. This structure is constructed by mining activity data extracted from the e-AR sensor. It 

is a multi-resolution picture of the user‘s routine, showing the patterns of activity at 

progressively finer time granularities where there is more detail to uncover. In future work this 

can tie in with the activity transitions work described in the previous chapter. In one sense, 

activity transitions represent the finest resolution of activity pattern. Since the aim is to develop 

usable systems that can scale to a large number of users, we consider here design criteria like 

incremental processing, compression, and visualisations for service users. As a synopsis 

structure, it is also important to represent the base dataset accurately, as far as queries pertaining 

to routine are concerned. We demonstrate our work on simulated data constructed from lab 

collected e-AR sensor data, along with several real datasets.  

 

 

5.2  Activity Classification 

 

We use a multivariate Gaussian Bayes classifier for classification of activity from e-AR sensor 

data. Developed by Lo et al. [115], this classifier outputs a level or class of activity, relying on 

the variance and range of the data. The activity level can take on four values and higher activity 

levels indicate activities with involving significant movement.  

 

A multivariate Gaussian density models each activity class. Given a feature vector x  consisting 

of the variance across 3 axes, the likelihood of belonging to a class 
j

C  is defined as:  
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where n is the dimension of the feature vector, 
j

u  the mean and 
j

  the covariance of the class 

j
C . The mean and covariance are derived from the training data. Given a prior over the classes 

( )
j

P C  and a normalizing constant , according to Bayes theorem the posterior probability of 

j
C   for a feature vector x  is  

 

( ) ( ) ( )
j j j

P C x P x C P C  

 

A uniform prior is ( )
j

P C  assumed over the classes. It is argued that this removes bias for more 

frequent classes. 

 

Figure 5.1 shows an example of the activity level derived from the e-AR sensor signals. The top 

graph shows the raw sensor signals, the middle graph shows the outputs of the activity 

classifier, and the bottom graph denotes a coarse segmentation into distinct activities derived by 

filtering the activity levels. A median-filter is used to remove the noise from the activity 

classifications.  

 

One rationale for providing a class of activity rather than a more specific label lies in privacy 

preservation. That said, often the specific nature of the activity given a class label may be 

reasonably inferred from the time of day. If the user has a persistent low activity level at a late 

hour of the night, it is suggestive that he or she is sleeping. If the activity persists into a late hour 

of the day with no change, there may be cause for alarm. 

 

 

   (5.1) 

   (5.2) 



109 

 

 

Figure 5.1Segmentation of raw sensor data into Activities using the Activity Classifier. Each window 

corresponds to 200 samples. A coarse segmentation can be achieved by filtering the activity classification, 

removing noise. The classifications can be subsequently mined for routine extraction. 

 

The classifier is treated as a black box in the next steps; more descriptive class labels can be 

provided without change to the pattern mining procedure. A streaming infrastructure developed 

during the course of this dissertation enables us to process the data as it arrives. The sensor 

sends via the gateway a stream of activity levels. These are generated on the gateway or on-

board the sensor. The streaming infrastructure routes the activity stream to the data component 

responsible for producing the routine synopsis. 

  

 

5.3 Mining Routine Activities 

 

While a few activities may be described by a single activity level, many activities may produce 

a characteristic combination of activity levels over a period of time, for example, exercising and 

working. Frequent pattern mining can discover such combinations. 
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5.3.1 Background 

 

Frequent Pattern Mining [151] is the task of searching for frequently repeating patterns in a 

database. We introduce some terminology to describe the problem. A transaction database D  is 

a set of transactions. Each transaction T  is a subset of items 
1 2
{ , , . . . , }

n
I i i i . A pattern is a 

non-empty subset of I . A transaction T  is said to contain a pattern P if P T . The support of 

a pattern is defined as    ( ) { }P T D P T , that is the number of transactions that are a 

superset of the pattern. A pattern is considered to be frequent if its support is above a user 

specified threshold. The first application of this was on supermarket data to find what products 

customers tended to buy together, the goal then was to place these products in close proximity. 

This problem has exponential complexity if performed with a brute force search, ( 2 )
T

O T I . 

There are ways to prune the search however. The so-called Apriori principle [213] is that if P  

is frequent, all subsets of P  are also frequent. Conversely if P  is not frequent, all supersets of 

P can be discarded.   

 

FP-Tree [214] is a prefix tree structure, which can be constructed from two scans of the 

databases. This compressed data structure can then be mined, instead of the database itself. A 

prefix tree is defined as a tree such that each node has its parent node as its prefix. Each node in 

the FP-Tree is an item-set in the database containing a frequent item, and the support for the 

item-set. To illustrate the construction of the FP-Tree, consider the simple dataset shown in 

Figure 5.2 containing three transactions. Each transaction is time-stamped, and consists of the 

set of activities occurring in the period beginning with the timestamp. The duration of each 

transaction is assumed to be fixed. This can be obtained by using a fixed-size sliding window 

over the activity stream generated from the raw sensor signal.  

 

The first pass over the database counts the frequency of each item (sometimes called the 1-

length pattern). This can be used to impose an order on the nodes when they are added to the 

tree. The ordering of the example above can be computed as {1, 3 , 2 , 5 , 4} . The ordered table 

associating items with frequencies is referred to as the header. A second pass can then pass 

through the dataset to produce an initial FP-tree. Figure 5.3 shows the tree constructed by 

reading the three records in the database.  The first record in the database is read and placed in 

the FP-tree as in Figure 5.2(a). The header contains a link from the node entry to corresponding 

node in the tree, shown by dotted arrows. When the second transaction is read, the node 

corresponding to item 1 can be reused, as is has the same prefix, and therefore the pattern is a 
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sub-tree of the node corresponding to item 1 added for the first transaction. The count of the 

node is updated to reflect this information. Finally for the third transaction, a similar procedure 

is followed for adding the prefix 1,2. Note the link from the two nodes corresponding to item 3, 

linking them to the header table.  

 

 

Figure 5.2Example of an activity database where activity levels are aggregated every minute.   

 

Note that this is a representation of the transactions in the database as combinations of items, 

not an enumeration of patterns in the database, which need to be mined from this data structure. 

It is however, a highly compressed representation of the database, and has been observed to 

often be orders of magnitude smaller than the database in practice. A common approach is to 

construct this tree, then adopt various search strategies for finding frequent patterns within this 

representation. Frequent patterns can be found by ‗growing‘ patterns. This is done by projecting 

the initial tree along item dimensions. For instance, by projecting along the item 3, the patterns 

{1, 3} and {1, 2 , 3} can be found. The search space can grow very large, but the FP-Tree is a 

good optimisation, and avoids the need for repeated scans of the database. 
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Figure 5.3FP-Tree after scanning the first three transactions respectively (a), (b) and (c). The node is 

labelled as Item:Count. It is possible to mine frequent itemsets in the database using this data structure 

without rescanning the database. 

 

Closed Pattern Mining is a related problem, where the goal is to find frequent patterns that have 

no proper superset with the same support. Closet+ [215] is one recent algorithm for this 

problem.  As before a data structure similar to FP-Tree is constructed, then efficiently mined.  In 

addition to the Apriori pruning, two further search space pruning rules are usually used in closed 

pattern mining. They are as follows: 

 

 Item Merging: If every transaction containing a frequent pattern X  also contains 

pattern Y  but not any proper superset of Y , then X Y  forms a frequent closed 

pattern and there is no need to search any pattern containing X  but no Y . 

 

 Sub-Pattern Pruning: Let X  be the frequent pattern currently under consideration. If 

X  is a proper subset of an already found frequent closed pattern Y and   ( ) ( )X Y , 

then X  and all of X 's sub-patterns cannot be frequent closed patterns and can be 

pruned. 

 

(a) (b) (c) 
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In addition to these pruning rules Closet+ proposes a further pruning and search strategies, for 

example switching between top-down or bottom up search depending on the sparseness of the 

data, using hashing for efficient subset matching, and memory-efficient implementations of the 

projections of the database for FP-tree construction.  

 

5.3.2 Routine Tree 

 

Frequent Pattern Mining aims to find patterns in a set of transactions that occur more frequently 

than a user specified threshold. In this case each transaction is a window over the activity data 

stream. The goal therefore is to find frequent patterns of activity levels. We call the pattern with 

the highest support the persistent activity pattern.  

 

The FP-Stream [73] data structure extended the FP-Tree to store information for patterns over 

multiple time granularities.  For each pattern a table is maintained that stores the support for the 

pattern over progressively larger time-granularities. These time granularities are mathematical 

progressions of time t  such as , 2 , 4 , 8 ....t t t t , or if considering natural time, then in terms of 

progressions of quarter hours, hours and days.  

 

We propose a data structure to represent routine in a way that emphasises the temporal 

composition of a person‘s day. Time durations also do not need to be in fixed time buckets, 

thereby allowing for the unpredictability of activity times. The data structure, called Routine 

Tree is a variable resolution mapping of time periods within a day to frequent patterns of 

activity levels. Each node in a routine tree is a time-period associated with a table of frequent 

patterns along with their support. It can be seen as a converse data structure of the FP-Stream, 

except that we do not require the time periods to be of uniform size.  Adjacent nodes in the tree 

are temporally contiguous (if the data is continuous), and represent a non-overlapping division 

of time. The persistent activity pattern is the criterion for division of time: adjacent nodes show 

a change in the persistent pattern.  Figure 5.4 shows an example of such a tree. 

 

This data structure presents an intuitive view of the user's routine. Moving down the tree we get 

more detailed information of the user's activities, whereas nodes near the root contain patterns 

which persist for longer portions of the day.  
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Figure 5.4Routine Tree with support shown between 12:00 and 23:59. Each node in the tree is associated 

with a table of activity patterns frequent in that time period. 

  

The tree is generated in two phases. First the tree is constructed by mining activity data in 

progressively smaller time durations. This tree is then pruned to produce a more compact 

representation. 

 

5.3.3 Transaction Representation of Sensor Data 

 

Association mining algorithms impose certain assumptions on the data. The transactions 

generated in our activity database therefore have the following properties: 

 

 Pattern length: Pattern lengths are bounded by the alphabet size of the database; the 

complexity of the patterns found depends on the number of activity classifications 

possible. A second dimension is introduced in the windowing of the data. The 

maximum length of the pattern is the number of distinct activity levels that can be 

generated in the windowing period.  

 

 Repetition of Items within Transactions: As association mining algorithms ignore 

sequences of repeated items within a transaction, the transaction reflects the event of an 

activity level occurring; instead of recording each activity level in the transaction. It is 

possible to encode repetitions of activity levels with other symbols, or present the 

database with segmented data. However this imposes additional processing constraints 

on the system. 

0:00 – 23:59 

0:00 – 12:00 12:00 – 23:59 

0:00 – 8:00 8:00 – 12:00 
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 Sequence of Items within Transactions: The sequence of items within transactions is 

not considered. As for repetition it is possible to encode order of items with a richer 

alphabet. Alternatively sequence mining algorithms can be used. These are 

significantly slower. As we aim to uncover the higher-level routine of the individual, in 

contrast to fine-grained activity classification, the faster pattern mining algorithms are 

preferred. 

 

 Handling multiple sensors: While the activity classification only uses the wearable e-

AR sensor, the methodology can be applied to any type of sensor, and multiple sensors. 

With regards to multiple sensors it is possible to either fuse the sensors before 

classification (data/feature level fusion). Alternatively, we can take a decision-level 

fusion approach and incorporate into the itemset alphabet items from each classifier 

separately. This will be explored further in Chapter 6. 

 

 

5.3.4 Tree Generation 

 

The first phase is described in Algorithm 5.1, which is close to a preorder traversal. Beginning 

with the complete day as the root node the binary tree is constructed by recursively executing 

Closet+ [58] at each node. This yields a table of frequent patterns and their supports, which is 

associated with that node. The node is split if it meets splitting criteria that takes into account 

the number of frequent patterns found, and the minimum duration at which the data is to be 

mined. If the node is split, the new nodes are added as children of this node in the tree, and the 

procedure is repeated for them.  

 

This simple, recursive algorithm can take advantage of the structure inherent in a person‘s day 

by not mining in further detail large periods of time that do not show sufficient variation.  



116 

 

 

 

5.3.5 Tree Pruning 

 

 

 

 

 

 

 

 

Figure 5.5Pruning a Routine Tree –an example of a merge operation. Nodes meeting user-specified criteria 

can be merged to display a more compact tree. 

 

The tree is then made compact by merging nodes where possible. If two adjacent leaves have 

the same maximal frequency pattern, they are merged. If they are siblings, they can be removed 

 

Algorithm 5.1 – Routine Tree Construction 

Inputs: Database D  of transactions of reduced dimensionality feature windows indexed 

by time, Node N  representing a period [ , ]
S ta r t E n d

N N , _sp lit threshold and m in _ d u ra tio n  

Outputs: A Routine Tree R  rooted at N  and Table associating nodes to patterns. 

 

1. Apply Association Miner on transactions in D  with time in [ , ]
S ta r t E n d

N N . Store 

patterns in ( )T a b le N . 

2. If number of patterns in ( )T a b le N  is greater than _sp lit threshold  and duration 

of N  is above m in _ d u ra tio n  

a. Split N  into equal duration nodes, 
L e ft

N  and 
R ig h t

N  adding them as 

children of N  in Routine Tree R  

b. Call Generate-Tree with
L e ft

N  

c. Call Generate-Tree with 
R ig h t

N  
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from the tree. Otherwise they are merged, which involves restructuring the tree, and updating 

the node periods and pattern tables. Each pruning operation removes two nodes from the tree. 

The pruning operation is described in Algorithm 5.2. Figure 5.5 shows an example of this 

operation. 

 

 
 

5.3.6 Aggregating Routine Trees 

 

By combining routine-trees across several days, we can find a structure describing the user's 

typical routine. We rely on a simple aggregation method for combining multiple trees. As 

before, a tree is constructed, then pruned. Instead of using Closet+ in the first step to generate 

the pattern-table, support for patterns occurring during a period are collected from each tree and 

aggregated. Patterns below the minimum support are then removed.  This is a somewhat 

simplistic procedure however, and may lose some information, for example patterns that occur 

Algorithm 5.2 – Routine Tree Pruning 

Inputs: A Routine Tree R . Function ( )M axPattern N returns the maximal frequency 

pattern of node N , ( , )
A B

A dd N N  adds patterns from 
B

N to 
A

N  and adjusts time for 
A

N , 

( )Desc N returns descendants of N , and   ( , )
A B

S u b tr a c t N N  removes patterns of
B

N from 

A
N  and adjusts time for 

A
N , removing the node entirely if it is no longer necessary.  

Outputs: A compacted Routine Tree R  

3. Compute Leaf nodes L  of R  

4. For each pair of adjacent nodes 
i

N  and 
j

N  in L , if 

( ) ( )
i j

M axP attern N M axP attern N  

a. ( , )
i j

Add N N  

b. For each 
A

N  in R , if ( )
i A

N Desc N and ( )
j A

N Desc N , add 

( , )
A j

A d d N N  

c. For each 
A

N  in R , if ( )
i A

N Desc N and ( )
j A

N Desc N , add 

( , )
A j

Subtract N N  

d. Remove 
j

N from R  
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only on certain days. On the other hand, the broad, repeating features of the user‘s day can be 

captured with this simple aggregation. 
 

 

5.4 Results 

The method described above is applied to two datasets. The first dataset (Simulated Data) is a 

simulated dataset based on activity data composed to form a typical day. Data was gathered in 

the lab using the e-AR sensor for different activities, such as sleeping, eating, walking, different 

types of exercise etc. A day is simulated by concatenating these activities together in a sequence 

that could be recognised as typical weekdays for an office going person. The second dataset 

(Real Data) is obtained by asking a normal participant to wear the e-AR sensor and roughly 

label his activities. We present results from a third dataset where chronically ill participants 

were monitored over a longer period of time. The participants wore an e-AR sensor, which was 

supplemented with ambient sensing. In this chapter, the goal of the analysis is the visually 

present snapshots of the participant‘s routine. In later chapters we will aim to analyse routines 

and changes in routines quantitatively. 

 

 

To obtain a quantitative measure of accuracy, we have compared the base dataset against the 

tree. Each transaction in the dataset is compared against the patterns stored in the  tree for that 

time at the highest resolution. A transaction and  pattern are compared by finding the size of 

their intersection  and scaling it by the size of the larger of the two sets For example, if the 

transaction is  0 ,  1,  2 ,  3  and the pattern is 2 ,  3 , the match would be 0.5. Alternatively, if the 

transaction is  2  the match would also be 0.5. The best match is the accuracy of the tree for 

that transaction. Table 5.1 shows the accuracy of the proposed method averaged over the 

transactions in each dataset. 

 

We define compression factor to be the ratio of the size of the base dataset to the number of 

rows needed to  represent the tree in a database, which includes the nodes of  the tree and the 

patterns associated with them. Table 5.1 shows compression factors of the two datasets. Trees 

generated by the algorithm can be substantially smaller than the base data,  by up to 12 times. 

Higher compression is obtained on the simulated data because it is a larger dataset, has extended  

periods of sleep and work that are suitable for compression,  and has less variation in activity 

levels. 
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Simulated Data Real Data 

 
Day 1 Day 2 Day 3 Day 4 Day 5  

Accuracy 94.4 99.2 98.1 98.1 97.2 88.9 

Compression 

Ratio 

12.2 9.5 9.3 10.8 9.6 2.2 

 

Table 5.1Accuracy and compression factor for real and simulated data. The routine tree can take upto 12 

times less space than the base dataset on simulated home environment data, however we have smaller gains 

in real data collection due to greater variation in activity patterns. 

 

A software tool-kit has been developed for visualisation of the routine tree. The tree is drawn 

against a time grid. The Leaf View shows only the leaves as in Figure 5.7. This is useful for 

visualising several trees at once at the highest level of detail. The Tree View plots a tree level 

by level as in Figure 5.8. Here the levels are plotted in increasing level of detail for a single tree. 

The persistent pattern is shown for each node. Patterns are associated with a bar colour and 

height, as shown in both figures. Increasing bar size indicates a more strenuous activity. Some 

subjectivity is introduced here, in defining whether an activity pattern such as  1,  2  is more 

strenuous than  0 ,  3  or  0 ,  1,  2 .  

 

Figure 5.6 shows the leaf view of the trees of the 5 simulated days along with the overall week 

tree. The model used to create the simulated data can be seen. We can get very quickly a bird‘s 

eye view of the user's routine. For example, typically the simulated user woke up close to 8 am, 

although on Friday it was much sooner. The ―Week‖ tree is a result of combining the five trees. 

The morning exercise, the green bar on Tuesday, Thursday and Friday mornings, does not show 

in the week tree. Although it occurs three out of five days, it occurs at different times therefore 

is not captured. On the other hand, evening exercise is captured, because it occurs at similar 

times each day.  
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A set of real data was collected from a 28 years old male participant, during the late-evening 

hours. During this time he worked, took the train home, rested and finally slept. Figure 5.7 is the 

tree-visualisation for this. Each phase of the user‘s day is distinguishable as labelled in the 

figure. Deeper levels show more detail of these phases. The first level merely summarises the 

recorded session as one of low intensity activity overall. The second level shows three phases in 

the day, which we can identify as work, commute, and rest at home. Further detail is visible 

lower in the tree, for example a period of sleep at the end of the day, a break during work, and 

the composition of the commute: walk to the station, stand in the train, and walk home. 

 

Next we provide an example of a scenario very relevant for healthcare. Figure 5.8 shows the 

Routine-Tree for the same participant who wore the e-AR sensor overnight, during a 

particularly wakeful night. It is apparent that by Level-2, we can see that the user in fact did not 

sleep uninterrupted. Going further down breaks in sleep can be seen in further detail.  

 

 

Figure 5.6Leaf view of routines trees for simulated dataset showing the behaviour of 

a participant. Six trees are shown at the leaf level, in the highest level of detail.  

 pattern changes during the week. Image taken from [65] 
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Figure 5.7Tree view for a participant wearing the sensor during late evening hours of the day. A single tree 

is shown, in increasing degree of detail. The numbers on the left correspond to levels of the tree. Higher 

levels show broad trends, while lower levels of the tree show more detail. 

 

 

In the Saphe project, participants were monitored at home, wearing the e-AR sensor during the 

day.  These were older people, receiving long-term care. In Figure 5.9 (a) a participant (50 years 

old, female) wore the sensor during the day and performed normal activity. This includes 

increased activity in periods corresponding to meal times (breakfast and lunch, around 9 a.m. 

Figure 5.8Tree view for a participant wearing the sensor during a wakeful night. 
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and 2 p.m. respectively). This can be contrasted with 5.9 (b), where the activity patterns are low 

during lunch time. This may be interpreted in a number of ways: the participant may be asleep, 

may have taken the sensor off, or may be out of the house. However, as a repeated pattern, for 

participants requiring assistance with meals, this may provide timely and useful information. In 

Chapter 7 we will perform more quantitative analysis of this dataset, over longer periods of 

time. 

 

 

 

 

Figure 5.9 The tree view of  a participant for activities over a two day period; (a) shows a day with high 

daytime activity, particularly between close to 14:00, while (b) shows a day where the user had low activity 

during the afternoon. 

 

5.5 Conclusions  

 

Intuitive, but information rich representations of user data are very important in pervasive 

healthcare, where care providers often need to care for many patients simultaneously. The 

Routine-Tree data structure can provide such visualisation for an important indicator of patient 

health. It is also a significantly compressed representation, which nevertheless represents the 

base dataset with good accuracy. The technical contribution of this chapter is in the new 

(a) 

(b) 
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application of a standard data mining technique hierarchically to develop a data structure 

reflective of the temporal structure of daily human routines. 

 

A limitation occurs due to the formulation of windows of activity data as transactions in a 

Frequent Pattern Mining problem. Since transactions are sets of items, some information is lost 

in representing a window as a set of activity levels. For example sequence information within 

the window is lost, as are repetitions of an activity level. We intend to explore alternative coding 

methods that would minimise the loss of such information. 

 

The top down construction of the tree ensures that data is not mined further if the number of 

patterns is below a threshold, implying that the user is mostly occupied with one activity. This 

however, entails buffering a full day's activity stream, which is not desirable for streaming 

applications. The goal in streaming algorithms is to process data as it arrives, or with very 

limited buffering. The tree can be built bottom up to utilise statistics generated at lower level 

nodes at the higher level. This incremental tree construction would free up memory resources 

required for buffering in top down tree construction, and avoid repeated execution of the pattern 

mining algorithm. 

 

Algorithms other than Closet+ could also be explored for the data mining step. Frequent Pattern 

Mining ignores sequence and temporal information. The problem of sequence is addressed by 

Sequence Mining algorithms such as PrefixSpan [216]. Temporal information can be mined in a 

pattern mining paradigm using Inter-transaction Pattern Mining, which has been used to mine 

for activity patterns in [109]. That said, the complexity of Sequence Mining and Inter-

transaction Pattern Mining is significantly higher. In our routine tree algorithm the specific 

mining algorithm can be considered a black-box, and different algorithms can be plugged in, 

depending on the level of detail desired in the results. 

 

Data mining based algorithms can help in exploratory data analysis, to provide visualisations 

and discover information from real-world health monitoring scenarios where ground truth 

annotations are scarce. In chapter 6 we seek to adapt our proposed algorithms to an existing 

platform where non-specialised, yet effective sensors are already carried on the person of a 

potentially large user base: smartphones. The challenges on smartphones are similar to those of 

home-monitoring: a need to process streaming, unlabelled data. In addition there is a need to 

optimise battery usage and provide interest-sustaining feedback to users 
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Chapter 6 

Mining Activity and Routine  
using Smartphones 

 

 

 

 

 

 

6.1 Introduction 

 

ODY Sensor Networks (BSN) have the potential to transform the delivery of healthcare 

and how personal well-being is tracked. We anticipate that traditional healthcare systems 

will over time incorporate activity and behaviour profiling, particularly as relationships clinical 

measures is concretely established. There is however, an existing base of users with body-worn 

sensors who can adopt pervasive sensing technology at the touch of a button: smartphone users. 

In this chapter we propose to adapt activity and behaviour profiling methods developed for 

home-based healthcare with the aim of profiling health-related parameters on smartphones. 

 

Smartphones represent an unparalleled opportunity for sensor data mining. Not only are these 

devices widely used and projected to increase in usage in the coming years, they are often 

equipped with a wide range of sensors. For instance, the iPhone™ and most Android™ phones 

are equipped with one or more accelerometers, magnetic compasses and proximity sensors. 

They can also provide the user‘s location, by either triangulating from nearby cell-towers or 

using Global Positioning System (GPS).They may also allow audio and video recording. While 

users need to be motivated to incorporate specialised sensors into their everyday life, phones are 

on the person of users for most of their day. Their popularity is further enhanced by the 

B 
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availability of rich-functionality applications, commonly termed Apps. Both iPhone™ and 

Android™ phones allow apps to run in the background, opening the way for applications that 

can collect sensor data from the phones. For instance, applications exist to record GPS data as a 

user exercises, calculating energy expenditure based on the speed and type of activity.  

Apps that run in the background need to meet certain critical user requirements. Foremost of 

these is battery utilisation. Collecting sensor data can be very expensive depending on the 

sampling frequency and type of sensor. The most expensive sensor in this regard is GPS. The 

volume of data is also critical. Subsequent storage and transmission of sensor data can also be 

expensive, depending on the medium used for storage (internal phone memory vs. external 

memory cards) and the medium used for transmission (mobile internet vs. WIFI). Finally, there 

may be cost incurred for using the internet. The data transmitted from the phone should 

therefore be minimised.  

 

The second requirement is minimal processor use. Processors of smartphones have evolved 

significantly, but are still are limited both in terms of speed and memory. Furthermore, apps 

with high CPU use will consume more battery, and will slow other functionalities of the phone, 

resulting in poor user experience. Therefore any features extracted from the sensor data need to 

be inexpensively generated. 

 

The tremendous data collection opportunity offered by smartphones is accompanied by 

complications in the analysis of this data. The quality and number of sensors on the phone can 

depend on the price of the phone. For instance, the accelerometer on the Samsung Europa™ has 

an operating frequency of 20 Hz, while the slightly more expensive Samsung Mini™ operates at 

100 Hz. It is not possible, therefore, to assume any particular sensor type. In contrast to 

specialised sensors, the placement and orientation of the phone is not fixed. The phone may be 

on the users pockets, may be in their hands, or it may not be on their person at all. It is difficult 

to collect a representative dataset in controlled settings for how phones will be used in practice. 

Using just a supervised learning approach taken in Chapter 5 will therefore be insufficient. 

 

Thus far, apps typically tend to require significant user management, and are targeted towards 

providing workout related metrics [217]. These rely on GPS, and sometimes the accelerometer 

with manual input of exercise type determining outputs such as calorie expenditure. Research in 

activity recognition using mobile phones is growing, typically using supervised learning to 

recognizing specific activities [218-220]. There has been research [221] in developing profiles 
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that map accelerometer data from phones to calorie expenditure. This work specifically looked 

at phone placement in order to adjust the mapping functions, with a belt worn holder suggested 

for the most accurate calorie expenditure output. A representative approach is taken by [222] to 

train an SVM to recognise seven activities. A larger range of phone orientations is considered 

by Henpraserttae et al. [218], who conclude that location mapping models need to be trained to 

achieve satisfactory accuracy.  

 

In this chapter, we describe activity and routine analysis of data collected from smartphones. 

Accelerometer sensor, orientation sensor and location data is collected. It is partially processed 

on the phone itself to reduce the volume of the data transmitted. We describe unsupervised 

methods for extracting activity from the general sensor data, while training classifiers to 

recognise specific activities. The routine-tree presented in Chapter 5 is adapted to handle both 

location and activity. Finally results are presented for a participant wearing the smartphones 

over sixty days. 

 

Our contributions include: 

 Development of a software system for low-cost collection of sensor data with a view 

towards minimizing the data transmitted by shifting processing onto the phone. 

 Application of supervised and unsupervised methods to sensor data to generate specific 

classifications and more abstract clustering that doesn‘t require annotation/training. 

 Recognition and profiling activity over the long-term without specification of location 

of phone on the participant. 

 Incorporation of GPS and accelerometer for a combined analysis. 

 

6.2 ActiveMiles 

 

Research [223, 224] has shown that reducing known lifestyle risk factors could prevent the 

dominant sources of morbidity and mortality, particularly in the developed world, such as heart 

disease and diabetes. Increasing activity is important for managing obesity [225], as well as for 

reducing risk factors for many diseases including heart disease [226], type-II diabetes [227], 

certain types of cancer [228]. Where low activity lifestyles are likely to lead to health problems, 

encouraging higher activity is a recommended intervention [229]. We have developed the 

smartphone-based ActiveMiles application, which is designed to encourage users to be active by 
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tracking their activity over time and competing for points by incorporating exercise into their 

lifestyle. This Android™ based application that executes in the background, and records 

accelerometer, orientation and location sensor data. Feedback to users is provided in the form of 

‗Active Miles‘ points, which correspond to how much active they have been. The software has 

been designed to present information intuitively, while also recording more complex features 

from the data for deeper analysis. Care has been taken to ensure the reliability and power-

efficiency of the system. Figure 6.1 shows an example of feedback provided to users, where 

their daily, weekly and monthly ‗Active Miles‘ are compared against other users, and a 

designated competitor, termed ‗Nemesis‘.  

 

 

 

Figure 6.1Activity feedback shown to users of the Active Miles application: daily, weekly and monthly 

activity levels are compared against other users of the system, and a designated competitor termed Nemesis. 

Day plots are over 24 hours, with each bar corresponding to an hour.  Week and Month plots are  over 7 and 

30 days respective, with each bar corresponding to a day. The goal of the system is to encourage users to 

increase the points they win by being more active. 

 

Figure 6.2 shows accelerometer, orientation and location sensor data for a user during an 

exercise session. Location can be estimated using GPS or cell-tower triangulation. It can be seen 

that the cell-tower based triangulation 6.2 (b) is much coarser resolution than the GPS location 

6.2 (a), and is prone to errors. To use location for long-term mining however, it is important to 
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use this inexpensive reading, instead of the more precise GPS location, as it is significantly 

lower in battery consumption.  

 

 

 

Figure 6.2Data collected from the Android™ based Active Miles application: GPS based location (a), Cell-

tower triangulation based location (b), Accelerometer sensor (c) and Orientation sensor (d) . A Samsung 

Galaxy Mini™  phone was used for this circuit 

 

Data from the phone‘s accelerometer is similar to the data collected from the e-AR sensor in 

Chapters 4 and 5. The orientation sensor has three channels: Pitch, Roll and Azimuth. These 

channels correspond to the orientation of the phone around the X, Y and Z axes respectively.  

 

 

 

  (c)  (d) 

  (a)   (b) 
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6.3 Overview of Methodology 

 

The ActiveMiles application is designed to be deployed using the Android Marketplace™, 

enabling anyone with the smartphone to download the application and start streaming data to the 

server. This presents significant analysis challenges, amongst which is the lack of control over 

variables such as phone type, the user‘s manner and extent of phone usage. Supervised learning 

techniques can be powerful for activity detection, however given the immense variability in 

participant and phone types, it is necessary to consider unsupervised, clustering based 

techniques. As in Chapter 4, it is important to maximise what can be learnt from the structure of 

the data itself, and perform analysis in the intrinsic dimensions of the data. In addition, to reduce 

the load on the server, and to minimise the amount of data transferred, it is far more feasible to 

transmit data in reduced dimensionality, instead of the full feature space. Technically, the 

proposed framework consists of the following main steps:   

 

1) Feature Extraction: Features are extracted from fixed size windows of data. 

2) Dimensionality Reduction: Feature space data is embedded into a reference 

manifold reflecting its intrinsic dimensionality.  

3) Activity Analysis: Depending on the application, manifold embedded data can be 

analysed using supervised and unsupervised learning methods. If class labels are 

available then classification algorithms can be used for activity categorisation and 

analysis of specific activities. In the absence of class labels, we propose using 

clustering algorithms, with results presented for two well-known algorithms. 

4) Routine Mining: The activity labels thus generated can be mined by adapting the 

algorithm proposed in Chapter 5 to incorporate location. Two approaches for this 

are proposed in this chapter. 

 

Steps 1-3 can be performed on the phone itself, reducing the volume of data transmitted 

significantly at each step. There is a trade-off, however, between reducing network and CPU 

usage, and it may be feasible to perform only the first or second steps on the phone. 
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6.4 Feature Extraction 

 

Feature extraction from the accelerometer and orientation sensors consists of the extraction of a 

set of features from each channel of the sensors.  A moving window of data over two seconds is 

used. For a three-axis accelerometer and a 3-axis orientation sensor, we extract 9 features in 

total, listed in Table 5.1. This is a smaller set of features compared to those extracted for the 

transitional activity recognition. This is due to the design choice of feature extraction on the 

phone, which limits the complexity of the features that can be extracted without imposing 

infeasible computational or memory costs. The benefit, in addition to saving on network 

utilisation (and therefore battery usage), is that we can perform the analysis at high sampling 

rates. Android™ phones allow sampling at increasingly high rates, with the mid-range Samsung 

Mini capable of sampling at a maximum of 100 Hz. The most common use case scenario will 

not permit streaming at such high sampling rates. Our system samples at 100 Hz, but streams 

features at 0.5 Hz. The mean and variance is extracted from each channel of the accelerometer, 

with the mean of the magnetic compass features giving the orientation of the phone.  

 
 

Feature 

Number 

 

Sensor Channel Feature 

1 Accelerometer X-Axis Mean 

2 Accelerometer X-Axis Variance 

3 Accelerometer Y-Axis Mean 

4 Accelerometer Y-Axis Variance 

5 Accelerometer Z-Axis Mean 

6 Accelerometer Z-Axis Variance 

7 Magnetic Compass Azimuth Mean 

8 Magnetic Compass Pitch Mean 

9 Magnetic Compass Roll Mean 

 

Table 6.1Features extracted locally from Accelerometer and Orientation sensors.  Six features are extracted 

from the accelerometer and three features are extracted from the orientation sensor. 

 

Figure 6.3 shows the features extracted from a user who is initially walking, then sits down. For 

both accelerometer and orientation sensors, there is a significant change when the participant 

transitions from walking to sitting down. As can be expected, not all features are equally useful 

for a given activity. For instance, the Azimuth variance is not correlated with change in activity 

in this instance. To perform subsequent analysis with features in the intrinsic dimensionality of 



131 

 

the dataset, and to potentially further reduce the volume of data transmitted, data is embedded 

into manifold space. 

 

 

 

Figure 6.3Features extracted from accelerometer and orientation sensors, plotted against window index. 

Each window corresponds to 2 seconds of sensor data. User is initially walking, and then proceeds to sit 

down. 

6.5 Dimensionality Reduction using Manifold Embedding 

 

The advantages of dimensionality reduction for activity classification were described in Section 

4.5. In addition to potential gains in classification or clustering accuracy, the dimensionality 

reduction step can be shifted onto the phone, reducing the volume of the data transmitted several 

fold. Figure 6.4 shows an Isomap representation of the data shown in 6.2 in two dimensions. 

While the transmission of features remains at 0.5 Hz, the dimensionality of this data can be 

decreased by several-fold. In the results section for instance, we demonstrate that it is possible 

to perform accurate classification with three dimensions, leading to a three-fold decrease in the 

data transmitted. As described in Chapter 4, a reference manifold can be learned, with 

regression models to map new points to the manifold.  
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Figure 6.4First two dimensions of Isomap reduction showing participant transition from Walking to Sitting 

activities 

 

6.6 Activity Analysis 

 

We consider two use-case scenarios for the activity analysis step. In the first instance, the 

purpose may be to develop customised deployments for specific applications. For instance, for 

clinical trials relating to exercise, it may be possible to collect labelled data for the activities of 

interest before deployment. In this case, a supervised learning approach will be suitable. We 

will present results using standard classifiers for the categorisation of commonly performed 

activities and exercises.  

 

The second use case is where we wish to extract activity labels from dimensionality reduced 

data without any labelled training data. For this case we learn a clustering model. Clustering 

aims to partition a dataset into k points, in which each point belongs to the cluster with the 

nearest mean. We assume here that each cluster corresponds to a distinct activity region on the 

manifold. There exist several well-studied choices for the clustering step. We will compare 

results for K-means and Gaussian Mixture Model (GMM) based clustering using the 

Expectation Maximisation (EM) algorithm.  
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The parameter k specifying the number of clusters in the data can be fixed beforehand if the 

number of activity types is known, or it can be chosen using cluster size selection heuristics, for 

instance the Gap statistic [230]. 

 

It was noted in [115] that the variances of the accelerometer channels can be used to measure 

the intensity of activity. For the purposes of presentation, clusters will be ordered by the average 

activity intensity; i.e. by the average variance of points within the cluster. 

 

 

6.6.1 K-means Clustering 

 

Given a set of points
1 2
, , ...,

n
x x x  k-means clustering [231] finds a set of k partitions such that 

the sum of squared distances of each point from the centre of its assigned cluster. The objective 

function therefore is to produce a set of partitions S such that 

 

1
j i

k

j i

i x S

x 

 

   

 

is minimised, where 
i

  is the cluster centre of segment 
i

S . 

 

The objective function can be optimised by choosing cluster centres randomly initially, then 

running an iterative procedure where in each iteration distances to cluster centres are updated, 

and cluster centres are recomputed. The algorithm is terminated when the assignments no longer 

change. 

 

 

6.6.2 Gaussian Mixture Model based Clustering 

 

Mixture models define a set of probability distribution functions that is likely to generate the 

dataset. Gaussian Mixture Models (GMM) [232] model the mixture models using Gaussian 

functions, where each component Gaussian corresponds to a cluster in the data. Formally, a 

Gaussian mixture model is a weighted sum of k component Gaussian densities as given by the 

equation 

(6.1) 
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The well known Expectation Maximisation (EM) algorithm [233] can be used to find the 

maximum likelihood estimate of the parameter vector  .  

 

6.7 Incorporating Location into Routine Tree  

 

In chapter 5 we proposed a technique for abstracting a multi-resolution data structure that 

associates temporal periods with patterns of activity. This is referred to as routine tree. The 

application of the routine tree to the activity clusters instead of activity levels is straightforward. 

In this section we consider approaches for the incorporation of location into the analysis. 

 

6.7.1 Location as Feature 

 

One approach, as taken by Atallah el al. [50] is to regard location as providing context for a 

more precise or more accurate activity level estimation. For instance, the sitting activity at home 

and sitting at work could correspond to two different labels in the system. There is a significant 

difficulty to this when applied to unsupervised analysis of phone data.  While activity values can 

be envisioned to belong to a small number of clusters, it is difficult to determine apriori the 

locations in which a user is likely to be in. Particularly in the case of GPS or cell-tower based 

location, the number of locations the user can be in can be very large, with most of these 

readings being transitional and thereby not useful for context.  

 

To provide meaningful location context, it is useful to add more semantic content to the location 

measure. Instead of raw longitude, latitude readings for instance, Google Latitude™ outputs 

location history with more descriptive labels like ‗work‘, ‗home‘, etc. In Google Latitude [234] 

(6.2) 

(6.3) 
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and other recent work [235] these labels are derived from temporal models of user routines. This 

is infeasible, as instead of imposing a model of routine on users of the system, the goal is to 

discover it. A simpler approach, as taken by Ashbrook and Starner [236] is to use a clustering 

algorithm to reduce the longitude and latitude into locations. This requires the selection of a 

cluster number however, which is infeasible when considering location data which may change 

significantly. An algorithm based on minimum occupancy time and minimum duration is 

proposed by Khetarpaul et al. [237], that selects ‗Interesting Locations‘ without specifying a 

fixed number of locations.  Algorithm 6.1 describes a simplified version of the procedure based 

on [237] to select ‗StayPoints‘. 

 

 

The parameters of minimum duration and minimum distance still need to be specified. This can 

be determined empirically, and based on the constraints of the sensors. For instance, GPS 

readings can be of high resolution, in contrast to cell-tower based localisations, as shown in 

Figure 6.1. As cell-tower based localisations are coarse grain to begin with, fewer readings will 

be close enough to come within a reasonable distance threshold to specify the same location. 

 

6.7.2 Location as Dimension 

Phenomenologists such as Heidegger, consider temporality and spatiality as foundational 

relations for human consciousness [238]. Time is incorporated in the routine tree algorithm by 

associating patterns of activity with periods of time. Space can be similarly considered a second 

 

Algorithm 6.1 – Stay Point Calculation 

Inputs: Longitude, Latitude based locations L , distance threshold D , time threshold t ,    

predicate dist returning distance between two locations, d u ra tio n returning the time 

difference between the first and last element of a period P  and Center returning the 

central point of a set of locations. 

Outputs: A set of  locations S  

1. Scan L to select periods P such that for every ,
i j

L L in P  such that 

1j i  ( , )
i j

dist L L D  and ( )d u ra tio n P t  

2. For each P , ( )S S Center P   
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dimension of routine, instead of a feature of activity. In the database representation for location 

as feature the table is indexed by time, and location is appended to activity features as a 

categorical feature. When location is a dimension, location and time are combined to index 

activity features. This results in associations of activity patterns with locations and time, instead 

of just time. Instead of a data structure divided only in terms of time granularity, we seek to 

extract separate pattern statistics for each location and time granularity. The algorithms for 

routine tree construction and pruning can be modified by recursing along ‗space‘ as well as 

time, producing a two-dimensional grid structure at each level. Algorithm 6.2 shows the 

modification proposed for two-dimensional routine-tree construction. It is challenging to 

produce visualisations for such a grid structure, therefore the preferred method will be to 

consider location as a feature. 

 

 

 

 

Algorithm 6.2 – Routine Tree (with Location) Construction 

Inputs: Database D  of transactions of reduced dimensionality feature windows indexed 

by time and location L , location threshold parameter   Node N  representing a period 

[ , ]
S ta r t E n d

N N , _sp lit threshold and m in _ d u ra tio n  

Outputs: A set of trees R  rooted at N  and Table associating nodes to patterns. 

1. For each 
i

L in L  

a. Apply Association Miner on transactions in D with location within  of 

i
L  and time in [ , ]

S ta r t E n d
N N . Store patterns in ( , )Table N L . 

b. If number of patterns in ( , )Table N L  is greater than 
_sp lit threshold

 and 

duration of N  is above 
m in _ d u ra tio n

 

c. Split N  into equal duration nodes, 
L e ft

N  and 
R ig h t

N  adding them as 

children of ( , )N L  in Routine Tree R  

d. Call Generate-Tree with L e ft
N

 

e. Call Generate-Tree with R ig h t
N
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6.8 Results 

 

We present our results from data collected from a single participant (a 30 year old male) over a 

period of seventy days. A diary was kept for parts of two days comprising approximately four 

hours, listing the activities performed. This is referred to as Study I, which we will analyse 

using supervised and unsupervised learning methods to generate activity labels. We will 

demonstrate the feasibility of training classifiers for specific activities, and relate the clustering 

algorithm‘s output to the output of supervised classification. The full dataset, referred to as 

Study II, will be analysed for routine by mining activity labels and location. The sampling 

frequency of the sensors is not fixed and is driven by events generated by the operating system. 

Table 6.2 lists the mean and standard deviation of the data collected from each sensor, while 

Table 6.3 describes the activities annotated in the diary for Study I, and the duration for which 

the label was placed. The running activity was performed on a treadmill at three different 

speeds. The walking activity was performed outdoors, and on a treadmill at a fixed speed of 5.5 

km/h. 

 

No restrictions were placed on the orientation or the placement of the phone during data 

collection. A significant segment of the data may therefore be from periods where the phone is 

not on the person of the participant. How the phone is carried influences the sensor readings 

obtained for the same activity. Data for the walking activity from the accelerometer is shown 

when the participant holds the phone in his jacket in Figure 6.5 (a) compared to when the phone 

is in the front pocket of the participant‘s trouser in Figure 6.5 (b).  Signal features such as the 

mean and variance are significantly different for the same activity because of how the phone is 

carried.   

 
 

Sensor Type 
 

Mean Standard Deviation 

Accelerometer 20.8  Hz 1.71 Hz 

Orientation 5.05 Hz 0.44 Hz 

Cell Based 

Location 

0.02 Hz 0.002 Hz 

 

Table 6.2Mean and Standard Deviation of sampling frequency from sensors on the phone. The phone 

operating system attempts to deliver sensor data on a ‗best effort‘ basis, and does not guarantee constant 

sampling frequencies. 
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Activity 

Number 
Annotation 

Duration (in 

seconds) 

1 Phone not on person 967 

2 Sitting Down 523 

3 Lying Down 44 

4 Standing 33 

5 Walking Upstairs 82 

6 Walking (Outside) 512 

7 Walking(Treadmill)  232 

8 Running 1058 

9 Cycling 126 

10 Rowing  (Machine) 306 

 

Table 6.3Activities corresponding to annotations placed by smartphone user, along with the duration of the 

label. 

 

 

Figure 6.5Accelerometer data showing the walking activity when the phone is in the jacket (a) and trouser 

front-pocket (b). The signal features can be significantly different for the same activity depending on the 

position of the data.   

 

6.8.1 Analysis of Study I - Labelled Activity Dataset 

 

A reference manifold was trained from 500 points selected using the MaxMin method proposed 

in [239]. Figure 6.6 shows the visually separable clusters of activities performed in Study I 

when the data is embedded in this reference manifold. The walking outside activity has the most 

variability, as this was collected with the participant moving the phone (after talking on it). This 

(a) (b) 
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suggests that the reference dataset must be representative of the diverse ways in which mobile 

phones are used and carried, if a supervised classifier is to be trained on this data.   

 

Figure 6.6First three dimensions of Isomap embedding of activities performed in Study I. Data 

corresponding to each activity clusters together, but may belong in multiple clusters depending on phone 

location, as in the walking activity. 

 

The first five dimensions of the manifold were empirically found sufficient to represent the 

intrinsic dimensionality, as shown in Figure 6.7, where the arrow shows the ‗elbow‘ of the 

residual variance curve. 

 

 

Figure 6.7Using Residual Variance to estimate the intrinsic dimensionality of activity data. The arrow 

shows the ‗elbow‘ of the residual variance curve. This gives an estimate of the dataset‘s true dimensionality. 
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C4.5 

Neural 

Network 

 

Naive Bayes 

Accuracy 97.4 97.0 95.5 

Precision 97.4 97.4 95.8 

Recall 97.5 97.0 95.5 

   

 

Table 6.4Accuracy of Activity Detection for Study I using first five dimensions of Isomap embedding. 

 

Given class labels, we can train participant specific classifiers to detect activities. Table 6.4 

shows the accuracy of classifiers trained with data embedded in the manifold of its intrinsic 

dimensionality. Naive Bayes, Neural Network and Decision Tree classifiers were trained and 

ten-fold cross validation was used to compute classification accuracy. All three classifiers 

achieve high classification accuracy. It is possible to perform this classification with fewer 

dimensions, without significantly reducing accuracy. The plot of classifier accuracy versus 

manifold dimensionality in Figure 6.8 demonstrates that adding dimensions beyond the first 

three does not significantly increase the classification accuracy. There is a significant advantage 

to using fewer dimensions in the classification task.  

 

 

Figure 6.8Accuracy of Classifiers for Activity Detection versus Manifold Dimensionality. There is 

diminishing impact of dimensionality on classification accuracy after three dimensions. 

 

As in Chapter 4, we can train reference manifolds for specific activities of interest. For instance, 

Figure 6.9 shows the manifold embedding of the running activity using the accelerometer data 

features. The three running speeds cluster in identifiable regions.   
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Figure 6.9Isomap embedding of accelerometer data for the running activity. Clusters correspond to running 

speed. 

 

Generalised Regression Neural Networks (GRNN) were introduced in Chapter 4 to learn 

regression classifiers to map from feature to manifold space. Here we propose to use GRNN to 

estimate running speed using just the accelerometer features. This has a significant advantage 

over current exercise apps, most of which estimate running speed using GPS. GPS reception is 

poor indoors. Furthermore, running in place, as on treadmills, does not change the location of 

the participant, and therefore the application will fail to detect running. As Figure 6.10 shows, 

the running speed estimated using GRNN approximates the speed as recorded by the participant 

on the treadmill. While the treadmill moves at a constant speed, the strides of the participant can 

be variable (referred to as kinematic variability).  This can explain the spread of the estimated 

speed. As Figure 6.9 shows however, the patterns at 9.6 km/h are significantly different from 

the other two speeds. This results in stronger correspondence of the estimated speed with the 

treadmill belt speed. 

 

The choice of clustering algorithm can be made based on the performance of the algorithm 

against labelled data. Figure 6.11 shows the activity labels and the cluster labels generated by 

the K-means and GMM algorithms. There is noticeably better correspondence to the labels for 

the GMM clustering results than the K-means clustering results.  
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Figure 6.10Running speed (in km/h) as labelled and as estimated using a GRNN regression classifier. 

 

An objective measure of the correspondence between activity labels and clustering can be 

obtained using the Adjusted Rand Index (ARI) [240].  Given two partitions U and V of n

elements, there are
2

n 

 
 

 pairs of elements.  Let a , b , c and d be defined as the number of pairs 

of elements such that: 

 

a  - Elements in a pair are placed in the same set in U and in the same set in V  

b  -  Elements in a pair are placed in the same set in U and different sets in V  

c  -  Elements in a pair are placed in the different sets in U and same sets in V  

d  -  Elements in a pair are placed in different sets in U and different sets in V  
 

The Rand Index (RI) is defined as: 

 

a d
R I

a b c d




  
 

 

(6.4) 
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Figure 6.11Manually placed activity labels versus cluster labels generated by K-Means and GMM 

Algorithms for Study I. GMM outperforms the K-Means when compared against activity labels. 

 

RI takes values between 0 and 1, with 1 denoting complete correspondence, and 0 denoting 

complete disagreement. A limitation however, is that the expected RI of random partitions does 

not take a constant value. The corrected for chance measure, called Adjusted Rand Index (ARI), 

can be computed as follows: 
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As in RI, ARI ranges from 0 to 1, with 1 denoting complete agreement. Table 6.5 shows the 

ARI values of the labels generated by the two algorithms against the activity labels and each 

other.  GMM outperforms the K-means algorithm significantly. One reason for this is that K-

means tends to produce ‗round‘, equal-sized clusters [241] which may not correspond to the 

actual shape of the clusters in the data. As Table 6.3 demonstrates, there is a significant 

variation in the activity lengths and types. The application of k-means generally results in one or 

more activities being split into multiple clusters. Due to the superior performance of GMM 

clustering, it will be used in our subsequent analysis to generate activity labels. 

 

(6.5) 
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 Activity 

Label 
K-Means 

Gaussian 

Mixture  

Activity Label 1 0.63 0.87 

K-Means 0.63 1 0.72 

Gaussian Mixture 0.87 0.72 1 

 

 

Table 6.5Comparison of Clustering Algorithms with Ground Truth using the Adjusted Rand Index (ARI). 

GMM performs better than K-Means clustering and is used in the subsequent analysis. 

 

6.8.2 Analysis of Study II – Routine Mining of Historical Activity Data 

 

The analysis described so far can be considered as ‗online processing‘: It can be performed as 

the data arrives, and can even be shifted onto the phone itself. In this section we present results 

for the server-side mining of data collected for 60 days. We assume that labels are unavailable, 

although we will be showing results for some labelled data for validation. 

 

As before, data is embedded into the manifold space, with 1000 landmark points selected using 

the MaxMin method to train the manifold. A GMM was trained on the manifold using a cluster 

size of 10. Figure 6.12 (a) shows the cluster sizes for the clusters and 6.12 (b) shows the average 

activity intensity in each cluster. It can be seen that clusters 1-4 correspond to very low-intensity 

activities, cluster 5 to low, 6-7 to medium, 8-9 to high and 10 to very high intensity activities. 

 

Instead of setting the number of clusters, the number of clusters can be selected using the Gap 

statistic. It is based on the within-cluster dispersion error, which decreases monotonically as the 

number of clusters increases. The gap statistic seeks to find the point at which this decrease 

flattens significantly. Computation of the statistic involves sampling from a uniform 

distribution. Furthermore the EM algorithm‘s output depends on its starting points, which are 

selected randomly. The analysis was therefore repeated 50 times. Figure 6.13 shows k versus 

the number of times it is selected by the Gap statistic. This suggests that 3k  will produce 

optimal clusters, although 5k   is also suitable, as this offers greater specificity. The cluster 

size suggested by the gap statistic is necessarily dependent on the sample size used for training 

the algorithms. In the case of a wide-scale deployment however, it is difficult to determine what 

the appropriate sample is, and therefore we may need to retrain the clustering algorithms. In this 
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case, it may be simpler for subsequent analysis and visualisation to choose a fixed number of 

clusters, simplifying the mining procedure further down the analysis pipeline instead of needing 

to adjust based on variable number of clusters.  

 

 

 

 

 

Figure 6.12Membership sizes of GMM clustering for Study II (a) and average activity intensity for each 

cluster (b).  

 

 

 

Figure 6.13Membership sizes of GMM clustering for Study II (a) and average activity intensity for each 

cluster (b). 

 

Cluster labels produced by the GMM shown in Figure 6.14 are used for generating Routine 

Trees. Each transaction in the database consists of activity labels over twenty seconds.  Figure 

(a) (b) 
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6.15 shows the Routine Tree for a day in this database involving office-activity. Periods 

between 11:00 and 17:00 have high and medium intensity activity patterns. On this day, the 

participant participates in weekly meetings at his research group, between 11:00 and 13:00. The 

lower-levels of the tree shows the participant‘s arrival at the meeting and activity during it. 

 

 

 

 

 

Figure 6.14Routine Tree of a Participant showing office-activity, including a weekly meeting 

 

 

 

Figure 6.15Routine Tree of a Participant showing holiday activity, with low activity in the daytime and 

high-intensity activity patterns in the evening. 

 

Figure 6.14 can be contrasted with the participant‘s behaviour during an off-day, as in Figure 

6.15. In this case the participant has low activity for most of the day. However, in the evening 



147 

 

there are activity patterns associated with high intensity activities. This would suggest activities 

such as socializing. To be certain however, we must incorporate location into the analysis. 

 

Over the course of three months, the participant was located at 4262 distinct locations. Only a 

small subset of these is significant however, as shown in Figure 6.16, which shows the average 

time the participant was present at each location in hours.  It can be observed that within the top 

twenty activities, the occupancy duration reduces to less than 10 minutes. This can be used to 

select the threshold on the number of ‗significant‘ locations, or the minimum duration of 

occupancy for a location to be considered significant. This is our time threshold in the Stay 

Points algorithm. 

 

Figure 6.16Average time spent at top 100 significant location candidates. Typically users spend most of 

their time in a small number of locations, which are selected by the algorithm. 
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Figure 6.17Semantic labels attached to significant labels found by the algorithm can be placed by users. 

Semantic labels can be assigned to the significant locations using feedback from the user. Figure 

6.17 shows some of the significant locations found in our analysis, along with the semantic 

labels retrospectively added after the locations were computed. 

 

 

Figure 6.18Routine tree incorporating location into the visualisation. Location can be used to contextualise 

the activity patterns. 
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When significant locations are added to the database transactions of the routine tree, it is 

possible to associate frequent patterns of activity with the location at which the activity is 

performed. Transactions in the database comprise of twenty seconds of distinct activities and 

locations. In addition to the visual output of the routine-trees, the semantic labels manually 

assigned by the user are shown in Figure 6.18. The patterns are for the day shown in Figure 

6.14, however given the semantic labels it is possible to contextualise the user‘s activity. For 

instance, the meeting activity can be inferred from the ‗Office 2‘ location, which is distinct from 

‗Office 1‘ where the participant is usually situated. Similarly, exercise activity can be inferred 

based on both higher level activity patterns as well as the user‘s presence at the gym. 

 

A second method proposed for incorporating location into the mining task is to consider 

location as a dimension, i.e. group activities by time and location. It may be important to drill 

down and investigate participant‘s routine activities in particular locations (for example, unusual 

kitchen activity may indicate a change in eating patterns). Figure 6.19 shows an example output 

for this approach, where the location is the participant‘s home. In this instance, the participant is 

active in the morning, not-present at home during the daytime, and returns in the evening.  

 

 

 

 

Figure 6.19Routine tree for the ‗Home‘ location, showing activity in the morning before the participant 

leaves for work, and in the evening when he returns.  
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Conclusions 

 

This chapter presented a system for collecting and analysing long-term activity and routine data 

from the widely used platform of Android™ based smartphones.  

   

While there has been previous work on behaviour profiling using mobile phones, most of this 

has utilised GPS based location and tended to focus on narrow applications such as those related 

to exercise. ActiveMiles opens up the possibility of continuous activity monitoring through the 

development of algorithms that can be deployed on the phone itself in order to reduce the data 

volume, while extracting features at high sampling rates. The main contribution of this chapter 

lies in the exploration of strategies for long-term trend data analysis by applying clustering 

methods with automatic cluster size detection, and adaptation of methods proposed in previous 

chapters. 

 

Study I suggests the feasibility of developing very specific classification of activity from the 

features extracted from the phone. It should be noted that it is based on only one participant‘s 

data, and classifiers such as the GRNN for detecting running speed must be trained on a large 

number of participants as well as different phone placements in order to be robust. The analysis 

opens the way towards clinical studies, such as those for obesity monitoring and a more precise 

association with clinical measures such as calorie consumption. An on-going study will validate 

the activity output with clinically standardised caloric expenditure measurements. 

In the absence of enough training data to learn participant-specific, precise models of activity, 

we propose the use of clustering. The GMM clustering algorithm, in particular was found to 

generate both stable clusters, and was found to correlate with manually placed labels of activity. 

We use this to generate a label for the participant‘s activity.  

 

Given this categorisation of ‗activity‘, a methodology was proposed whereby the routine of the 

participant on any given day could be summarised in terms of activity and location either using 

the routine tree visualisation or a diary. Key locations were selected from the GPS/cell-tower 

based locations that corresponded to significant places for the user. These are used to provide 

more detailed reports on the participant‘s routine. 

 

One significant challenge for activity profiling on smartphones lies in the need to conserve 

system resources. Software such as ActiveMiles will consume significant battery power due to 
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sensor usage. In particular GPS sensors have a high operation cost, and therefore must be used 

sparingly. In future work we will explore the use of surrogates for expensive sensing, for 

instance using coarse network location and user activity to estimate GPS location. A further 

direction for research is to adapt the sensor sampling rates to the activity being performed.  

Another area for resource optimisation is in data transmission, which impacts not only the 

phone‘s battery significantly, but also can be potentially expensive depending on the mobile 

internet charges. Several measures have been taken to address this. Users can choose to only 

perform data upload when the phone is being charged. There is a further option to transmit only 

when connected to a wireless internet network. To minimise network use, the data is stored and 

transmitted in a compressed, binary format. A direction for research is local processing to filter 

data that is redundant or can be reconstructed on the server from previous data or other sensors. 

 

In our data-mining based presentation of routines so far, the analysis has been mainly visual and 

qualitative. While such abstractions may be useful for care-providers and users of the system, it 

is important to be able to characterise routines and change in routines in a more quantitative 

framework. In the next chapter, we extend our data-mining based routine algorithm by 

proposing mechanisms to compute the distance between two daily routines, thereby permitting 

clustering and classification of routine behaviour and changes in it. 
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Chapter 7 

Long-term Profiling with  
Pervasive Sensing 

 

 

 

 

 

7.1 Introduction 

 

N previous chapters a set of techniques was proposed for the extraction of behaviour related 

information from ambient and body-worn sensor data. This chapter extends research from 

quantitative analysis of activity to that of routine. The primary consumers of such healthcare 

related information are the participants themselves and their care providers. Data from pervasive 

sensing systems, even abstracted into the daily picture of routine, accumulates very quickly. It is 

difficult to track changes, and patterns of behaviour.  It is important therefore to be able to 

present the information by categorizing it into groups, and detecting and presenting significant 

deviations from the normal types of data. 

 

In this chapter, we will propose quantitative measures that can be used to compare an 

individual‘s behaviour over the long-term developing on the techniques described in Chapter 6. 

As in earlier chapters, the goal remains to discover categories and types of behaviour in 

unlabelled data. In particular, we focus on two use case scenarios. The long-term care of elderly 

participants in a home based healthcare scenario and the analysis of active miles data to detect 

changes in activity or lifestyle. 

 

Much of our analysis is focused around the temporal unit of a day. The design choice is driven 

by the dependence of human routine on the circadian rhythms. These rhythms are influenced by 

I 
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daylight, having been evolved to regulate human behaviour around the day-night schedule of the 

Earth. It is possible however, that certain periods of the day may offer more structure, and 

deviation in these periods may be more meaningful. For instance, it is important for care 

providers to note variability in sleeping patterns [242, 243]. This includes disturbed sleep as 

well as interruptions in it. It is important therefore to be able to compare specific periods of the 

day to detect. The multi-resolution temporal model of the routine-tree is well suited for this 

analysis, as we can bias our analysis to focus on specific portions of the routine-tree. 

 

Figure 7.1A comparison of two days of sensor data using with the real signal on the left and alignment 

using Dynamic Time Warping (DTW) on the right. The missing data in day 1 results in an incorrect 

alignment. 

 

It is important to note one significant complication in the comparison of sensor data over 

different days stemming from how participants use the sensors. It is difficult to predict the times 

of the day in which the participants have sensors on their person. Much of the data may be 

missing, with arbitrary starts and stops to the data stream. Typically analysis of behaviour does 

not take time-of-day into account. For instance, using Zhou and Torre [244] propose an 

algorithm based on Dynamic Time Warping (DTW) for comparing behaviour, and Atallah et al. 
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[50] compare sequences of activity using Hidden Markov Models (HMM). Since neither HMM 

nor DTW have an explicit model of time, the alignment can result in comparisons that are not 

meaningful, for example by aligning late-night activity with daytime activity. This is the case in 

Figure 7.1, where the participant used the Active Miles program only in the evening period of 

day 1, but throughout the day on day 32. The DTW alignment results in the evening activity 

stretched over the entire day. The distance produced from this alignment will not be correct. 

Even though the aligned signals look relatively similar visually, the participant was active on 

day 1 and inactive on day32 in the evening time period. Our analysis compares like-with-like by 

comparing the same periods of the day.   

 

An attractive property of both DTW and HMM however is in the ability to align sequences with 

inter and intra participant variability. Sequences beginning at different times of the day, with 

small deviations can be mapped. Likewise, if a participant has the exactly the same routine, but 

begins his day earlier or later than usual, both DTW and HMM can cater for these conditions. If 

the model of time is too rigid, minor variations in routine may be exaggerated. For instance, 

Virone et al. [155, 245] associate circadian activity statistics of elderly participants in a smart 

home with every hour of the day, while Barger et al. [156], while not associating explicit 

statistics with every hour, also begin their analysis with clustering of hourly firings of ambient 

sensor data. While our data structure associates activity patterns with time, the multi-resolution 

nature of the data structure allows for analysis at different time scales. Therefore days with 

similar activity with small variations in time will be grouped together at the high-levels of the 

tree.  

 

Our analysis begins with a method for specify the distance between two routine trees. As the 

routine-tree is a multi-resolution dataset, this requires finding the distance between each 

overlapping node in the trees, which is used to construct a similarity matrix representing 

distance at multiple timescales. This similarity matrix can then be used for visual presentation of 

the complete dataset, or to cluster it into groups.  Anomaly detection is then performed to find 

days where the user‘s behaviour is significantly different.  

 

Results will be presented for two datasets: a dataset collected from one chronically ill 

participant over six months in a home monitoring study, and an ActiveMiles dataset from a 

healthy participant consisting of 83 days of data. 
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7.2 Methodology 

 

The starting point of analysis in this chapter is a database containing historical activity and 

routine data. The routine data is comprised of a routine tree mined from historical activity; this 

can include location. Location may be using ambient sensors such as Passive Infra-Red (PIR) 

sensors or global positioning using GPS or cell tower triangulation. Technically, the proposed 

framework consists of the following main steps:   

 

1) Activity Labelling: Activities are extracted from wearable sensors. For the activity 

data this corresponds to clustering using GMM as described in Chapter 6. The 

clusters may include location as a feature, or location can be mined separately. 

2) Routine Mining: Routine trees are mined from databases where each transaction is 

comprised of a window of ten activity samples and any associated locations. 

3) Computing a Distance Matrix from Routine Trees: Distance matrices are computed 

for every node in the routine tree dataset. Each entry in these matrices corresponds 

to the distance between the corresponding trees at that time period. A combined 

distance matrix is finally generated by combining these matrices. 

4) Analysis of Distance Matrices: The distance matrices thus derived are used for 

clustering and anomaly detection. Dimensionality reduction mechanisms such as 

Isomap can be used to cluster and visualise the data. Mechanisms are included in 

the analysis for the biasing towards temporal periods specified by the care providers 

as most relevant. 

 

The main contribution of this chapter is in proposing a method for generating the distance 

matrix of routine trees. This is discussed further in the next section. 

 

7.3 Generating a Distance Matrix from Routine Trees 

 

The challenge of processing a routine dataset is to preserve the time-sensitive nature of human 

behaviour while also taking into account variability in how people perform their activities, and 

use the data collection hardware. To avoid misalignment as in Figure 7.1, we compute separate 
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distance matrices for each time period in the routine trees. These matrices are referred to as 

Node Distance Matrices (NDM). The matrices cannot be simply added together however, as this 

would not take into account the duration of the node, and the extent to which it reflects 

interesting variation. Instead we take the approach of clustering each distance matrix separately, 

and then combining the cluster labels in a distance matrix that reflects how often different days 

are clustered together. The workflow is illustrated in Figure 7.2. 

Figure 7.2Methodology for generating a composite distance matrix from a set of routine trees.  

 

7.3.1 Computing Node Distance Matrices 

 

Routine Trees are associations of a table of activity patterns with time periods, referred to as 

nodes, which are of successively smaller duration at each level of the tree. We compute distance 

matrices for each node possible in a routine tree. The number of matrices is limited by the 

recursion level specified during routine tree construction. The distance between two routine 

trees at a given node is called the Node Distance (ND). Figure 7.3 shows three routine trees, and 

three node distance matrices that can be generated from the overlapping nodes. It can be seen 

that there may be fewer matrices than possible, depending on the amount of overlap in the trees, 

and many entries in the matrices may be null. 
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Figure 7.3Three Node Distance Matrices that can be generated from three routine trees, with nodes colour 

coded according to their associated distance matrix, where ∅ denotes a null entry. 

 

To compute ND, we use a similarity measure based on one proposed by Li et al. [246] for 

testing the similarity of datasets using maximal frequent patterns. Let there be two nodes A and 

B , and s u p ( )P be the associated frequency with the pattern P as a proportion of the dataset, so 

that 

 

  , s u p
i i

A X X  

  , su p
j j

B Y Y  

 

where
i

X  and 
j

Y  are maximally frequent patterns in A and B respectively .  

ND can be found by the following equation: 
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It can be seen that 0 1N D   with 0 denoting no difference between the activity patterns and 

1 denoting maximum difference. The measure captures both differences in the frequent patterns 

as well as the frequency of the patterns in the dataset.  

 

7.3.2 Generating Composite Distance Matrix  

 

Our next step is to generate a Composite Distance Matrix (CDM) that incorporates information 

from all the NDM. One method is to simply add together the different matrices. This is 

problematic for several reasons. Firstly, the matrices are over different durations, and therefore 

the addition would need to be weighted by a parameter reflecting scale. However, the addition 

should also incorporate the significance of differences within the NDM; interesting detail in 

small time periods may be lost because of longer time periods. Furthermore, as noted in the 

previous section, many of the entries in the NDM may be null, requiring the substitution of 

default values in place of the null entries. 

 

Due to these difficulties we take a clustering approach, by generating cluster labels for each 

NDM. These labels are then composed together by using a cluster ensemble algorithm. We 

begin by clustering the subset of the NDM for which there are no null values using GMM 

clustering. The number of clusters can be user specified, or can be found automatically using the 

gap statistic. Days missing from the clustering are assigned a null cluster label. 

 

Give m cluster groupings, a cluster ensemble algorithm finds an integrated clustering that shares 

the most information with the original clusterings. One approach, referred to as Cluster Based 

Similarity Partitioning Algorithm (CSPA) [247] finds a similarity matrix representing 

information from all the clustering. This is attractive, as the matrix can be used with the 

algorithms described in Chapter 4 for visualizing data in manifold. Cluster ensemble algorithms 

were found by Strehl and Ghosh [247] to produce high quality clustering in noisy data. Given a 

set of cluster labels, if two objects are placed in the same cluster, they are considered to be fully 

similar, and if not they are considered to be fully dissimilar. This results in a set of      binary 

similarity matrices, with 1 representing similarity and 0 representing dissimilarity. The 

(7.4) 
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modification we make is to set as 0 any entry where one or both days have a null cluster label. 

The entry-wise average of   matrices yields a composite similarity matrix, which subtracted 

from 1 gives the CDM.  

 

 

 

Figure 7.4Five Node Distance Matrices (a) , their corresponding similarity matrices (b) and the Composite 

Distance Matrix (c) containing information from all the NDM. Blue corresponds to low distance, yellow to 

medium and red to high. 

 

Five NDM are shown in Figure 7.4(a) with blue representing small distances and red indicating 

high distances. Empty rows and columns indicate missing values. The similarity matrices 

generated from the NDM are shown in Figure 7.4(b). The composite distance matrix shown in 

Figure 7.4(c) contains information from all five NDM. 
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One consideration made is to take into account the size of the node corresponding to the NDM. 

The size of nodes is smaller lower in the tree, and therefore lower levels of the tree will 

contribute more to the CDM. Instead of introducing scaling, we take a cluster ensemble 

approach here. The number of clusterings generated from a single NDM corresponds to the 

height of the node in the tree. If the height of the tree is h and the height of the node n is 
n

h , 

2 nh h
labels are generated from it. In this way, the same number of clusterings is generated from 

each level of the tree.  

 

7.4 Analysis of Distance Matrices 

 

The typical structure of a participant‘s daily routine, as well as variations over time can be 

analysed using dimensionality reduction and clustering techniques discussed in previous 

chapters. In brief, we apply the following analysis on the NDM and CDM distance matrices: 

 

 Manifold Embedding: Manifold embedding techniques, such as Isomap, are useful for 

presenting data in a small number of dimensions that capture the intrinsic structure of 

the dataset. The intrinsic dimensionality can be estimated using the residual variance of 

the data. Given a distance matrix, we represent it in its estimated intrinsic 

dimensionality using Isomap. Chapter 4 describes dimensionality reduction in more 

detail. 

 Clustering: The distance matrices are clustered using Gaussian Mixture Model (GMM) 

clustering, with the number of clusters chosen automatically using the gap statistic. 

Chapter 6 describes GMM and the gap statistic in further detail. 

 Qualitative analysis: By finding points close to and distant from centroids in the dataset 

we can visualise typical and anomalous days.  

 

7.5 Results 

 

We will present results for two datasets. The first dataset has been collected using the 

ActiveMiles application described in Chapter 6. The second is from a deployment of a home-

based activity monitoring project, SAPHE. The strength of the data mining approach lies in the 
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applicability of the algorithm to both scenarios where data is streamed continuously, and 

without annotation. 

 

7.5.1 ActiveMiles Dataset 

 

We introduced the ActiveMiles dataset in Section 6.8. This is comprised of accelerometer, 

orientation and location data from the ActiveMiles phone application. The participant (30 years 

old, male) used the application over a period of 83 days between October 2011 and February 

2012.  Chapter 6 presents the clustering of activities in this dataset, and demonstrated the 

generation of Routine Trees using the cluster labels. In this section we present analysis of the 

complete dataset.  

 

To understand the ‗typical‘ day out of a collection of routine data structures, we find the 

centroid using NDM, and display the node from the day closest to the centroid. An example of 

this can be seen in Figure 7.5, a composite tree formed by selecting nodes from trees in each 

DNM closest to the centroid. It can be observed that the typical day of the participant has low-

level activity till 7:00, with an increase between 7:30 and 19:00 corresponding to the active 

period of the day when the participant is at work, followed by a decline in the activity. There is 

higher level activity during the day around lunch time, beginning around noon, and ending close 

to 14:00. The highest activity in the day is observed between 13:00 and 14:00. 

 

 

 

 

Figure 7.5Activity patterns corresponding to the centroid node of the NDM. This corresponds to a ‗typical‘ 

routine of the user. 

Figure 7.6 shows the variations in the routine-trees over time when the dataset is visualised in 

three dimensions using Isomap. While the association of the data with the month is not 

consistent, some patterns can be seen in the data. There is a significant change in routine 
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between December and January. February points are closer to December than January. This 

change corresponded to an increase in the participant‘s workload resulting in unusually low 

activity and less physical activity during the waking hours.  

 

 

Figure 7.6Isomap Embedding of Composite Distance Matrix, with each day coloured according to the 

month. 

 

The pronounced difference in behaviour can be classified. We divided the data into 2011 and 

2012 months. Using the Simba algorithm was used to find manifold dimensions most 

discriminative between the two classes. Using a Neural Network classifier a classification 

accuracy of 86.7% is achieved, with manifold dimensions 1, 2, 5 and 7 selected by Simba.  

 

The residual variance of the Isomap embedding is plotted in Figure 7.7. It can be observed that 

even for a relatively small dataset, the variation is high as the elbow in the curve only appears 

after the 7th dimension. 
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Figure 7.7Residual Variance of the Isomap reduction of the CDM. The elbow of the curve occurs at the 

seventh dimension. 

 

Outlier points can be visually observed in the embedding. Outliers are computed based on the 

Mahalanobis distance from the dataset. Formally for a group of size p  with mean 

1 2 3
( , , , . . . . . , )

T

p
      and covariance matrix  the Mahalanobis distance 

M
D is defined 

for a data point 
1 2 3

( , , , ...., )
T

p
x x x x x  as: 
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T

M
D x x x 


    

 

Figure 7.8 shows four outliers based on thresholding the Mahalonobis distance at 95%. Trees 

shown in 8(a) and 8(b) were found using the manifold embedding of the CDM, while 8 (c) and 

(d) is for NDM associated with the a.m. and p.m. hours of the day respectively. 8(a) is unusual 

for the medium-high activity patterns during the night time and close to 6 a.m., while 8(b) 

shows a day when the participant performs low intensity, sporadic activities during the day. 8(c) 

corresponds to a day with more than usual activity patterns during the early morning, close to 2 

a.m. 8(d) has low activity for most of the day, with the participant remaining inactive between 

2p.m. and 11p.m.  This may correspond to a long working day. 

 

 

 

 

(7.5) 
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Figure 7.8Routine Tree Outliers computed using Mahalonobis distance on embedding of the CDM (a) 

and (b), using NDM for times between 00:00 and 11:59 (c) and using NDM for times between 12:00 and 

23:59 

 

To find the number of clusters best suited for the dataset, we performed a gap-statistic analysis 

on the dataset. Figure 7.9 shows the results when the analysis is repeated 50 times. The most 

commonly selected number of clusters is 3. Therefore this value is used in subsequent analysis. 

 

 

 

Figure 7.9Gap Statistic analysis on the CDM of the Active Miles dataset. Based on the analysis the number 

of clusters is set at 3. 

 

(a) (b) 

(c) (d) 
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Figure 7.10(a) shows the clustering results on Isomap embedded CDM. While there is some 

overlap between the clusters in three dimensions, further dimensions will further separate the 

clusters. Figure 7.10(b) shows the average activity level aggregated for the routine trees in each 

cluster. Based on 7.10(b) we can estimate the nature of the routines in each cluster. 

 

Figure 7.10GMM clustering of CDM shown in manifold space (a), and average activity level of each 

cluster. 

 

Figure 7.11 shows representative days from each of the three clusters. The day corresponding to 

cluster 1 in 7.11(a) clearly has lower level activity during the waking hours. In contrast, the day 
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corresponding to cluster 2 in 7.11(b) has activities spread over the entire day. This cluster is the 

largest in the size, and may be considered as the most ‗typical day. Finally, cluster 3 in 10(c) has 

a mixed nature. While activity is spread over the day, it is lower intensity with periods of 

activity corresponding to the commute. It can be hypothesised that these are ‗normal‘ days with 

relatively lower physical activity over the course of the day. 

 

 

Figure 7.11Representative Routine Trees corresponding to the three clusters respectively.  

 

(a) 

(b) 

  (c) 
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The clusters can be further investigated by a day of the week analysis. Routines can often have a 

strong dependency on events taking place in the week. For instance, the participant attends 

weekly meetings every Wednesday. Figure 7.12 shows the membership of days in clusters for 

each weekday.  

 

 

Figure 7.12Membership of days of the week in the three clusters. Cluster 3 has low weekend 

representation, in contrast to Clusters 1 and 2. 

 

While not consistent, it can be observed that cluster 3 has relatively low membership after the 

Wednesday meetings. In contrast clusters 1 and 2 and have high memberships from Thursday-

Saturday. The highest memberships in cluster 3 are Monday-Wednesday. This suggests that 

before the Wednesday meeting, non-work related activities that would result in higher level 

activity in the evening are curtailed. Immediately after the meeting however, the participant 

either returns to a normal schedule (cluster 2) or has a more relaxed schedule (cluster 1). 

Saturday in particular is either associated with cluster 2 or cluster 1. 
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7.5.2 SAPHE Dataset 

 

Figure 7.13Gap analysis of SAPHE dataset. Plot shows number of times cluster size is selected by the Gap 

criteria, with six cluster sizes selected most often. 

 

The second dataset is from the SAPHE project, introduced in Chapter 5. Chronic patients 

requiring care from community matrons were supplied with e-AR sensor, and ambient sensors 

at their homes. The system allowed care-providers to visualise the health status of their patients 

remotely. As this was a project focused on the development and reception of such systems with 

the National Healthcare Service (NHS), overriding concerns included privacy and ease of use. 

To this end, participants were anonymous, and there is little metadata available. Compliance 

with the system was also left to users; therefore over six months between February-August 

2009, the participant (50 years old, female) wore the e-AR sensor for 44 days. Table 7.1 shows 

the number of days of data available for each month. 
                  

 
Days 

February 4 

March 4 
April 0 

May 4 

June 3 

July 21 

August 7 

 

Table 7.1Months for which routine data is available in the SAPHE dataset and the number of days the user 

wore the e-AR sensor. The user wore the sensor most regularly in July. 
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Figure 7.13 shows results for the gap analysis of the SAPHE dataset. It is indicated that the 

routines can be distinguished into six clusters. However, a limitation of this dataset is the 

absence of ground truth. A cluster analysis can only offer limited information about the 

structure present in the data. It was difficult to visually see the variation in the dataset 

corresponding to the clusters, suggesting that the differences may be subtle. In this case the 

conservative approach is interaction with the participants, to verify the variation in their 

behaviour. As this is not possible for the SAPHE dataset, we shift our focus to parameters that 

can be substantiated, one of which is daily and seasonal variations. 

 

It is evident from Table 7.1 that the participant wore the sensor most regularly during the month 

of July. This can be due to an intervention from the community care provider, prompting 

increased use. A change in routine is also visible in July, as shown in Figure 7.14 where the 

manifold embedding of the CDM is shown. 

 

 

Figure 7.14The participant‘s routine changed during the month of July (red) compared to the routine in 

other months (blue) 
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Day of the week variations in an individual‘s routine may be due to social connectedness [248], 

a key element in the well-being of patients requiring chronic care [249].  One such variation in 

the manifold embedding may be a change in routine on Saturday. Figure 7.15 shows the 

participant‘s routines, with Saturday shown in red. There are relatively few points to perform 

this type of analysis. Six Saturday routines out of nine lie close to each other in the manifold. In 

a real deployment a weak clustering pattern such as this could be the seed for further 

investigation, particularly as a target for community based care. With more data and further 

research we may classify healthy ‗social‘ routines versus routines suggesting social alienation. 

 

 

Figure 7.15A manifold embedding of the CDM with Saturday routines shown in red and remaining 

weekday routines in blue. Although there are too few points to make a strong claim, a weak grouping of red 

points could indicate change in behaviour associated with the weekend. 

 

It can be seen that specific regions of the routine in manifold space can be associated with real 

world parameters such as day of the week and month. The SAPHE project purposively withheld 

metadata in the interest of participant privacy. Our work is promising in indicating the 

feasibility of categorizing routine types, and under more controlled conditions it may be 

possible to learn to identify medically relevant changes in routine. 
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7.6 Conclusions 

 

Chapters 2-6 developed a framework for the analysis of activity, and the abstraction of routine 

from activity. In this chapter this was extended into the quantitative analysis of routine. The key 

contribution was the development of a set of distance matrices based on frequent patterns 

associated with tree nodes. Subsequently these distance matrices were aggregated using cluster 

ensemble methods.  

 

The strength of our framework lies in the meaningful profiling of activity at the small temporal 

resolution, and then extending that to longer time periods, with a view to mining of historical 

data with minimal input from domain experts or the requirement of any manual logging.  

 

One strength of our algorithms lies on the compression achieved from representing routine 

using activity patterns. The volume of sensor data that is used to generate figures such as Figure 

7.15 is very large, constituting six months of accelerometer data. The analysis owes its 

efficiency to the abstraction of routine tree and the compression it achieves, as was 

demonstrated in Chapter 5.  

 

Routine-trees are similar to wavelets in their multi-resolution scaling of activity patterns. As in 

wavelets, higher-level nodes represent overall trends, while lower-level nodes capture local 

variations. By analysing with this multi-resolution data structure our distance measures capture 

similarity in both terms: global and local. This can control for normal variations in routine 

activities, for instance it is not necessary for a participant to eat lunch at a precise time each day 

in order for it to be reflected as an activity usually performed in the early afternoon in the 

participants routine-tree profiles. 

 

The generality of the algorithm was demonstrated by application on two datasets collected in 

very different contexts: a smartphone application and a home-healthcare environment. Very 

little metadata was assumed, or even available. Despite this, the exploratory data analysis 

approach allows us to discover interesting variations in the routine behaviours of the 

participants, particularly variations in routines over weekdays and over longer periods of time.   

 

Characterizing regularity of routine and changes in it has applications in the treatment and 

prevention of neurological illnesses such as insomnia [250] and depression [251], particularly in 
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elderly groups. Further research is needed to detect routines associated with socialising [252], 

an important lifestyle recommendation to avoid dementia. However, in the SAPHE dataset it 

was possible to see a noticeable clustering of weekend activity, which has been suggested as 

strongly influenced by social activity [248].  In the ActiveMiles dataset it was possible to see a 

decrease in exercise regularity, which is of interest in obesity management interventions [253].  

 

Our methodology allows for analysis beginning at the raw activity stream and progressively 

derives human activity and behaviour related meaning. Through feature selection and 

dimensionality reduction, informative and succinct representations of the signal are generated. It 

is then possible to classify activities and transitional activities from this feature space, using the 

techniques described in Chapters 3 and 4. The clinical applications of such activity analysis 

were demonstrated through application to impairment detection and the tracking of recovery 

from knee-replacement surgery. Once sensor signals are transformed into activity streams, the 

routine-tree algorithms allowed for a summarisation of routine-behaviour related activity 

patterns, so that a participant‘s routine could be visually explored without necessitating the 

processing of sizeable activity databases. In addition to qualitative analysis, in this chapter, we 

described mechanisms for the quantitative analysis and comparison of routines, enabling an 

efficient analysis of entire sensor databases in terms of routine behaviour. 
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Chapter 8 

Conclusions and Future Work 

 
 

8.1 Conclusions 

 

Driven by economic demands and technological opportunities, health and well-being 

applications key areas of research for pervasive sensing [8]. This includes activity and 

behaviour parameters that could inform about the user‘s health through inexpensive and 

unobtrusive sensing. Given the vast array of healthcare applications and the evolving 

technology, there remain significant areas that are essential to address to make pervasive 

sensing systems effective and widely used. These were put forward in Chapters 1 and 2.  

 

We have proposed a set of techniques that can be used for mining wearable sensor data for 

health and well-being related applications. The techniques build on well-established machine 

learning and data mining algorithms applied in novel ways on sensor data. Several new 

algorithms and data structures building upon existing techniques have been proposed. The 

transition detection algorithm applied spectral bisection in a recursive way, detecting transitions 

using a technique based on Fuzzy C-Means clustering. Routine-tree construction algorithm 

similarly relied on a well-known algorithm for pattern mining, applying progressively to 

construct a novel data structure for summarising routine. The algorithm for quantifying change 

in routines relied on techniques developed for comparing databases using frequent patterns to 

generate a set of distance matrices, which were combined using a well-known cluster ensemble 

algorithm.  

 

Validation was performed through application on laboratory collected data with simulated 

impairment, clinical studies as well as data from healthy participants. Key advances in this 

dissertation are data-driven methodologies for transitional activity analysis and routine 

behaviour visualisation and analysis. 
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8.2 Summary of Methodologies Developed 

 

This thesis was motivated by the practical need of exploiting the intrinsic structure of the data 

because of the limited availability of annotated data in practice, and the impracticality of 

retrospective labelling of streamed sensor data. Given this paradigm, our focus was on 

incorporating unsupervised and semi-supervised approaches wherever possible with the aim of 

discovering information instead of requiring expert direction. Therefore we rely on clustering, 

manifold embedding and data mining to process the data before any supervised learning based 

algorithms are applied to obtain semantic labels. The imperative to process real-world data 

obtained in scenarios without explicit labelling, as in Chapters 5-7, can conflict with the need to 

provide precise, medically relevant output, as in Chapters 3-4. We have attempted to develop a 

methodology that progresses from fine-grained analysis of transient data with expert labelling, 

to profiling of the activity and behaviour parameters over extended periods without expert 

annotation. Even with expert annotation however, we aim to reduce dependence on manual 

labelling by providing a method for automatic detection of transitions from sensor streams. 

 

In Chapter 3, we demonstrated the potential of pervasive sensing for healthcare applications 

through detection of simulated limb and torso impairment through Activities of Daily Living 

(ADL) performed in simulated home environments. The experiment allowed the highlighting of 

the types of features that are suitable for impairment detection. As a result a large set of 

statistical, frequency and wavelet features could be pared down to a small feature-set optimised 

for each activity type. Impairment could be generally detected with high accuracy.  

 

ADL detection and the detection of impairment in specific types of activities such as walking is 

a widely researched area. Relatively less research focus has been placed at how people 

transition between such activities. This is in particular relevant as a specific transitional activity, 

sit-to-stand (STS), is widely used in clinical and biomechanical assessments. We advanced the 

state of the art in Chapter 4 by studying the detection and analysis of a wider range of 

transitional activities than previously studied, applying our methodology to a real-world 

application of post-operative recovery. One key finding is that for certain patient types, STS 

may not be the ideal transition to study despite its widespread use, because patients were usually 

unable or unwilling to perform the activity. In contrast, stepping transitions were performed by 

participants generally with much more ease, and were still found to be promising for 

demonstrating recovery from surgery. Our methodology relied on manifold based techniques 
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applied in a novel way for transitional activity analysis. An algorithm was proposed relying on 

recursive spectral bisection to automatically segment transitions. Manifold embedding was 

performed to generate a concise representation of transition data in its intrinsic dimensionality, 

allowing subsequent analysis using supervised learning methods. While the manifold space 

analysis is promising, one disadvantage lies in the explaining results from manifold space to 

clinical end-users. Manifold embedding is a so-called ‗black-box‘ technique. That is to say it is 

agnostic of the meaning of the features used. The space engendered as a result of the analysis 

only represents the structure of the data, instead of representing clinically meaningful 

dimensions. While the intrinsic dimensionality of the data may well correspond to real clinical 

measures of relevance, visual exploration and depiction of the data may not be meaningful to 

doctors and nurses. This highlights the necessity of incorporating domain knowledge in the 

analysis. After unsupervised/semi-supervised learning techniques bring data into a form suitable 

for visual and quantitative analysis, it is necessary to correlate the abstract dimensions of 

clustering to labels with real-world relevance. In the absence of this, it can be erroneous to 

extrapolate specific measures of recovery from the abstract dimensions of manifolds, as the 

intrinsic variation in the data can be due to factors not relevant to recovery, such as participant, 

age, gender specific variations. In Chapter 4, we have aimed to provide limited quantitative 

analysis consistent with the size of our study; however the research opens the way towards a 

more comprehensive study. 
 

As we move from controlled experiments to home-based long-term monitoring, the size of the 

data explodes by many orders of magnitude. From the perspective of computational resources as 

well as for purposes of convenient visualisation it is necessary to abstract out raw sensor data. 

Synopsis structures can act in place of the real data for specific data analysis purposes. We 

proposed a multi-resolution synopsis structure in Chapter 5 for activity patterns corresponding 

to routine. The structure is constructed by mining activity patterns at recursively smaller levels 

using standard pattern mining algorithms. The key departure from existing stream mining 

methods is the explicit incorporation of the notion of a ‗day‘, a key organizing feature of human 

activity. In this way we have made a widely used and well-understood data mining technique 

specific to the field of understanding and representing human behaviour, which is a contribution 

of this dissertation. The data structure was shown to be able to represent routine information 

concisely. Similar to the ‗black-box‘ concern in data-mining is the well-known problem of 

‗interestingness‘ of patterns found using data-mining algorithms. Previous research has 

proposed requiring domain-experts to provide limited feedback on the relevance of patterns 
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found by the algorithms. It is necessary to provide more semantic content to the patterns found 

by data mining algorithms for the adoption of the technology by care-providers. 

 

Building on the techniques applied in Chapters 3-5 we aimed to exploit a growing opportunity 

for activity and behaviour profiling: smartphones. Usually equipped with multiple sensors that 

can provide activity and location information, these phones represent a ready deployment 

platform for pervasive sensing. Sensing on phone presents its own challenges however. Users of 

smartphones are particularly sensitive to the battery life of phones. The manifold embedding 

approach offers the opportunity to reduce the size of the data on the phone itself, transmitting 

only the most informative data. In Chapter 6 we presented one such system that relied on 

manifold embedding and clustering to profile activity over long periods of time. While there has 

been some research on studying specific ADL with smartphones, we consider both supervised 

learning approach to recognise specific activities but also clustering based profiling and data-

mining over extended periods of time. To this extent, we modified the algorithms presented in 

Chapter 5 to also include information about significant locations. While we would advocate 

participant-specific clustering, it is necessary to correlate the clustered and mined information to 

objective data. Our limited experiment showed that it is possible to cap data manifold space 

which clustered in distinct regions, with ground truth information obtained from a treadmill.  

 

While routine trees provide output useful for compression and visual exploration of the data, our 

goal is to be able to detect types of routine and changes in routine through the data mining 

approach. To this end we propose a framework for quantitative analysis of routine through the 

composition of two existing techniques: similarity testing of databases through frequent patterns 

and ensemble clustering. The former allows us to compute the distance between corresponding 

time-periods in two routine-trees. The latter allows the merging of information from different 

time-periods into a holistic picture. This picture captures both the broad differences between 

days, but also fine-grained differences between when the same activity is performed in the day. 

We applied the proposed technique to two databases. The first was a smartphone based database 

of everyday activity of a healthy participant. For this database we were able to demonstrate 

specific changes in the participant‘s routine by showing a temporal evolution in the routine. The 

second application was on data collected as part of a home-healthcare pilot application. This 

dataset illustrates the difficulty of pervasive healthcare system. This real-world deployment 

lacked labels completely. This lack of annotation resulted in the unsuitability of conventional 

activity recognition techniques to the data. We were, however able to show specific variations 
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of the participant‘s routine, such as day-of-the-week and seasonal dependencies. This is 

information that was not documented in the study, illustrating the promise of exploratory data 

analysis for this type of data. This dataset highlights the competing nature of priorities in this 

domain: for the purposes for privacy the participant details were not recorded. For the purposes 

of convenience and to avoid intrusion into the participant‘s private life, records of activity were 

not kept. This metadata is necessary to add meaning to the analysis. While exploratory data 

analysis can uncover some knowledge, a thoughtful privacy framework can help contextualise 

this knowledge to the participant‘s circumstances, and produce explanations for what factors 

may be triggering changes in routine. This may guide us in the design of future data collection 

studies as to what metadata should be recorded. 

 

8.3 Future Work 

 

Our research opens the way towards further research in a number of key areas: 

 Extension of Knee-Replacement Experiment: We collected data from participants 

recovering from knee-replacement surgery, and applied transition data analysis to the 

data. This study can be extended in a number of ways. Through a larger cohort, we can 

aim to arrive at objective, quantitative scores of recovery instead of visual indication. 

Furthermore, it is necessary to compare with the current standard for such patients, such 

as the KOOS questionnaire [254]. While participants were asked to fill these 

questionnaires out, unfortunately the compliance with the questionnaire was very low, 

resulting in poor quality data. While this indicates the promise of sensing techniques 

replacing such outmoded and inconvenient mechanisms as questionnaires, it is 

nevertheless necessary to establish that sensing techniques can adequately replace the 

current standard. It would be desirable to ensure higher quality questionnaire data from 

participants in future studies. 

 Application of transitional activity analysis to other medical applications: In 

addition to orthopaedic patients, there are other patient groups that are promising for 

transitional activity analysis. An example of this is tackling obesity, which is a growing 

problem in the developed world [120] that technology can help tackle. Ergonomics and 

suitability of living environments is another potential application, as our analysis could 

distinguish between seating types, which is relevant for rehabilitation. Limb amputation 

is likely to have similar data characteristics as the knee replacement study performed in 
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Chapter 4, with important distinctions related to participant demographics and their 

recovery profiles. Multiple sclerosis, Parkinson‘s and other neuro-degenerative ailments 

also produce distinctive movement profiles, which could be studied in terms of 

transitional activity. Currently clinical studies are planned that will extend the work 

presented in Chapter 4 focusing on limb amputation.  

 Generating objective scores through analysis of activities: With both ADL and 

transitional activities, it may be much more accurate to develop a score of the 

participant‘s health state based on the performance of a combination of activities. While 

we analysed individual activities for impairment in Chapters 3 and 4, it is likely that 

combining information from multiple activities will reduce error rates. As our manifold 

framework can be used to analyse ADLs along with transitions, one promising direction 

of research will be extending our framework to output a single composite score 

correlated with an objective clinical measurement. 

 Clinician directed visualisations of mined information: Our proposed techniques can 

help visualise large quantities of sensor data, which is a requirement of all stakeholders 

in pervasive healthcare systems, particularly clinicians. The manifold view of 

transitions, for instance, summarises time-series information from 36 features in a small 

number of dimensions. Several graphs were presented in Chapter 4 to visualise changes 

in transition performance. While these graphs are meaningful to engineers, there is a 

need to bring this information to clinicians directly. One approach for this is developing 

a better understanding for what the intrinsic dimensions plotted in Chapter 4 correspond 

to, and explaining the manifold in those terms. The routine tree also helps visualise a 

large amount of sensor data into a single, multi-resolution structure showing both broad 

trends, and finer detail.  It can characterise behaviour in terms of time and location, 

which is also information relevant to all stakeholders. There is a need to develop this 

further into a system that is readily understood by clinicians, possibly through a semi-

supervised approach that can associate semantic labels with the mined data. In case of 

the quantitative analysis of routine, once again while changes in routine can be plotted 

in graphs, the visualisations will be more useful if they can be associated with 

actionable intelligence for the stakeholder: why may routine be changing? With more 

context, it may be possible to uncover associations between such changes and personal, 

social and environmental factors. 

 Generating probabilistic models from mined data: In Chapter 2 we surveyed a wide 

range of probabilistic techniques for modelling behaviour. The scope of these 
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techniques is typically limited; i.e. they aim to model specific types of behaviour. While 

our technique is useful for exploratory data analysis, it will be interesting to extend the 

multi-resolution synopsis into a hierarchical model of routine.  

 Incorporating ‘Big Data’ techniques into routine-tree algorithm: Increasingly 

technology is trending away from databases and towards file-based models. Google has 

led the way in this by presenting a model for processing large quantities of data through 

the Map-Reduce  model [255], that relies on a simple model of computation that lends 

itself to efficient parallelisation. This class of technology is colloquially known as ‗Big 

Data‘, and there exist a number of powerful languages (such as Hadoop [256]) that can 

take data in this form and perform the analysis efficiently on a cluster of computers. As 

our number of users increases, it may be desirable to translate the mining into this 

paradigm to take advantage of computing efficiencies. 

 Associating smartphone data features with clinical measurements: To convince 

smartphone users to use the application it is necessary to provide feedback meaningful 

to them. At present our application provides an abstract measure of activity by 

clustering the sensor data. A next step would be correlate phone data to well-understood 

measures such as calories burned. This can be done by collecting smartphone data 

simultaneously with ‗gold standard‘ energy output measurements such as Doubly 

Labelled Water (DLW). We are currently conducting such a study on a small cohort of 

participants and anticipate further research in this direction. 

 ‘Refactoring’ analysis: A software development practice that emerged as a result of 

decades of practice was a set of techniques designed to re-engineer existing components 

to improve the quality of the components without necessarily adding functionality. As 

activity and behaviour profiling research explodes, there is a dire need for research 

housekeeping that consolidates on the technical gains to map to medical applications, 

and ensure that the medical applications themselves lend themselves to a pervasive 

sensing paradigm where the involvement of the medical expert with the participant 

would be minimal. One goal of our research will be to ‗refactor‘ our analysis to ensure 

the framework meets specific medical needs and can be deployed in real-world 

pervasive applications. This requires the bringing together of machine learning and 

software engineering research, and the implementation of algorithms suitable for actual 

deployment. We performed some of this work in Chapter 6, where the algorithms were 

geared towards deployment on a realistic, marketable smartphone application that could 

not a) transmit a lot of data and b) perform CPU intensive computations.  
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 Managing system resources based on user state: Not all states of participants are 

equally important. As we develop algorithms for more precise labelling of participant 

states, if utilities of these states are available it is important to optimise the sensing to 

extract high utility data at high resolution, and either discard or perform lossy 

compression on unimportant data. We proposed such a system in [17] for a set of 

sensors. Applying this type of mechanism in the smartphone application would seem to 

be particularly promising, given the imperative to maximise battery life.  

 Incorporating metadata: As pervasive sensing systems are mainstreamed into the 

healthcare delivery services, integration with Electronic Medical Record systems used 

by the healthcare service may be feasible. This will provide a wealth of metadata for 

each participant. Exploratory data mining can exploit this metadata to find richer, more 

meaningful patterns. 

 Ensuring privacy: Connected to the above concern is that of privacy. While we have 

certain built-in privacy preserving steps in our framework (such as abstract activity 

levels instead of specific activity profiling in the routine tree), in practice privacy is 

preserved in our work so far through anonymisation. If more metadata becomes 

available, it will be important to assess privacy concerns, and where necessary to build 

in stronger constraints in the systems and algorithms. For instance, it may be necessary 

to sacrifice data quality or completeness in the smartphone applications to preserve 

privacy. In a well-reported case of a similar fitness tracking system Fitbit [257], users 

were angered by the revelation of sensitive personal activity accessible through search 

engine. Our similar system for activity profiling will need to learn from such incidents. 

For each privacy concern, there needs to be a sufficient justification that users 

understand, and choose to benefit from. As noted in Chapter 1, although privacy 

remains a factor in adoption of pervasive sensing, people can be amenable to trading 

some privacy when benefits are apparent [14], particularly to ensure independent living 

and where there are risks of acute episodes.  

 

8.4 Conclusions 

 

This thesis advanced the state of the art in activity and behaviour profiling in the following 

areas: 
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 Development of a methodology for the automatic detection and analysis of transitional 

activities. Application of the proposed method to the real-world clinical application of 

post-operative recovery. 

 Development of a synopsis structure to represent an individual‘s routine visually. This 

has the effect of simplifying sensor data, and reducing the server load. Development of 

algorithms for quantitative analysis of routines using this mechanism. 

 Application of short-term activity analysis, and long-term behaviour profiling to 

wearable sensors, as well as translating research from sensors to smartphone based 

apps. Adaptation of analysis algorithms to the phone system, increasing the 

attractiveness of the software for end-users and therefore potentially leading to wider 

adoption of pervasive sensing. 
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Appendix A 

Manifold Learning 
 

 

A.1 Introduction 

 

Manifold learning is an important class of non-linear dimensionality reduction algorithms that 

can uncover the intrinsic dimensions of a dataset. This appendix provides background on 

manifold learning, which was used for transitional activity recognition in Chapter 4. The 

motivation for modelling with manifolds is reviewed, followed by brief description for some of 

the widely used manifold embedding algorithms and a discussion of the tradeoffs between them.  

 

A.2 Motivation 

Data sources for machine learning and data mining can have large dimensionality. The raw data 

may be high dimensional itself, or a large number of features (see Table 2.2 in Chapter 2) may 

have been extracted. This can result in the so-called ‗curse of dimensionality‘ [258]. With such 

datasets machine learning algorithms may fail to converge to an accurate solution and have 

weaker statistical significance guarantees [259]. Higher dimension data typically need more 

training data [260] for learning algorithms to generalise. The performance of a machine learning 

algorithm can be measured through the correspondence of the error obtained during training 
in

E

with the error 
o u t

E  of the trained learner on out of sample data. The Vapnik–Chervonenkis (VC) 

inequality [261] bounds the probability of the difference in errors as  
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where  is the user-specified error threshold, N  is the number of training points, and d is the  

VC dimension. The last is a measure of the complexity of the learner. This is generally 

influenced by the dimensionality of the data. For instance, for a simple linear classifier such as a 

perceptron, the VC dimension is equal to the dimensionality of the data [262].  The linear model 

is the simplest of those commonly used in machine learning. Higher complexity models have 

more degrees of freedom, and therefore an even greater VC dimension. Figure A.1 shows the 

minimum number of training points required to achieve a low bound on error (specifically 

0.2  and [ ] 0 .2
in o u t

P E E    ) as dimensionality increases. It is assumed that a perceptron 

is being used for learning. It can be seen that increasing dimensionality proportionately 

increases the number of training points required to guarantee generalisation.  

 

Figure A.1The number of samples required to achieve a fixed Vapnik–Chervonenkis (VC) generalisation 

bound, with increasing dimensionality. Higher dimensionality results in significantly increased training data 

requirements. 

 

There are two main strategies for dealing with high dimensionality: Feature Selection, and 

Dimensionality Reduction. As the latter is used in important components of this dissertation, it 

is the focus of this chapter. 
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A.3 Dimensionality Reduction 

 

Dimensionality reduction seeks to capture the information represented in the complete feature 

space by mapping to a lower dimensionality space. Commonly used dimensionality techniques 

such as Principal Components Analysis (PCA) can be effective for activity profiling data (as 

demonstrated in Chapter 3). A non-linear approach, called manifold learning, can improve on 

linear techniques for certain applications.   

 

To illustrate the problem, consider the helix dataset shown in Figure A.2. The data can be 

generated by the equations shown below: 

( )

( ) s in ( )

( ) c o s ( )

x t b t

y t a t

z t a t







 

where a and b  are constants, and t is a parameter. The helix shape is overlaid with a set of 

points, 1, 2, ...., 12P P P . These points are in order of increasing t . Given t it is possible to 

determine x , y  and z , therefore the dataset has an intrinsic dimensionality of 1.  

 

Figure A.2Helix dataset generated through equations A.2, with a set of points overlaid with increasing t . 

We will seek to preserve relationships between each pair of points when representing the data in fewer 

dimensions.  
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Several well-known algorithms such as Principal Component Analysis (PCA) [102] and 

Multidimensional Scaling (MDS) [103] map data into a lower dimensional space while 

preserving existing linear relationships in the data. MDS for example preserves the pair-wise 

Euclidean distance between data points. For any two points 
a

x  and 
b

x  defined in n  dimensions, 

the Euclidean distance between them is  

2

1

( , ) ( )
i i

n

n a b a b

i

d x x x x



   

The lower dimensional space found by MDS reflects pair-wise Euclidean distances in the full 

feature space. MDS can be expressed as finding a space in m  dimensions that minimises a cost 

function that aggregates the mapping cost c for each pair of points. For any two points 
a

x  and 

b
x , ( , )

a b
c x x can be computed as  

2
( , ) ( ( , ) ( , ))

a b m a b n a b
c x x d x x d x x   

Equation A.4 can be solved by a Singular Value Decomposition (SVD) analysis of the distance 

matrix 
n

D . Figure A.3 shows the helix data embedded in 2 dimensions using MDS. While the 

shape of the data initially looks similar to the helix in 3 dimensions, on closer scrutiny the 

distortion is apparent. The linear technique attempts to force the 3-d shape into 2-d, without 

regard for the structure of the data. Local relationships between pairs of points are not preserved 

in the 2-d space, e.g. 1P is closer to 3P than 2P ,and 9P is closer to 6P than 1 0P . The reason 

for this is that if we disregard the originating equations, and the underlying structure, the MDS 

mapping reflects the distances between points in free-space. 1P is closer to 3P than 2P  in 

Figure A.2, if distances were measured between each pair of points with straight lines. If these 

points were presented to us without equations A.2, the linear mapping would be a reasonable 

first analysis. A line from 1P to 3P  will however, pass through points that cannot satisfy 

equations A.2. These points are not on the helix, which only comprises of points generated by 

the helix equations with varying t . This ‗intrinsic dimension‘ of the system has not been 

preserved by MDS. 

 

Consider if we traversed along the helix when considering relationships between points. The 

distance between 1P and 3P would not be that of a straight line, but a path along the helix 

surface. This would correspond to the parameter t . Manifold embedding techniques seek to find 

such intrinsic dimensionality, by modelling the shape of the dataset, and preserving relationships 

between points in context of this shape. Figure A.4 is generated using Isomap [188], one of the 

(A.3) 

(A.4) 
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best known manifold embedding techniques. Relationships between the labelled points are 

preserved. The first dimension captures information completely, suggesting there is one 

‗intrinsic‘ dimension underlying the data. 

 

 

Figure A.3Helix dataset generated through equations A.2, embedded in two dimensions using Multi-

dimensional Scaling (MDS). Linear dimensionality reduction fails to preserve the order of points. 

 

 

 

Figure A.4Helix dataset generated through equations A.2, embedded in its ‗intrinsic‘ 

dimensionality, using Isomap. As the first dimension captures the information for parameter t , 

the second dimension is redundant. 
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A.4 What are Manifolds? 

 

Manifolds are a class of geometric objects used to describe complex surfaces through 

neighbourhood relationships. The crucial property enabling modelling and analysis is a 

neighbourhood (a subset of proximal points) associated with each point with well defined, 

typically Euclidean properties. Formally, each such neighbourhood in a m -dimensional 

manifold is homeomorphic1 to Euclidean space m
R  . This property allows the use of well-

studied properties of linear surfaces, but permits a global, non-linear shape. Manifolds are very 

well studied, with mathematically defined properties of differentiability, orientation, 

continuousness. The reader is referred to [263] for a comprehensive overview. The relevant 

property for our analysis is manifold embedding: a mapping of feature-space points to points in 

a lower dimensionality space that preserves properties of the manifold.   

 

Manifolds are suitable for use where high-dimensional data is generated by variation in a 

smaller set of parameters. In context of the sensing domain, consider inertial sensor data 

collected from a human participant. While many features can be extracted from the sensor data, 

the variation in the features is generated through a small set of parameters pertaining to how 

people move. This can be considered analogous to the role of the t  variable in equations A.2.  

 

Given a dataset D  a manifold can be approximated by selecting around each point a 

neighbourhood. This neighbourhood is typically found by selecting k points closest to each 

point. Alternatively the neighbourhood can be selected based on a distance threshold.  The 

quality of approximation is influenced by this parameter, and may require empirical validation 

[264]. Distances between points are along the manifold surface, and are called geodesic 

distances. These can be significantly different from Euclidean distances, as was seen in the 

embedding of the helix surface. 

 

Manifold models are often represented using a graph data structure. Vertices correspond to data 

points, each of which has an edge to points in its neighbourhood. The edge weight is equal to 

the Euclidean distance.  

 

                                                      

1 A homeomorphism between topological spaces is a continuous function between them that has a continuous inverse function.  
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A.5 Dimensionality Reduction with Manifold Embedding 

 

The challenge in manifold embedding is to find a space that represents a graph representing a 

manifold. Strategies for this vary in terms of computational complexity, accuracy of 

representation and sensitivity to parameters. Some of the well known algorithms for manifold 

embedding are summarised below, with references for further reading. 

 Isomap approximates geodesic distances on the manifold through shortest paths on a 

graph representation of the manifold. The matrix of pair-wise graph distances is reduced 

using MDS. Formally, if ( , )
g a b

d x x  specifies the distance of the shortest paths between 

points 
a

x and 
b

x  , Isomap solves using MDS the cost function  

2
( , ) ( ( , ) ( , ) )

a b m a b g a b
c x x d x x d x x   

 Locally Linear Embedding (LLE) [196] finds in the complete feature space a weight 

vector for each point that can reconstruct it from its neighbours. A low-dimensional 

embedding that reflects these weights is then found. The cost function can be specified 

as finding a set of points Y such that given a weight matrix W specifying the weights 

needed to reconstruct a point from its neighbours, the following cost function is 

minimised 
2

( )
i i j j

i j

C y y W y    

 

The cost function can be computed efficiently by converting into a matrix formulation. 

Equation A.6 can be rewritten as  

 ( )

( ) ( )

T

T

C y Y M Y

w h e re

M I W I W



  

 

  

The cost function is minimised by the eigenvectors of M . As W is mostly zero, sparse 

matrix computations can be used, making the algorithm memory and computation 

efficient. 

 Laplacian Eigenmaps [197] relies on spectral graph theory methods for studying 

connectivity properties of graphs through matrix decomposition. Based on the graph‘s 

degree matrix D and adjacency matrix A , the Laplacian matrix the Laplacian matrix 

L D A   is computed. The eigenvectors of this matrix were used for spectral 

clustering, as in Chapter 4, and are used for embedding in Laplacian Eigenmaps. The 

adjacency matrix can be constructed in the usual way by setting 1 for neighbouring 

vertices and 0 otherwise. An alternative formulation is proposed where the 

(A.7) 

(A.8) 

(A.6) 
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neighbourhood edge weights are specified by a Gaussian heat kernel. In this case the 

weight between neighbouring nodes 
i

x and 
j

x is specified by: 

 
2

2
2

i j
x x

ij
W e 

 



  

This construction allows a mathematical justification for the embedding, however 

requires the user to specify  . The Laplacian Eigenmaps algorithm has been shown to 

be equivalent to LLE under certain assumptions in [197].  

 Local Tangent Space Alignment (LTSA) [265] computes at each point a low-

dimensional space based on its neighbourhood using PCA. The local spaces are 

subsequently aligned to compute the global space. The alignment is performed by 

optimising a cost function that allows any linear transformation of each local space.  

 

In addition to the above, several other approaches have been proposed for manifold embedding 

[266-268]. Hessian LLE [266] provides stronger theoretical guarantees on global optimality 

than LLE, although the complexity is also significantly higher. Instead of learning a regression 

model for each neighbourhood, Hessian LLE generates tangent spaces for them using PCA, 

subsequently aligning them using the Frobenius norm of the Hessian matrix. Local 

Multidimensional Scaling [269] performs MDS in local regions, and uses convex optimisation 

to fit them together.  The choice of algorithms can be predicated on a number of factors, 

described below. 

 

A.5.1 Quality of Embedding 

 

Manifold embeddings can usually be categorised as isometric or conformal. Isometric 

embedding algorithms assume a map from manifold space to feature space that preserves inter-

point distances, and seek to discover it. Conformal embedding algorithms preserve local 

neighbourhoods and angles between them (i.e. find conformal maps [270]). These categories 

specify the mappings the algorithms seek to achieve with varying theoretical assumptions, 

however performance in practice may not preserve pair-wise distances or angles.  

 

Amongst the algorithms discussed, Isomap and Hessian LLE are isometric. LLE is conformal, 

as are Laplacian Eigenmaps. Isometric mappings are generally more computationally intensive 

(A.9) 
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than conformal mappings, however they offer the promise of discovering the true parameter 

space. Algorithms may also be categorised as local or global, based on the information used to 

reconstruct each point.  Isomap is a global technique, as the matrix that is decomposed has 

distances between each pair of points. In contrast LLE only seeks to reproduce regression 

parameters for manifold neighbourhoods in a lower dimension. Local algorithms are better at 

preserving neighbourhood relationships than global algorithms, however may result in distant 

points on the manifold embedded close together.  

 

The algorithm used in our work, Isomap is isometric and global. Furthermore under certain 

assumptions, it is also proven to recover the parameterisation of the manifold. The most 

important assumption is the approximation of geodesic distances with graph distances. This 

relates to the sampling characteristics of the dataset. If the sampling is sufficiently dense and 

uniform, graph distances approach geodesic distances.  A further advantage of Isomap is that it 

may allow an estimation of the intrinsic dimensionality based on the eigenvalues computed by 

MDS.  

 

A.5.2 Complexity 

 

Generally local algorithms have lower computational complexity than global ones. Isomap in 

particular, has high computational cost because of the need to compute shortest paths between 

each pair of points, which has a complexity of 
2

( )O N . Subsequently eigenvalue analysis is 

performed on a full-matrix, which takes a further 
3

( )O N  time. Although most manifold 

embedding algorithms perform such matrix decompositions, some (including LLE and LTSA), 

can take advantage of sparse matrix calculations. A sparse representation also reduces memory 

requirements, which may be prohibitive for large datasets. 

 

Some of the complexity of Isomap can be reduced by computing the manifold embedding with a 

smaller set of points (called landmarks), and subsequently training a regression algorithm to 

map the remaining points to the embedding. This approach, called Landmark-Isomap [239] 

however loses the optimality guarantees of Isomap. 

 

It may also be appropriate here to discuss implementation complexity. While Isomap has high 

computational cost, it is one of the easier algorithms to implement. It relies on well-understood 
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algorithms such as shortest-path and MDS, which are already available as well-tested, optimised 

libraries. Other global, isometric algorithms such as Hessian LLE and Semidefinite Embedding 

[271] have more complex implementations relying on higher order calculus and semi-definite 

programming respectively. This may be a reason why Isomap is currently more widely used, 

and therefore has better studied performance properties. 

 

A.5.3 Sensitivity to Training Conditions 

 

The approximation of a manifold‘s neighbourhoods is through selecting the k  nearest points 

around each point, from a given sample. There are two factors in this approximation effect the 

quality of the approximation. The first is application specified: the size and distribution of the 

sample limits the neighbourhoods that can be constructed, which may not be representative of 

the true structure. The second is the user specified k neighbourhood parameter. Non-uniform or 

sparse sampling and unsuitable k  can result in ‗shortcut edges‘: edges between points distant on 

the manifold. This in turn may distort the embedding. Isomap, for instance, has been found to be 

vulnerable to distortions resulting from shortcut edges [264]. All geodesic distances 

approximated with paths including a shortcut edge are incorrect. A single incorrect edge 

propagates errors globally. Detecting and correcting for shortcut edges is an active research 

area, particularly with respect to the Isomap algorithm [272-274]. Local algorithms tend not to 

be significantly impacted by shortcut edges [275], as the error does not propagate through the 

manifold model. This resilience to approximation error is an attractive property of local 

methods, in addition to their generally faster execution.  

 

A.6 Conclusion 

 

Manifolds are a useful model for high-dimensional data that is generated by a small set of 

parameters.   Examples of applications include image processing and matching [276], text 

mining [277] and sensor localisation [278]. The choice of manifold embedding algorithm is 

determined by application requirements. If, for example, global embeddings are too time-

consuming or not needed, local approximations such as LLE and Laplacian Eigenmaps are good 

candidates. Conversely, if stronger guarantees of optimality are desired, Isomap and Hessian 

Eigenmaps should be considered.  
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One aspect of manifold embedding and dimensionality reduction in general is that intrinsic 

dimensions are difficult to explain to end users of machine learning systems. Manifold 

embedding will render the dataset into a readily visualised form, which may be more suitable 

for classification and clustering. It is impossible, however, to say what the discovered intrinsic 

dimensions mean. Where this is important, a feature selection approach may be more feasible. 

 

Manifold learning is popular research area, with several promising aspects of development. 

Foremost of which is that nearly all algorithms require the specification of a neighbourhood size 

parameter. There remains a need to develop computationally inexpensive methods for selecting 

the neighbourhood size. As noted earlier, for global algorithms such as Isomap, shortcut edges 

are problematic and need to be detected. An important research question is assessing in a 

principled way when data does lie on a manifold. This is currently largely up to the researcher, 

and is justified through empirical validation. In our work we relied on demonstrating superior 

performance for activity transitions when compared to linear methods, through visualisation and 

residual variance analysis.  
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Appendix B 

Wavelet Analysis 

 

B.1 Introduction 

 

Wavelets [83] allow a means of representing signal in multiple resolutions, incorporating both 

time and frequency information. They are a widely used signal processing paradigm, and have 

been shown to be promising features for activity recognition [97, 171, 172]. The activity 

profiling methods proposed in Chapters 3 and 4 include wavelet feature extraction. This chapter 

provides background on wavelets and references for further reading.  

 

B.2 Motivation 

 

Signal processing has long relied on mathematical transformations of input signals to uncover 

information not readily available in the raw form. Signals, loosely defined, are sequences of 

values of a parameter, often evolving over time. The natural representation of a signal is referred 

to as its ‗time domain‘ representation. In the early part of the 20th century, a mathematical 

transformation was developed, allowing representation of signals in ‗frequency domain‘. This 

transformation, known as the Fourier Transform, represents a signal as an aggregation of 

periodic (sin and cosine) signals of varying frequencies, referred to as frequency components. 

The frequency domain signal can be cast back into the time domain through an inverse 

transform. Given a signal x  comprised of N  points (indexed 0  to 1N  ) the Fast Fourier 

Transform (FFT) [279] can be computed as: 

1
2

0

nN
ik

N

k n

n

X x e







   

where 0,1, ...., 1k N  . The  FFT can be computed in ( lo g )O N N  time. Figure B.1(a) shows 

the signal from an accelerometer up-down channel sampled at 50 H z  as a participant walks. 

(B.1) 
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Figure B.1(b) shows the power of the FFT components plotted against periods in seconds/cycle. 

The spike shows associated with the dominant cycle in the data (between periods 1 and 2) 

corresponds to the pace of walking. 

 

Figure B.1FFT analysis of signal from accelerometer Up-Down channel (a) sampled at 50Hz worn by a 

walking participant. The power of the FFT components spikes close to 2 seconds/cycle, indicating the 

dominant pattern in the data 

 

FFT analysis is very effective for data with significant periodicity throughout the signal. It has 

limitations however, in representing local frequency content. This is because, there is no 

representation of time in the frequency domain. If a signal contains cycles in certain places, it is 

impossible to identify where that occurs in a FFT view. An early solution to this was to apply 

the transform in fixed sized windows. Wavelets extend this notion, by composing the signal in 

terms of ‗wavelets‘ of varying scale. This allows representation of both time and frequency 

information.  
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B.3 Wavelets 

 

Wavelets are curves containing one or more oscillations confined in a finite interval. They are 

defined by so-called ‗mother functions‘ that determine the shape of the curve, and are designed 

with mathematical properties that permit decomposition of signals.  One of the most commonly 

used wavelets is the Haar wavelet shown in Figure B.2. 

 

 

 

Figure B.2The Haar Wavelet 

The Haar wavelet is specified by the equation 

 1 0 0 .5

( ) 1       0 .5 1

0

t

t t

o th erw ise



 


   




 

 

The shape of the wavelet is important to the extent that it can be used to compose the signal. 

Several other wavelets have been proposed, including Daubechies, Morlet and Mexican Hat 

wavelets. The shape of the wavelets produces differing properties in the resulting 

transformations, and is chosen in a domain specific manner [280]. 

 

 

(B.2) 
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B.4  Wavelet Transform 

 

During a wavelet transformation a windowed basis function (based on the mother function) is 

progressively applied to achieve coefficients at multiple levels. The data can be reconstructed 

through an inverse transformation of the wavelet coefficients. 

 

Like FFT, the signal is decomposed into constituents; however wavelets differ by composing 

the signal in terms of waves with progressively smaller size. In particular, the Discrete Wavelet 

Transform (DWT) can provide a multi-resolution decomposition of the signal, and can be 

computed efficiently. The signal is decomposed using a wavelet defined by a ‗mother wavelet‘ 

and a scale. The DWT is defined by the following equation: 

 

where s represents the scale, i  represents time, and  refers to the basis function defining the 

wavelet, which is called the mother function. The scale varies inversely with the frequency. The 

mother function for the Haar wavelet transform is given in equation B.2. The choice of mother 

function is a significant design decision.  

 

The transform can be implemented efficiently through cascading algorithms that reduce the 

volume of data to be processed iteratively. At each scale, high-pass and low-pass filter is 

applied. Let H denote high-pass filter and G denote low-pass filter. Figure B.3 shows the 

Mallat algorithm that can be used for fast computation of the DWT. At each scale s , the high 

pass filter produces the signal detail
s

d , while the low pass filter produces approximation 

coefficients
s

a . After one application of the filtering, half the frequency of the signal has been 

removed. Therefore, half of the samples can be eliminated according to the Nyquist‘s rule. The 

signal can be subsampled by 2 at each step (denoted in Figure B.3 by 2 ). The filtering and 

decimation process can be continued for a fixed resolution, or based on the length of the signal. 

There can be at-most 
2

(log ( ))floor n levels. Lower order coefficients represent the overall shape 

of the sequence, and higher order coefficients inform about local variations. 

 

 

 

 

 

(B.3) 
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Figure B.3Filter banks for computing DWT using the Mallat algorithm showing a filter bank of three 

scales. 

 

The mother function used for computing the DWT determines the filters H and G .The filters 

for the Haar wavelet are defined as: 

 

Figure B.4 shows the result of successive application of the wavelet transform to the signal 

shown in Figure B.1(a). Wavelets can be used for compressing the data by discarding 

coefficients with little information (the higher order detail coefficients for example). 

Furthermore these coefficients also are likely to contain small, high-frequency variations, which 

can be seen as noise, and can be ignored to smooth the signal. 

 

The size of the data is reduced by half with each successive application of the transform. In 

Chapters 3 and 4, statistical features of these signals (mean and standard deviation) were used as 

features for activity profiling. 
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 Figure B.4Successive application of the Haar wavelet transform to the accelerometer signal shown in 

Figure B.1(a). Each application of the transform decimates information in the resulting signal 

 

B.5 Conclusion 

 

This chapter provides a short background on the wavelet technique used in this thesis. The 

reader is referred to Burrus et al. [281] for further background.  

 

Wavelets transforms can represent time and frequency information by convoluting a signal with 

‗waves‘ of small intervals. The theory build on the Fourier transform, which utilises fixed size 

periodic signals for the transformation.  By incorporating temporal resolutions, both time and 

frequency information can be represented. In using wavelets as features, the aim is to succinctly 

capture both time and frequency domain information into the analysis.  

 

 

 

 

 

0 50 100 150 200 250 300 350 400 450 500
-2000

0

2000

4000

Level 1

0 50 100 150 200 250 300 350 400 450 500
-2000

0

2000

4000

6000

Level 2

0 50 100 150 200 250 300 350 400 450 500
-5000

0

5000

10000

Level 3

0 50 100 150 200 250 300 350 400 450 500
-5000

0

5000

10000

15000

Level 4

0 50 100 150 200 250 300 350 400 450 500
-5000

0

5000

10000

15000

Level 5



200 

 

References 

 

 

1. Yang, G.-Z., Body Sensor Networks2006: Springer-Verlag New York, Inc. 

2. World health report, 1998, World Health Organization. 

3. Yach, D., et al., The global burden of chronic diseases: overcoming impediments to 

prevention and control. JAMA, 2004. 291(21): p. 2616-22. 

4. Aziz, O., et al., A Pervasive Body Sensor Network for Measuring Postoperative 

Recovery at Home. Surgical Innovation, 2007. 14(2): p. 83-90. 

5. ElHelw, M., et al. Smart and Aware Pervasive Health Environments (SAPHE). 2009; 

Available from: http://www3.imperial.ac.uk/pls/portallive/docs/1/35451697.PDF. 

6. Atallah, L. and G.-Z. Yang, The use of pervasive sensing for behaviour profiling — a 

survey. Pervasive and Mobile Computing, 2009. 5(5): p. 447-464. 

7. Verghese, J., et al., Abnormality of Gait as a Predictor of Non-Alzheimer's Dementia. 

New England Journal of Medicine, 2002. 347(22): p. 1761-1768. 

8. Atallah, L., B. Lo, and G.-Z. Yang, Can pervasive sensing address current challenges 

in global healthcare? Journal of Epidemiology and Global Health, 2012. 

9. James, P., A. Raza, and Y. Guang-Zhong, Wireless Sensor Network, in Handbook of 

Healthcare Delivery Systems2010, CRC Press. p. 46-1-46-18. 

10. Arnrich, B., et al., Pervasive healthcare: paving the way for a pervasive, user-centered 

and preventive healthcare model. Methods Inf Med, 2010. 49(1): p. 67-73. 

11. Murphy, E., Case management and community matrons for long term conditions. BMJ, 

2004. 329(7477): p. 1251-1252. 

12. Orwell, G., 19841983: Houghton Mifflin Harcourt. 

13. Hoffman, S., Electronic Health Records and Research: Privacy Versus Scientific 

Priorities. The American Journal of Bioethics, 2010. 10(9): p. 19-20. 

14. Beach, S., et al., Disability, age, and informational privacy attitudes in quality of life 

technology applications: Results from a national web survey. ACM Transactions on 

Accessible Computing (TACCESS), 2009. 2(1): p. 5. 

15. ElHelw, M., et al. An integrated multi-sensing framework for pervasive healthcare 

monitoring. in 3rd International Conference on PervasiveHealth 2009. . 2009. 

16. Seungwoo, K., A Scalable and Energy-Efficient Context Monitoring Framework for 

Mobile Personal Sensor Networks. IEEE Transactions on Mobile Computing, 2010. 9: 

p. 686-702. 

17. Panangadan, A., S.M. Ali, and A. Talukder, Markov decision processes for control of a 

sensor network-based health monitoring system, in Proceedings of the 17th conference 

on Innovative applications of artificial intelligence - Volume 32005, AAAI Press: 

Pittsburgh, Pennsylvania. p. 1529-1534. 

18. Rahman, M.A., A. El Saddik, and W. Gueaieb. Data visualization: From body sensor 

network to social networks. in Robotic and Sensors Environments, 2009. ROSE 2009. 

IEEE International Workshop on. 2009. 

19. Mahapatro, A. and P.M. Khilar. Online fault detection and recovery in body sensor 

networks. in World Congress on Information and Communication Technologies 

(WICT). 2011. 

20. Saeed, A., A. Stranieri, and R. Dazeley, Fault-tolerant data aggregation scheme for 

monitoring of critical events in grid based healthcare sensor networks, in Proceedings 

http://www3.imperial.ac.uk/pls/portallive/docs/1/35451697.PDF


201 

 

of the 19th High Performance Computing Symposia2011, Society for Computer 

Simulation International: Boston, Massachusetts. p. 56-64. 

21. Ramachandran, U., et al., MediaBroker: A pervasive computing infrastructure for 

adaptive transformation and sharing of stream data. Pervasive Mob. Comput., 2005. 

1(2): p. 257-276. 

22. Atallah, L., et al. Wirelessly accessible sensor populations (WASP) for elderly care 

monitoring. in Pervasive Computing Technologies for Healthcare, 2008. 

PervasiveHealth 2008. Second International Conference on. 2008. 

23. Welbourne, E., et al., Challenges for Pervasive RFID-Based Infrastructures, in 

Proceedings of the Fifth IEEE International Conference on Pervasive Computing and 

Communications Workshops2007, IEEE Computer Society. p. 388-394. 

24. Ellul, J., B. Lo, and G.-Z. Yang, The BSNOS Platform: A Body Sensor Networks 

Targeted Operating System and Toolset, in The Fifth International Conference on 

Sensor Technologies and Applications2011. 

25. Varshney, U., Pervasive Healthcare Computing: Emr/Ehr, Wireless and Health 

Monitoring2009: Springer. 

26. Payne, T.H., et al., National-scale clinical information exchange in the United 

Kingdom: lessons for the United States. J Am Med Inform Assoc, 2011. 18(1): p. 91-8. 

27. Maglogiannis, I., Introducing Intelligence in Electronic Healthcare Systems: State of 

the Art and Future Trends 

Artificial Intelligence An International Perspective, M. Bramer, Editor 2009, Springer Berlin / 

Heidelberg. p. 71-90. 

28. Selden, C.R. and B.L. Humphreys, Unified Medical Language System: Current 

Bibliographies in Medicine, January 1986 - December 19961997: Diane Publishing 

Company. 

29. Heidegger, M., J. Stambaugh, and D.J. Schmidt, Being and Time2010: State University 

of New York Press. 

30. Wiener, J.M. and J. Tilly, Population ageing in the United States of America: 

implications for public programmes. International Journal of Epidemiology, 2002. 

31(4): p. 776-781. 

31. Aziz, O., et al., Ear-worn body sensor network device: an objective tool for functional 

postoperative home recovery monitoring. J Am Med Inform Assoc, 2011. 18(2): p. 156-

9. 

32. Atallah, L., et al., Observing Recovery from Knee-Replacement Surgery by Using 

Wearable Sensors, in Proceedings of the 2011 International Conference on Body 

Sensor Networks2011, IEEE Computer Society. p. 29-34. 

33. Paffenbarger, R.S., Jr., et al., The association of changes in physical-activity level and 

other lifestyle characteristics with mortality among men. N Engl J Med, 1993. 328(8): 

p. 538-45. 

34. Reimers, C.D., G. Knapp, and A.K. Reimers, Does physical activity increase life 

expectancy? A review of the literature. J Aging Res, 2012. 2012: p. 243958. 

35. Inagawa, T., et al., Decreased activity of daily living produced by the combination of 

Alzheimer's disease and lower limb fracture in elderly requiring nursing care. Environ 

Health Prev Med, 2012. 

36. Salvatore, P., et al., Circadian activity rhythm abnormalities in ill and recovered 

bipolar I disorder patients. Bipolar Disord, 2008. 10(2): p. 256-65. 

37. Farr, L.A., C. Campbell-Grossman, and J.M. Mack, Circadian disruption and surgical 

recovery. Nursing research, 1988. 37(3): p. 170-175. 

38. Feldman, L.S., et al., Validation of a physical activity questionnaire (CHAMPS) as an 

indicator of postoperative recovery after laparoscopic cholecystectomy. Surgery, 2009. 

146(1): p. 31-9. 



202 

 

39. Simonsick, E.M., et al., Just get out the door! Importance of walking outside the home 

for maintaining mobility: findings from the women's health and aging study. J Am 

Geriatr Soc, 2005. 53(2): p. 198-203. 

40. Boyle, M., et al., Health care providers' perceived role in changing environments to 

promote healthy eating and physical activity: baseline findings from health care 

providers participating in the healthy eating, active communities program. Pediatrics, 

2009. 123 Suppl 5: p. S293-300. 

41. Saxe, J.S., Promoting healthy lifestyles and decreasing childhood obesity: increasing 

physician effectiveness through advocacy. Ann Fam Med, 2011. 9(6): p. 546-8. 

42. Asberg, K.H., Assessment of ADL in home-care for the elderly. Change in ADL and use 

of short-term hospital care. Scand J Soc Med, 1986. 14(2): p. 105-11. 

43. Aggarwal, J.K. and M.S. Ryoo, Human activity analysis: A review. ACM Comput. 

Surv., 2011. 43(3): p. 1-43. 

44. Turaga, P., et al., Machine Recognition of Human Activities: A Survey. Circuits and 

Systems for Video Technology, IEEE Transactions on, 2008. 18(11): p. 1473-1488. 

45. Cheung, V.H., L. Gray, and M. Karunanithi, Review of Accelerometry for Determining 

Daily Activity Among Elderly Patients. Arch Phys Med Rehabil, 2011. 92(6): p. 998-

1014. 

46. Poppe, R., Vision-based human motion analysis: An overview. Computer Vision and 

Image Understanding, 2007. 108(1–2): p. 4-18. 

47. Panangadan, A., M. Matarić, and G. Sukhatme, Tracking and Modeling of Human 

Activity Using Laser Rangefinders. International Journal of Social Robotics, 2010. 2(1): 

p. 95-107. 

48. Nawab, S.H., S.H. Roy, and C.J. De Luca, Functional activity monitoring from 

wearable sensor data. Conf Proc IEEE Eng Med Biol Soc, 2004. 2: p. 979-82. 

49. de Bruin, E.D., et al., Wearable systems for monitoring mobility-related activities in 

older people: a systematic review. Clin Rehabil, 2008. 22(10-11): p. 878-95. 

50. Atallah, L., et al., Real-time activity classification using ambient and wearable sensors. 

IEEE Trans Inf Technol Biomed, 2009. 13(6): p. 1031-9. 

51. Biswas, J., et al., Health and wellness monitoring through wearable and ambient 

sensors: exemplars from home-based care of elderly with mild dementia. Annals of 

Telecommunications, 2010. 65(9): p. 505-521. 

52. Czarlinska, A., W. Huh, and D. Kundur. On privacy and security in distributed visual 

sensor networks. in Image Processing, 2008. ICIP 2008. 15th IEEE International 

Conference on. 2008. 

53. Yang, S. and Q. Li, Inertial Sensor-Based Methods in Walking Speed Estimation: A 

Systematic Review. Sensors, 2012. 12(5): p. 6102-6116. 

54. Jin, W., et al. A Review of Vision-Based Gait Recognition Methods for Human 

Identification. in Digital Image Computing: Techniques and Applications (DICTA), 

2010 International Conference on. 2010. 

55. Wong, C., et al., Enhanced Classification of Abnormal Gait Using BSN and Depth, in 

9th International Conference on Body Sensor Networks2012: London. 

56. Oliver, M., et al., Utility of accelerometer thresholds for classifying sitting in office 

workers. Prev Med, 2010. 51(5): p. 357-60. 

57. Singh, S. and J. Wang, Human Activity Recognition in Videos: A Systematic Approach 

Intelligent Data Engineering and Automated Learning – IDEAL 2006, E. Corchado, et al., 

Editors. 2006, Springer Berlin / Heidelberg. p. 257-264. 

58. Pansiot, J., et al., Ambient and Wearable Sensor Fusion for Activity Recognition in 

Healthcare Monitoring Systems 

4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 

S. Leonhardt, T. Falck, and P. Mähönen, Editors. 2007, Springer Berlin Heidelberg. p. 

208-212. 



203 

 

59. Logan, B., et al., A long-term evaluation of sensing modalities for activity recognition, 

in Proceedings of the 9th international conference on Ubiquitous computing2007, 

Springer-Verlag: Innsbruck, Austria. p. 483-500. 

60. Atallah, L., et al., Behaviour Profiling with Ambient and Wearable Sensing, in BSN, S. 

Leonhardt, T. Falck, and P. Mähönen, Editors. 2007, Springer. p. 133-138. 

61. Skubic, M., et al., A smart home application to eldercare: Current status and lessons 

learned. Technology and Health Care, 2009. 17(3): p. 183-201. 

62. Ravi, N., et al., Activity recognition from accelerometer data, in Proceedings of the 

17th conference on Innovative applications of artificial intelligence - Volume 32005, 

AAAI Press: Pittsburgh, Pennsylvania. p. 1541-1546. 

63. Zhang, S., et al., Detection of Activities by Wireless Sensors for Daily Life Surveillance: 

Eating and Drinking. Sensors, 2009. 9(3): p. 1499-1517. 

64. Liu, J., et al., An Intelligent Food-intake Monitoring System Using Wearable Sensors, in 

International Conference on Wearable and Implantable Body Sensor Networks2012: 

London. 

65. Snoek, J., et al., Automated detection of unusual events on stairs. Image Vision 

Comput., 2009. 27(1-2): p. 153-166. 

66. Lee, R.Y.W. and A.J. Carlisle, Detection of falls using accelerometers and mobile 

phone technology. Age and Ageing, 2011. 

67. Vishwakarma, V., C. Mandal, and S. Sural, Automatic detection of human fall in video, 

in Proceedings of the 2nd international conference on Pattern recognition and machine 

intelligence2007, Springer-Verlag: Kolkata, India. p. 616-623. 

68. Lustrek, M., et al., Detecting Falls with Location Sensors and Accelerometers, in IAAI, 

D.G. Shapiro and M.P.J. Fromherz, Editors. 2011, AAAI. 

69. Oliver, N. and E. Horvitz, S-SEER: selective perception in a multimodal office activity 

recognition system, in Proceedings of the First international conference on Machine 

Learning for Multimodal Interaction2005, Springer-Verlag: Martigny, Switzerland. p. 

122-135. 

70. Modahl, M., et al., MediaBroker: An Architecture for Pervasive Computing, in 

Proceedings of the Second IEEE International Conference on Pervasive Computing and 

Communications (PerCom'04)2004, IEEE Computer Society. p. 253. 

71. Aggarwal, C.C. and P.S. Yu, A Survey of Synopsis Construction in Data Streams, in 

Data Streams - Models and Algorithms, C.C. Aggarwal, Editor 2007, Springer. p. 169-

207. 

72. Gibbons, P.B. and Y. Matias, Synopsis data structures for massive data sets, in External 

memory algorithms, M.A. James and V. Jeffrey Scott, Editors. 1999, American 

Mathematical Society. p. 39-70. 

73. Chris, G., et al., Chapter 3 Mining Frequent Patterns in Data Streams at Multiple Time, 

2007. 

74. Atallah, L., et al., Gaussian process prediction for cross channel consensus in body 

sensor networks. Proceedings of 5th International Summer School and Symposium on 

Medical Devices and Biosensors, 2008: p. 165-168. 

75. Atallah, L., et al., Validation of an ear-worn sensor for gait monitoring using a force-

plate instrumented treadmill. Gait Posture, 2012. 35(4): p. 674-6. 

76. Pansiot, J., et al. ClimBSN: Climber performance monitoring with BSN. in Medical 

Devices and Biosensors, 2008. ISSS-MDBS 2008. 5th International Summer School and 

Symposium on. 2008. 

77. Pansiot, J., B. Lo, and G.-Z. Yang, Swimming Stroke Kinematic Analysis with BSN, in 

Proceedings of the 2010 International Conference on Body Sensor Networks2010, IEEE 

Computer Society. p. 153-158. 



204 

 

78. King, R.C., et al., Body Sensor Networks for Monitoring Rowing Technique, in 

Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable 

Body Sensor Networks2009, IEEE Computer Society. p. 251-255. 

79. Reynolds, C. and C.R. Wren. Worse Is Better for Ambient Sensing. in Pervasive 2006: 

Workshop on Privacy Trust and Identity Issues for Ambient Intelligence. 2006. 

80. Caine, K.E., A.D. Fisk, and W.A. Rogers, Benefits and Privacy Concerns of a Home 

Equipped with a Visual Sensing System: A Perspective from Older Adults. Proceedings 

of the Human Factors and Ergonomics Society Annual Meeting, 2006. 50(2): p. 180-

184. 

81. Longbo, Z., et al., Construction of Synopsis for Periodically Updating Sliding Windows 

over Data Streams, in Proceedings of the 2008 Second International Symposium on 

Intelligent Information Technology Application - Volume 022008, IEEE Computer 

Society. p. 588-592. 

82. Guha, S., N. Koudas, and K. Shim, Approximation and streaming algorithms for 

histogram construction problems. ACM Trans. Database Syst., 2006. 31(1): p. 396-438. 

83. Guha, S. and B. Harb, Wavelet synopsis for data streams: minimizing non-euclidean 

error, in Proceedings of the eleventh ACM SIGKDD international conference on 

Knowledge discovery in data mining2005, ACM: Chicago, Illinois, USA. p. 88-97. 

84. Lin, J., et al., Experiencing SAX: a novel symbolic representation of time series. Data 

Min. Knowl. Discov., 2007. 15(2): p. 107-144. 

85. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. The 

Journal of Machine Learning Research, 2003. 3: p. 1157-1182. 

86. Vafaie, H. and I. Imam, Feature Selection Methods: Genetic Algorithms vs. Greedy-like 

Search, 1994. 

87. Zhang, H. and G. Sun, Feature selection using tabu search method. Pattern 

Recognition, 2002. 35(3): p. 701-711. 

88. Das, S.K., Feature selection with a linear dependence measure. Computers, IEEE 

Transactions on, 1971. 100(9): p. 1106-1109. 

89. Peng, H., F. Long, and C. Ding, Feature selection based on mutual information criteria 

of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and 

Machine Intelligence, IEEE Transactions on, 2005. 27(8): p. 1226-1238. 

90. Yu, L. and H. Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. in MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN 

CONFERENCE-. 2003. 

91. Gilad-Bachrach, R., A. Navot, and N. Tishby. Margin based feature selection-theory 

and algorithms. in Proceedings of the twenty-first international conference on Machine 

learning. 2004. ACM. 

92. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial intelligence, 

1997. 97(1): p. 273-324. 

93. Sebasti\, et al., Simultaneous feature selection and classification using kernel-penalized 

support vector machines. Inf. Sci., 2011. 181(1): p. 115-128. 

94. Neumann, J., et al., Combined SVM-Based Feature Selection and Classification. Mach. 

Learn., 2005. 61(1-3): p. 129-150. 

95. Kojadinovic, I. and T. Wottka. Comparision between a filter and a wrapper approach 

to variable subset selection in regression problems. Citeseer. 

96. Talavera, L., An evaluation of filter and wrapper methods for feature selection in 

categorical clustering, in Proceedings of the 6th international conference on Advances 

in Intelligent Data Analysis2005, Springer-Verlag: Madrid, Spain. p. 440-451. 

97. Atallah, L., et al., Detecting Walking Gait Impairment with an Ear-worn Sensor, in 

Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable 

Body Sensor Networks2009, IEEE Computer Society. p. 175-180. 



205 

 

98. Gilad-Bachrach, R., A. Navot, and N. Tishby, Margin based feature selection - theory 

and algorithms, in Proceedings of the twenty-first international conference on Machine 

learning2004, ACM: Banff, Alberta, Canada. p. 43. 

99. Atallah, L., et al., Sensor Placement for Activity Detection Using Wearable 

Accelerometers, in Proceedings of the 2010 International Conference on Body Sensor 

Networks2010, IEEE Computer Society. p. 24-29. 

100. Kira, K. and L.A. Rendell, A practical approach to feature selection, in Proceedings of 

the ninth international workshop on Machine learning1992, Morgan Kaufmann 

Publishers Inc.: Aberdeen, Scotland, United Kingdom. p. 249-256. 

101. Yang, X., K. Tang, and X. Yao, The minimum redundancy-maximum relevance 

approach to building sparse support vector machines, in Proceedings of the 10th 

international conference on Intelligent data engineering and automated learning2009, 

Springer-Verlag: Burgos, Spain. p. 184-190. 

102. Jolliffe, I.T., Principal Component Analysis2002: Springer-Verlag. 

103. Borg, I. and P.J.F. Groenen, Modern Multidimensional Scaling: Theory And 

Applications2005: Springer. 

104. Lee, J.A. and M. Verleysen, Nonlinear Dimensionality Reduction2007: Springer. 

105. Demiris, G. and B.K. Hensel, Technologies for an aging society: a systematic review of 

"smart home" applications. Yearb Med Inform, 2008: p. 33-40. 

106. Cook, D.J., et al., MavHome: An Agent-Based Smart Home, in Proceedings of the First 

IEEE International Conference on Pervasive Computing and Communications2003, 

IEEE Computer Society. p. 521. 

107. Sohn, T., et al., Experiences with place lab: an open source toolkit for location-aware 

computing, in Proceedings of the 28th international conference on Software 

engineering2006, ACM: Shanghai, China. p. 462-471. 

108. Helal, S. and C. Chen, The Gator Tech Smart House: enabling technologies and lessons 

learned, in Proceedings of the 3rd International Convention on Rehabilitation 

Engineering \& Assistive Technology2009, ACM: Singapore. p. 1-4. 

109. L\, S., et al., Recognition of emergent human behaviour in a smart home: A data mining 

approach. Pervasive Mob. Comput., 2007. 3(2): p. 95-116. 

110. Barnes, N.M., et al., Lifestyle monitoring-technology for supported independence. 

Computing & Control Engineering Journal, 1998. 9(4): p. 169-174. 

111. Park, K., et al., Human behavioral detection and data cleaning in assisted living 

environment using wireless sensor networks, in Proceedings of the 2nd International 

Conference on PErvasive Technologies Related to Assistive Environments2009, ACM: 

Corfu, Greece. p. 1-8. 

112. Purpura, S., et al., Fit4life: the design of a persuasive technology promoting healthy 

behavior and ideal weight, in Proceedings of the 2011 annual conference on Human 

factors in computing systems2011, ACM: Vancouver, BC, Canada. p. 423-432. 

113. Yang, C.C. and Y.L. Hsu, A review of accelerometry-based wearable motion detectors 

for physical activity monitoring. Sensors (Basel, Switzerland), 2010. 10(8): p. 7772-88. 

114. Henpraserttae, A., S. Thiemjarus, and S. Marukatat, Accurate Activity Recognition 

Using a Mobile Phone Regardless of Device Orientation and Location, in Proceedings 

of the 2011 International Conference on Body Sensor Networks2011, IEEE Computer 

Society. p. 41-46. 

115. Lo, B., et al., Real-Time Pervasive Monitoring for Postoperative Care 

4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 

S. Leonhardt, T. Falck, and P. Mähönen, Editors. 2007, Springer Berlin Heidelberg. p. 

122-127. 

116. Lin, Z., et al., Precise process definitions for activities of daily living: a basis for real-

time monitoring and hazard detection, in Proceedings of the 3rd Workshop on Software 

Engineering in Health Care2011, ACM: Waikiki, Honolulu, HI, USA. p. 13-16. 



206 

 

117. Aziz, O., B. Lo, and G.-Z. Yang, Pervasive healthcare: clinical drive, technological 

innovations, and socio-economic benefits. IEE Seminar Digests, 2005. 2005(1): p. 127-

132. 

118. Vanhecke, T.E., et al., Cardiorespiratory fitness and sedentary lifestyle in the morbidly 

obese. Clin Cardiol, 2009. 32(3): p. 121-4. 

119. Ali, R., et al., Detection and analysis of transitional activity in manifold space. IEEE 

Trans Inf Technol Biomed, 2012. 16(1): p. 119-28. 

120. Kriska, A.M., et al., Physical Activity, Obesity, and the Incidence of Type 2 Diabetes in 

a High-Risk Population. American Journal of Epidemiology, 2003. 158(7): p. 669-675. 

121. Oliver, N., E. Horvitz, and A. Garg, Layered Representations for Human Activity 

Recognition, in Proceedings of the 4th IEEE International Conference on Multimodal 

Interfaces2002, IEEE Computer Society. p. 3. 

122. Brand, M., N. Oliver, and A. Pentland, Coupled hidden Markov models for complex 

action recognition, in Proceedings of the 1997 Conference on Computer Vision and 

Pattern Recognition (CVPR '97)1997, IEEE Computer Society. p. 994. 

123. Dawkins, R., The Selfish Gene1989: Oxford University Press. 

124. Bui, H.H., S. Venkatesh, and G. West, Policy recognition in the abstract hidden 

Markov model. J. Artif. Int. Res., 2002. 17(1): p. 451-499. 

125. Talukder, A., et al., Dynamic Control and Power Management Algorithm For 

Continuous Wireless Monitoring in Sensor Networks, in Proceedings of the 29th Annual 

IEEE International Conference on Local Computer Networks2004, IEEE Computer 

Society. p. 498-505. 

126. Talukder, A., et al. Optimal sensor scheduling and power management in sensor 

networks. in Optical Pattern Recognition, Proceedings of the SPIE. 2005. 

127. Yoshida, T., et al., Development of a wearable surveillance system using gait analysis. 

Telemed J E Health, 2007. 13(6): p. 703-13. 

128. Dawson, D.A.P.D., Aging in the Eighties : Functional Limitations of Individuals Age 65 

Years and Over. 

129. Maki, B.E., P.J. Holliday, and A.K. Topper, Fear of falling and postural performance 

in the elderly. J Gerontol, 1991. 46(4): p. M123-31. 

130. Topper, A.K., B.E. Maki, and P.J. Holliday, Are activity-based assessments of balance 

and gait in the elderly predictive of risk of falling and/or type of fall? J Am Geriatr Soc, 

1993. 41(5): p. 479-87. 

131. Janssen, W., et al., Recovery of the sit-to-stand movement after stroke: a longitudinal 

cohort study. Neurorehabil Neural Repair, 2010. 24(8): p. 763-9. 

132. Frykberg, G.E., et al., Temporal coordination of the sit-to-walk task in subjects with 

stroke and in controls. Arch Phys Med Rehabil, 2009. 90(6): p. 1009-17. 

133. Nitz, J.C., Y.R. Burns, and R.V. Jackson, Sit-to-stand and Walking Ability in Patients 

with Neuromuscular Conditions. Physiotherapy, 1997. 83(5): p. 223-227. 

134. Manckoundia, P., et al., Comparison of motor strategies in sit-to-stand and back-to-sit 

motions between healthy and Alzheimer's disease elderly subjects. Neuroscience, 2006. 

137(2): p. 385-92. 

135. Gioftsos, G. and D.W. Grieve, The use of artificial neural networks to identify patients 

with chronic low-back pain conditions from patterns of sit-to-stand manoeuvres. Clin 

Biomech (Bristol, Avon), 1996. 11(5): p. 275-280. 

136. Allin, S. and A. Mihailidis, Automated sit-to-stand detection and analysis, in 

Symposium on AI in Eldercare: New Solutions to Old Problems, AAAI, Editor 2008: 

Arlington. 

137. Najafi, B., et al., Measurement of stand-sit and sit-stand transitions using a miniature 

gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed 

Eng, 2002. 49(8): p. 843-51. 



207 

 

138. Tinetti, M.E., M. Speechley, and S.F. Ginter, Risk factors for falls among elderly 

persons living in the community. N Engl J Med, 1988. 319(26): p. 1701-7. 

139. Kang, D.W., et al., Real-time elderly activity monitoring system based on a tri-axial 

accelerometer. Disabil Rehabil Assist Technol, 2010. 5(4): p. 247-53. 

140. Zhu, C. and W. Sheng, Human daily activity recognition in robot-assisted living using 

multi-sensor fusion, in Proceedings of the 2009 IEEE international conference on 

Robotics and Automation2009, IEEE Press: Kobe, Japan. p. 3644-3649. 

141. Schibler, U., The daily rhythms of genes, cells and organs. EMBO Rep, 2005. 6(S1): p. 

S9-S13. 

142. Martin, P.R. and P.P.G. Bateson, Measuring Behaviour: An Introductory Guide1986: 

Cambridge University Press. 

143. Glodek, M., et al., Incorporating uncertainty in a layered HMM architecture for human 

activity recognition, in Proceedings of the 2011 joint ACM workshop on Human gesture 

and behavior understanding2011, ACM: Scottsdale, Arizona, USA. p. 33-34. 

144. Chen, C., et al., Factorial HMM and parallel HMM for gait recognition. Trans. Sys. 

Man Cyber Part C, 2009. 39(1): p. 114-123. 

145. \, M., et al., Applying Space State Models in Human Action Recognition: A Comparative 

Study, in Proceedings of the 5th international conference on Articulated Motion and 

Deformable Objects2008, Springer-Verlag: Port d'Andratx, Mallorca, Spain. p. 53-62. 

146. Wren, C.R., D.C. Minnen, and S.G. Rao, Similarity-based analysis for large networks 

of ultra-low resolution sensors. Pattern Recogn., 2006. 39(10): p. 1918-1931. 

147. Friedman, N., K. Murphy, and S. Russell, Learning the structure of dynamic 

probabilistic networks, in Proceedings of the Fourteenth conference on Uncertainty in 

artificial intelligence1998, Morgan Kaufmann Publishers Inc.: Madison, Wisconsin. p. 

139-147. 

148. Youtian, D. Recognizing Interaction Activities using Dynamic Bayesian Network. 2006. 

149. Muncaster, J. and Y. Ma, Hierarchical Model-Based Activity Recognition With 

Automatic Low-Level State Discovery. 2007. Vol. 2. 2007. 

150. Liao, L., et al., Learning and inferring transportation routines. Artif. Intell., 2007. 

171(5-6): p. 311-331. 

151. Han, J., et al., Frequent pattern mining: current status and future directions. Data Min. 

Knowl. Discov., 2007. 15(1): p. 55-86. 

152. Ohsaki, M., et al., Evaluation of rule interestingness measures in medical knowledge 

discovery in databases. Artif. Intell. Med., 2007. 41(3): p. 177-196. 

153. Jaroszewicz, S., Using interesting sequences to interactively build Hidden Markov 

Models. Data Min. Knowl. Discov., 2010. 21(1): p. 186-220. 

154. Eagle, N. and A. Pentland, Eigenbehaviors: identifying structure in routine. Behavioral 

Ecology and Sociobiology, 2009. 63(7): p. 1057-1066. 

155. Virone, G., N. Noury, and J. Demongeot, A system for automatic measurement of 

circadian activity deviations in telemedicine. IEEE Trans Biomed Eng, 2002. 49(12): p. 

1463-9. 

156. Barger, T.S., D.E. Brown, and M. Alwan, Health-status monitoring through analysis of 

behavioral patterns. Systems, Man and Cybernetics, Part A: Systems and Humans, 

IEEE Transactions on, 2005. 35(1): p. 22-27. 

157. Berndt, D. and J. Clifford. Using Dynamic Time Warping to Find Patterns in Time 

Series. in KDD Workshop. 1994. 

158. Ouivirach, K. and M.N. Dailey. Clustering human behaviors with dynamic time 

warping and hidden Markov models for a video surveillance system. in Electrical 

Engineering/Electronics Computer Telecommunications and Information Technology 

(ECTI-CON), 2010 International Conference on. 2010. 



208 

 

159. Pham, C., et al., A dynamic time warping approach to real-time activity recognition for 

food preparation, in Proceedings of the First international joint conference on Ambient 

intelligence2010, Springer-Verlag: Malaga, Spain. p. 21-30. 

160. YuanYuan, L. and L.E. Parker. Detecting and monitoring time-related abnormal events 

using a wireless sensor network and mobile robot. in Intelligent Robots and Systems, 

2008. IROS 2008. IEEE/RSJ International Conference on. 2008. 

161. Mori, T., et al. Anomaly detection algorithm based on life pattern extraction from 

accumulated pyroelectric sensor data. in Intelligent Robots and Systems, 2008. IROS 

2008. IEEE/RSJ International Conference on. 2008. 

162. Markou, M. and S. Singh, Novelty detection: a review\&mdash;part 1: statistical 

approaches. Signal Process., 2003. 83(12): p. 2481-2497. 

163. Tarassenko, L., et al. Novelty detection for the identification of masses in mammograms. 

in Artificial Neural Networks, 1995., Fourth International Conference on. 1995. 

164. Viswanath, P., M.N. Murty, and S. Kambala, An efficient parzen-window based network 

intrusion detector using a pattern synthesis technique, in Proceedings of the First 

international conference on Pattern Recognition and Machine Intelligence2005, 

Springer-Verlag: Kolkata, India. p. 799-804. 

165. King, R.C., et al., Development of a wireless sensor glove for surgical skills assessment. 

IEEE Trans Inf Technol Biomed, 2009. 13(5): p. 673-9. 

166. Pradhan, G.N. and B. Prabhakaran, Clustering of human motions based on feature-level 

fusion of multiple body sensor data, in Proceedings of the 1st ACM International Health 

Informatics Symposium2010, ACM: Arlington, Virginia, USA. p. 66-75. 

167. McIlwraith, D.G., et al. Probabilistic decision level fusion for real-time correlation of 

ambient and wearable sensors. in Medical Devices and Biosensors, 2008. ISSS-MDBS 

2008. 5th International Summer School and Symposium on. 2008. 

168. Ashit, T., et al., Predictive Controller for Heterogeneous Sensor Network Operation in 

Dynamic Environments, 2008. 

169. Zhang, M. and A.A. Sawchuk, Motion primitive-based human activity recognition using 

a bag-of-features approach, in Proceedings of the 2nd ACM SIGHIT International 

Health Informatics Symposium2012, ACM: Miami, Florida, USA. p. 631-640. 

170. Begg, R.K., M. Palaniswami, and B. Owen, Support vector machines for automated gait 

classification. IEEE Trans Biomed Eng, 2005. 52(5): p. 828-38. 

171. He, Z. Activity recognition from accelerometer signals based on Wavelet-AR model. in 

Progress in Informatics and Computing (PIC), 2010 IEEE International Conference on. 

2010. IEEE. 

172. Martin, E. Solving training issues in the application of the wavelet transform to 

precisely analyze human body acceleration signals. in Bioinformatics and Biomedicine 

(BIBM), 2010 IEEE International Conference on. 2010. 

173. Ha, S., Y. Han, and H. Hahn, Adaptive gait pattern generation of biped robot based on 

human's gait pattern analysis. International Journal of Mechanical Systems Science and 

Engineering, 2007. 1(2): p. 80–85. 

174. Alpaydin, E., Introduction To Machine Learning2004: Mit Press. 

175. Dreyfus, G., Neural Networks: Methodology And Applications2005: Springer. 

176. Salzberg, S.L., C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan 

Kaufmann Publishers, Inc., 1993. Machine Learning, 1994. 16(3): p. 235-240. 

177. Lowd, D. and P. Domingos, Naive Bayes models for probability estimation, in 

Proceedings of the 22nd international conference on Machine learning2005, ACM: 

Bonn, Germany. p. 529-536. 

178. Hand, D.J. and K. Yu, Idiot's Bayes—Not So Stupid After All? International Statistical 

Review, 2001. 69(3): p. 385-398. 



209 

 

179. Dawson, D., G. Hendershot, and J. Fulton, Aging in the eighties: The prevalence of 

comorbidity and its association with disability, in Advance Data From Vital and Health 

Statistics1987, National Center for Health Statistics: Hyattsville, MD. p. 87–1250. 

180. Britton, E., N. Harris, and A. Turton, An exploratory randomized controlled trial of 

assisted practice for improving sit-to-stand in stroke patients in the hospital setting. 

Clin Rehabil, 2008. 22(5): p. 458-468. 

181. Dall, P.M. and A. Kerr, Frequency of the sit to stand task: An observational study of 

free-living adults. Applied Ergonomics, 2010. 41(1): p. 58-61. 

182. Cheng, P.T., et al., The sit-to-stand movement in stroke patients and its correlation with 

falling. Arch Phys Med Rehabil, 1998. 79(9): p. 1043-6. 

183. Janssen, W.G.M. The Sit-to-Stand Movement recovery after stroke and objective 

assessment. Van zitten naar staan het herstel na een beroerte en het objectief meten van 

de beweging 2008; Available from: http://hdl.handle.net/1765/13555. 

184. Frykberg, G.E., et al., Temporal Coordination of the Sit-to-Walk Task in Subjects With 

Stroke and in Controls. Arch Phys Med Rehabil, 2009. 90(6): p. 1009-1017. 

185. Galli, M., et al., Sit-to-stand movement analysis in obese subjects. Int J Obes Relat 

Metab Disord, 2000. 24(11): p. 1488-92. 

186. Allin, S. and A. Mihailidis, Low-cost, Automated Assessment of Sit-To-Stand Movement 

in ―Natural‖ Environments 

4th European Conference of the International Federation for Medical and Biological 

Engineering, J. Sloten, et al., Editors. 2009, Springer Berlin Heidelberg. p. 76-79. 

187. Yang, A.Y., et al. Distributed segmentation and classification of human actions using a 

wearable motion sensor network. in Computer Vision and Pattern Recognition 

Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on. 2008. 

188. Tenenbaum, J.B., V.d. Silva, and J.C. Langford, A Global Geometric Framework for 

Nonlinear Dimensionality Reduction. Science, 2000. 290(5500): p. 2319-2323. 

189. Bernd, K. and M.O. Hinke, The Lorenz manifold as a collection of geodesic level sets. 

Nonlinearity, 2004. 17(1): p. C1. 

190. Chung, F.R.K., Spectral Graph Theory1997: Conference Board of the Mathematical 

Sciences. 

191. Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its 

application to graph theory. Czechoslovak Mathematical Journal, 1975. 25. 

192. Chan, T.F., J. P. Ciarlet, and W.K. Szeto, On the Optimality of the Median Cut Spectral 

Bisection Graph Partitioning Method. SIAM Journal on Scientific Computing, 1997. 

18(3): p. 943-948. 

193. Ali, R., et al., Transitional Activity Recognition with Manifold Embedding, in 

Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable 

Body Sensor Networks2009, IEEE Computer Society. p. 98-102. 

194. Belkin, M., Problems of Learning on Manifolds, 2003, The University of Chicago. 

195. Bezdek, J.C., R. Ehrlich, and W. Full, FCM: The fuzzy c-means clustering algorithm. 

Computers &amp; Geosciences, 1984. 10(2–3): p. 191-203. 

196. Roweis, S.T. and L.K. Saul, Nonlinear Dimensionality Reduction by Locally Linear 

Embedding. Science, 2000. 290(5500): p. 2323-2326. 

197. Belkin, M. and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and 

Data Representation. Neural Computation, 2003. 15(6): p. 1373-1396. 

198. Vin De, S. and B.T. Joshua, Global Versus Local Methods in Nonlinear Dimensionality 

Reduction, 2003, MIT Press. 

199. Kevin, R.K., et al., Excitation/emission resolved fluorescence imaging with, 2010. 

200. Specht, D.F., A general regression neural network. Neural Networks, IEEE 

Transactions on, 1991. 2(6): p. 568-576. 

201. Mark, J.L.O. and S. Centre For Cognitive, Introduction to radial basis function 

networks, 1996. 

http://hdl.handle.net/1765/13555


210 

 

202. Lekadir, K., et al., Tissue characterization using dimensionality reduction and 

fluorescence imaging, in Proceedings of the 9th international conference on Medical 

Image Computing and Computer-Assisted Intervention - Volume Part II2006, Springer-

Verlag: Copenhagen, Denmark. p. 586-593. 

203. Mokkink, L.B., et al., Construct validity of the DynaPort®KneeTest: a comparison with 

observations of physical therapists. Osteoarthritis and cartilage / OARS, Osteoarthritis 

Research Society, 2005. 13(8): p. 738-743. 

204. Mokkink, L.B., et al., Reproducibility and validity of the DynaPort KneeTest. Arthritis 

Care & Research, 2005. 53(3): p. 357-363. 

205. Huynh, T. and B. Schiele. Analyzing features for activity recognition. in Proceedings of 

the 2005 joint conference on Smart objects and ambient intelligence: innovative 

context-aware services: usages and technologies. 2005. ACM. 

206. Baños, O., H. Pomares, and I. Rojas, Novel Method for Feature-Set Ranking Applied to 

Physical Activity Recognition, in Trends in Applied Intelligent Systems, N. García-

Pedrajas, et al., Editors. 2010, Springer Berlin Heidelberg. p. 637-642. 

207. Mathie, M., Monitoring and interpreting human movement patterns using a triaxial 

accelerometer, 2003, The University of New South Wales. 

208. Bonomi, A.G., et al., Detection of type, duration, and intensity of physical activity using 

an accelerometer. Med Sci Sports Exerc, 2009. 41(9): p. 1770-1777. 

209. Janssen, W.G., H.B. Bussmann, and H.J. Stam, Determinants of the Sit-to-Stand 

Movement: A Review. Physical Therapy, 2002. 82(9): p. 866-879. 

210. Demura, S. and T. Yamada, Height of chair seat and movement characteristics in sit-to-

stand by young and elderly adults. Percept Mot Skills, 2007. 104(1): p. 21-31. 

211. Ali, R., et al. Pattern mining for routine behaviour discovery in pervasive healthcare 

environments. in Information Technology and Applications in Biomedicine, 2008. ITAB 

2008. International Conference on. 2008. 

212. Nagel, T., What Is It Like to Be a Bat? The Philosophical Review, 1974. 83(4): p. 435-

450. 

213. Agrawal, R. and R. Srikant, Fast Algorithms for Mining Association Rules in Large 

Databases, in Proceedings of the 20th International Conference on Very Large Data 

Bases1994, Morgan Kaufmann Publishers Inc. p. 487-499. 

214. Han, J., J. Pei, and Y. Yin, Mining frequent patterns without candidate generation. 

SIGMOD Rec., 2000. 29(2): p. 1-12. 

215. Wang, J., J. Han, and J. Pei, CLOSET+: searching for the best strategies for mining 

frequent closed itemsets, in Proceedings of the ninth ACM SIGKDD international 

conference on Knowledge discovery and data mining2003, ACM: Washington, D.C. p. 

236-245. 

216. Jian, P., et al. PrefixSpan,: mining sequential patterns efficiently by prefix-projected 

pattern growth. in Data Engineering, 2001. Proceedings. 17th International Conference 

on. 2001. 

217. O'Hear, S., Endomondo's Sports Tracker gathers pace – reaches 500,000 users, in 

techcrunch.com2010: http://techcrunch.com/2010/10/21/endomondos-sports-tracker-

gathers-pace-reaches-500000-users/. 

218. Apiwat, H. Accurate Activity Recognition Using a Mobile Phone Regardless of Device 

Orientation and Location. 2011. 

219. Kwapisz, J.R., G.M. Weiss, and S.A. Moore, Activity recognition using cell phone 

accelerometers. SIGKDD Explor. Newsl., 2011. 12(2): p. 74-82. 

220. Bieber, G., J. Voskamp, and B. Urban. Activity recognition for everyday life on mobile 

phones. 2009. 

221. Nanami, R., Y. Kawahawa, and T. Asami. A Calorie Count Application for a Mobile 

Phone Based on METS Value. in Sensor, Mesh and Ad Hoc Communications and 

http://techcrunch.com/2010/10/21/endomondos-sports-tracker-gathers-pace-reaches-500000-users/
http://techcrunch.com/2010/10/21/endomondos-sports-tracker-gathers-pace-reaches-500000-users/


211 

 

Networks, 2008. SECON '08. 5th Annual IEEE Communications Society Conference on. 

2008. 

222. Sun, L., et al., Activity Recognition on an Accelerometer Embedded Mobile Phone with 

Varying Positions and Orientations 

Ubiquitous Intelligence and Computing, Z. Yu, et al., Editors. 2010, Springer Berlin / 

Heidelberg. p. 548-562. 

223. Willett, W.C., et al., Prevention of Chronic Disease by Means of Diet and Lifestyle 

Changes., in Disease Control Priorities in Developing Countries2006, Oxford 

University Press: New York. 

224. Brundtland, G.H., Reducing Risks to Health, Promoting Healthy Life. JAMA: The 

Journal of the American Medical Association, 2002. 288(16): p. 1974. 

225. Vainio, H. and F. Bianchini, Weight Control and Physical Activity2002: IARC Press. 

226. Myers, J., Exercise and Cardiovascular Health. Circulation, 2003. 107(1): p. e2-e5. 

227. Sigal, R.J., et al., Physical Activity/Exercise and Type 2 Diabetes. Diabetes Care, 2004. 

27(10): p. 2518-2539. 

228. Shephard, R.J., Physical Activity and Cancer. Int J Sports Med, 1990. 11(06): p. 

413,420. 

229. Marcus, B.H., et al., Physical Activity Intervention Studies. Circulation, 2006. 114(24): 

p. 2739-2752. 

230. Tibshirani, R., G. Walther, and T. Hastie, Estimating the number of clusters in a data 

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 2001. 63(2): p. 411-423. 

231. Jain, A.K., M.N. Murty, and P.J. Flynn, Data clustering: a review. ACM Comput. 

Surv., 1999. 31(3): p. 264-323. 

232. Roberts, S.J., et al., Bayesian approaches to Gaussian mixture modeling. Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 1998. 20(11): p. 1133-1142. 

233. Moon, T.K., The expectation-maximization algorithm. Signal Processing Magazine, 

IEEE, 1996. 13(6): p. 47-60. 

234. Ferrari, L. and M. Mamei. Discovering daily routines from Google Latitude with topic 

models. in Pervasive Computing and Communications Workshops (PERCOM 

Workshops), 2011 IEEE International Conference on. 2011. 

235. Liao, L., D. Fox, and H. Kautz, Extracting Places and Activities from GPS Traces 

Using Hierarchical Conditional Random Fields. Int. J. Rob. Res., 2007. 26(1): p. 119-

134. 

236. Ashbrook, D. and T. Starner, Using GPS to learn significant locations and predict 

movement across multiple users. Personal Ubiquitous Comput., 2003. 7(5): p. 275-286. 

237. Khetarpaul, S., et al., Mining GPS data to determine interesting locations, in 

Proceedings of the 8th International Workshop on Information Integration on the Web: 

in conjunction with WWW 20112011, ACM: Hyderabad, India. p. 1-6. 

238. Arisaka, Y., Spatiality, temporality, and the problem of foundation in being and time. 

239. De Silva, V. and J.B. Tenenbaum, Sparse multidimensional scaling using landmark 

points. 2004. 

240. Hubert, L. and P. Arabie, Comparing partitions. Journal of Classification, 1985. 2(1): p. 

193-218. 

241. Tan, P.-N., M. Steinbach, and V. Kumar, Introduction to Data Mining2005: Addison 

Wesley. 

242. Vallieres, A., et al., Variability and predictability in sleep patterns of chronic 

insomniacs. J Sleep Res, 2005. 14(4): p. 447-53. 

243. Mezick, E.J., et al., Intra-individual variability in sleep duration and fragmentation: 

Associations with stress. Psychoneuroendocrinology, 2009. 34(9): p. 1346-1354. 



212 

 

244. Zhou, F. and F. la Torre, Canonical Time Warping for Alignment of Human Behavior, 

in Advances in Neural Information Processing Systems 22, Y. Bengio, et al., Editors. 

2009. p. 2286-2294. 

245. Hadidi, T. and N. Noury, A Predictive Analysis of the Night-Day Activities Level of 

Older Patient in a Health Smart Home, in Proceedings of the 7th International 

Conference on Smart Homes and Health Telematics: Ambient Assistive Health and 

Wellness Management in the Heart of the City2009, Springer-Verlag: Tours, France. p. 

290-293. 

246. Li, T., M. Ogihara, and S. Zhu, Association-based similarity testing and its 

applications. Intell. Data Anal., 2003. 7(3): p. 209-232. 

247. Strehl, A. and J. Ghosh, Cluster ensembles --- a knowledge reuse framework for 

combining multiple partitions. J. Mach. Learn. Res., 2003. 3: p. 583-617. 

248. Kapur, A. and C.R. Bhat, On Modeling Adults’ Weekend Day Time Use by Activity 

Purpose  and Accompaniment Arrangement. Journal of the Transportation Research 

Board, 2007(2021). 

249. Larsen, P., Chronic Illness: Impact and Intervention2011: Jones & Bartlett Learning. 

250. Zisberg, A., N. Gur-Yaish, and T. Shochat, Contribution of routine to sleep quality in 

community elderly. Sleep, 2010. 33(4): p. 509-14. 

251. Prigerson, H.G., et al., Lifestyle regularity and activity level as protective factors 

against bereavement-related depression in late-life. Depression, 1995. 3(6): p. 297-302. 

252. James, B.D., et al., Late-life social activity and cognitive decline in old age. J Int 

Neuropsychol Soc, 2011. 17(6): p. 998-1005. 

253. Sherwood, N.E. and R.W. Jeffery, The behavioral determinants of exercise: 

implications for physical activity interventions. Annu Rev Nutr, 2000. 20: p. 21-44. 

254. Roos, E.M. and S. Toksvig-Larsen, Knee injury and Osteoarthritis Outcome Score 

(KOOS) - validation and comparison to the WOMAC in total knee replacement. Health 

Qual Life Outcomes, 2003. 1: p. 17. 

255. Dean, J. and S. Ghemawat, MapReduce: simplified data processing on large clusters, in 

Proceedings of the 6th conference on Symposium on Opearting Systems Design \& 

Implementation - Volume 62004, USENIX Association: San Francisco, CA. p. 10-10. 

256. White, T., Hadoop: The Definitive Guide2009: O'Reilly Media, Inc. 528. 

257. Sexual Activity Tracked By Fitbit Shows Up In Google Search Results. 2011; Available 

from: http://techcrunch.com/2011/07/03/sexual-activity-tracked-by-fitbit-shows-up-in-

google-search-results/. 

258. Bellman, R.E., Dynamic Programming2003: Dover. 

259. Hughes, G., On the mean accuracy of statistical pattern recognizers. Information 

Theory, IEEE Transactions on, 1968. 14(1): p. 55-63. 

260. Jain, A.K. and B. Chandrasekaran, 39 Dimensionality and sample size considerations in 

pattern recognition practice, in Handbook of Statistics, P.R. Krishnaiah and L.N. Kanal, 

Editors. 1982, Elsevier. p. 835-855. 

261. Vapnik, V.N. and A.Y. Chervonenkis, On the uniform convergence of relative 

frequencies of events to their probabilities. Theory of Probability & Its Applications, 

1971. 16(2): p. 264-280. 

262. Engel, A. and W. Fink, Statistical mechanics calculation of Vapnik-Chervonenkis 

bounds for perceptrons. Journal of Physics A: Mathematical and General, 1999. 26(23): 

p. 6893. 

263. Lee, J.M., Introduction to topological manifolds. Vol. 202. 2010: Springer. 

264. Balasubramanian, M. and E.L. Schwartz, The isomap algorithm and topological 

stability. Science, 2002. 295(5552): p. 7-7. 

265. Zhang, Z. and H. Zha, Principal manifolds and nonlinear dimensionality reduction via 

tangent space alignment. Journal of Shanghai University (English Edition), 2004. 8(4): 

p. 406-424. 

http://techcrunch.com/2011/07/03/sexual-activity-tracked-by-fitbit-shows-up-in-google-search-results/
http://techcrunch.com/2011/07/03/sexual-activity-tracked-by-fitbit-shows-up-in-google-search-results/


213 

 

266. Donoho, D.L. and C. Grimes, Hessian eigenmaps: Locally linear embedding techniques 

for high-dimensional data. Proceedings of the National Academy of Sciences, 2003. 

100(10): p. 5591-5596. 

267. Weinberger, K.Q., F. Sha, and L.K. Saul, Learning a kernel matrix for nonlinear 

dimensionality reduction, in Proceedings of the twenty-first international conference on 

Machine learning2004, ACM: Banff, Alberta, Canada. p. 106. 

268. Huo, X., X. Ni, and A.K. Smith, A survey of manifold-based learning methods. 

269. Venna, J. and S. Kaski, Local multidimensional scaling. Neural Networks, 2006. 19(6): 

p. 889-899. 

270. Ahlfors, L.V., Conformal Invariants: Topics in Geometric Function Theory1973: AMS 

Chelsea Pub. 

271. Weinberger, K.Q. and L.K. Saul. Unsupervised learning of image manifolds by 

semidefinite programming. in Computer Vision and Pattern Recognition, 2004. CVPR 

2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE. 

272. Cukierski, W.J. and D.J. Foran, Using Betweenness Centrality to Identify Manifold 

Shortcuts. Proc IEEE Int Conf Data Min, 2008. 2008: p. 949-958. 

273. Jing, L. and C. Shao, Selection of the Suitable Parameter Value for ISOMAP. 2011. 

Vol. 6. 2011. 

274. Feng, L., et al. A neighborhood selection algorithm for manifold learning. in Computer 

Design and Applications (ICCDA), 2010 International Conference on. 2010. IEEE. 

275. Cayton, L., Algorithms for manifold learning. 2005. 

276. Pless, R. and R. Souvenir, A Survey of Manifold Learning for Images. IPSJ Transactions 

on Computer Vision and Applications, 2009. 1: p. 83-94. 

277. Kim, S., et al., Beyond Sentiment: The Manifold of Human Emotions. arXiv preprint 

arXiv:1202.1568, 2012. 

278. Patwari, N. and A.O. Hero III. Manifold learning algorithms for localization in wireless 

sensor networks. in Acoustics, Speech, and Signal Processing, 2004. 

Proceedings.(ICASSP'04). IEEE International Conference on. 2004. IEEE. 

279. Cooley, J.W. and J.W. Tukey, An Algorithm for the Machine Calculation of Complex 

Fourier Series. Mathematics of Computation, 1965. 19(90): p. 297-301. 

280. Akansu, A.N., W.A. Serdijn, and I.W. Selesnick, Full length article: Emerging 

applications of wavelets: A review. Phys. Commun., 2010. 3(1): p. 1-18. 

281. Burrus, C.S., R.A. Gopinath, and H. Guo, Introduction to wavelets and wavelet 

transforms: a primer. Vol. 23. 1998: Prentice hall Upper Saddle River NJ. 

 

 


