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Abstract

Neuromuscular disorder is a broad term that refers to diseases that impair muscle func-

tionality either by affecting any part of the nerve or muscle. Electrodiagnosis of most

neuromuscular disorders is based on the electrophysiological classification of involved mus-

cles which in turn, is performed by inferring the structure and function of the muscles

by analyzing electromyographic (EMG) signals recorded during low to moderate levels of

contraction. The functional unit of muscle contraction is called a motor unit (MU). The

morphology and physiology of the MUs of an examined muscle are inferred by extract-

ing motor unit potentials (MUPs) from the EMG signals detected from the muscle. As

such, electrophysiological muscle classification is performed by first characterizing extracted

MUPs and then aggregating these characterizations.

The task of classifying muscles can be represented as an instance of a multiple instance

learning (MIL) problem. In the MIL paradigm a bag of instances shares a label and the

instance labels are hidden, contrary to standard supervised learning, where each training

instance is labeled. In MIL-based muscle classification, the instances are the MUPs ex-

tracted from the EMG signals of the analyzed muscle and the bag is the muscle. Detecting

and counting the MUPs indicating a specific category of neuromuscular disorder can result

in accurately classifying the examined muscle. As such, three major issues usually arise:

how to infer MUP labels without full supervision; how the cardinality relationships be-

tween MUP labels contribute to predict the muscle label; and how the muscle as a whole

entity is classified. In this thesis, these three challenges are addressed.

To this end, an MIL-based muscle classification system is proposed that has five ma-

jor steps: 1) MUPs are represented using morphological, stability, and novel near fiber

parameters as well as spectral features extracted from wavelet coefficients. This represen-

tation helps to analyze MUPs from a variety of aspects. 2) MUP feature selection using

unsupervised similarity preserving Laplacian score which is independent of any learning

algorithm. Hence, the features selected in this work can be used in other electrophysiolog-

ical muscle classification systems. 3) MUP clustering using a novel clustering algorithm
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called Neighbourhood Distance Entropy Consistency (NDEC) which contributes to solve

the traditional problem of finding representations of MUP normality and abnormality and

provides a dynamic number of MUP characterization classes which will be used instead of

the conventional three classes (i.e. normal, myopathic, and neurogenic). This clustering

was performed to highlight the effects of disease on both fiber spatial distributions and

fiber diameter distributions, which lead to a continuity of MUP characteristics. These

clusters can potentially represent several concepts of MUP normality and abnormality. 4)

Muscle representation by embedding its MUP cluster associations in a feature vector, and

5) Muscle classification using support vector machines or random forests.

Quantitative results obtained by applying the proposed method to four electrophysio-

logically different groups of muscles including proximal arm, proximal leg, distal arm, and

distal leg show the superior and stable performance of the proposed muscle classification

system compared to previous works. Additionally, modelling electrophysiological muscle

classification as an instance of the MIL can solve the traditional problem of characterizing

MUPs without full supervision. The proposed clustering algorithm in this work, can be

used as an effective technique in other pattern recognition and medical diagnostic systems

in which discovering natural clusters within data is a necessity.

Keywords: Electrophysiological Muscle Classification, Multiple-Instance Learning,

Needle Electrodiagnostic Examination, Neighbourhood Distance Entropy Consistency
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Chapter 1

Introduction and Motivation

1.1 Summary

During the last thirty years, Electromyographic (EMG) signals have been widely utilized

by clinicians and researchers as a versatile tool for the accurate and timely diagnosis

of a variety of neuromuscular disorders. Historically EMG signals have been analyzed

qualitatively; however, over the last decade, a great deal of interest has been found in

quantitative EMG analysis (QEMG), in which a set of quantitative features of an EMG

signal are extracted and assessed for their diagnostic information. This transition can be

attributed to the fact that qualitative assessment is subjective and depends on clinician

skill and experience. Furthermore, longitudinal studies which focus on estimating disease

severity and progression are impossible using qualitative assessment, whereas, quantitative

analysis is objective and provides tools to facilitate the completion of longitudinal studies.

The main purpose of this thesis is to propose methods which can improve the clinical

utility of quantitative electromyographic techniques. For this purpose, this thesis focuses

on proposing new methods to boost the performance of quantitative electrophysiological

muscle classification which in turn can lead to viable diagnosis of neuromuscular disorders.
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To date, several electrophysiological muscle classification systems have been developed

using a supervised learning approach. Each of them has its own strengths and weaknesses

due to the complexity of the problem. Generally speaking, standard supervised learning has

many limitations with regard to electrophysiological muscle classification. In particular,

providing labels for all examples in electrophysiological muscle training data, is not feasible.

Instead, labels can be provided for groups of examples. In supervised learning terminology,

the examples are called instances and the groups are called bags. The learning scenario

where only labeled bags are available is called multiple instance learning (MIL). In this

thesis, electrophysiological muscle classification is formulated as an instance of a MIL

problem in which labels are only provided at the bag level in the electrophysiological

muscle training set.

1.2 Overview of Electrophysiological Background

Electrophysiological muscle classification is a crucial step in the diagnosis of neuromuscular

disorders and can be performed to assist discrimination between healthy muscles and those

which are affected by a neuromuscular disease process. Physicians classify muscles based on

the results of different clinical examinations and tests. Among them, EMG examinations,

which study electrical potentials detected in a muscle at rest or during activation, are

the most widely accepted [5]. Physiological and morphological aspects of a muscle are

represented in the EMG signals recorded from that muscle [6]. As a result, analyzing the

EMG signals assists in discovering possible alterations in both the physiology and structure

of the underlying muscle [2].

Skeletal muscle is composed of numerous multinucleated densely packed muscle fibers.

Each motor neuron innervates a set of different muscle fibers. The muscle fibers inner-

vated by one motor neuron plus the neuron cell body, the long axon running down a motor

nerve and its terminal branches, together constitute a motor unit (MU). In a healthy MU,

discharge of the motor neuron subsequently leads to concurrent and consistent activation
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of all MU fibers. The currents associated with the propagating muscle fiber action poten-

tials flow throughout the extracellular space. Electrodes inserted inside the territory of a

discharging MU detect potentials generated by these currents [5].

Active single muscle fibers generate waveforms called muscle fiber potentials (MFPs)

and the summation of potentials generated by the different fibers of the same motor unit

are called motor unit potentials (MUPs). To maintain or increase the force produced by

a muscle, MUs are activated repeatedly. As such, each MU generates a train of MUPs

which is called a motor unit potential train (MUPT). An EMG signal is comprised of the

summation of the MUPTs detected during a contraction [7].

Neuromuscular disorders can be categorized into two main groups including myopathic

and neurogenic. Myopathy is a group of disorders that is caused by the death or atrophy

of muscle fibers, whereas the neuropathy refers to any disorders that is caused by death of

or damage to the motor neurons. The primary symptom in myopathies is muscle weakness

which is the result of dysfunctional and/or lost muscle fibers. In neuropathies, loss of

motor neurons is an early sign, where fibers associated with degenerating motor neurons,

lose their neuronal connection and become denervated. Hence, surviving healthy motor

neurons in the immediate vicinity of the orphaned/denervated muscle fibers grow new

axonal sprouts and re-innervate the denervated muscle fibers [8].

Physicians diagnose neuromuscular disorders by considering characteristics of a set of

examined muscles. An individual muscle is electrophysiologically characterized, as nor-

mal, myopathic or neurogenic, by qualitatively analyzing sets of MUPs representing MUs

sampled in the examined muscle and then aggregating their MUP characterizations. Qual-

itative muscle classification is subjective and depends on clinician skill and experience.

Furthermore, longitudinal studies, which focus on estimating disease severity and progres-

sion, are difficult using such qualitative assessment.

In contrast, quantitative electrophysiological muscle classification is objective and pro-

vides tools to facilitate the completion of longitudinal studies [5]. Quantitative electrophys-

iological muscle classification systems, like physicians, consider sets of MUPs representing
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sampled MUs, and quantitatively characterize individual MUPs and then aggregate these

characterizations to obtain a muscle classification.

1.3 Challenges and Objectives of this Thesis

Designing a robust, and accurate quantitative electrophysiological muscle classifier is not

straightforward due to the complex nature of the problem. Despite previous attempts,

several open challenges still exist. The main challenges of this task are briefly explained

below:

1. Non-Uniform Level of Disease Involvement: The level of disease involvement

varies across constituent motor units of a muscle. As an example, a myopathic muscle

can have severely affected, slightly affected, and normal motor units. Hence, an individ-

ual MUP cannot provide sufficient diagnostic information and electrophysiological muscle

classification must be based on a set of MUPs produced by a representative sample of a

muscle’s MUs.

2. Partially Labelled Training Data: Most electrophysiological muscle classifica-

tion training data is only partially labelled. Associated muscle labels are provided; however,

individual MUPs do not have any labels. In some cases MUPs are labelled by physicians,

but this is a time consuming and expensive task that is prone to errors due to the high

volume of data.

3. Irrelevant Instances: There might be some MUPs recorded from a muscle that

do not convey any information about the class label of the muscle, or these MUPs may be

even more related to other classes of muscles. As an example, myopathic and neurogenic

muscles will most likely generate several normal MUPs.

4. Dynamic Number of MUP Characterization Classes: Existing muscle clas-

sification methods consider only three classes (i.e., normal, myopathic and neurogenic) for

MUP characterization as well as muscle classification. It is worth noting that fiber spatial
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distributions and fiber diameter distributions in a MU are all modified by disease in a con-

tinuous way. Therefore, changes induced by the disease process is also continuous in MUP

characteristics. As a result, except for extreme cases, distinct boundaries between MUPs

produced by normal, myopathic and neurogenic MUs cannot be identified. Consequently,

considering more than three classes for MUP characterization may be better able to reflect

the various effects of disease.

5. Multi-Class Imbalanced Data: The electrophysiological muscle classification

data distribution is highly skewed since representatives of the normal class appear much

more frequently. On the other hand, the minority classes (i.e. myopathy and neuropathy)

are more important from a diagnostic perspective.

6. High Leverage Apparent Outlier Observations: Due to the nature of the

disease processes, there are some minority samples that represent clear cases of myopathic

or neurogenic MUs and despite their rareness, they carry significantly important and useful

diagnostic information. Hence, the distinction between true outliers and apparent outliers

is both challenging and important.

The main purpose of this research is to propose methods which address the above

challenges and boost quantitative electrophysiological muscle classification performance

which in turn can lead to viable diagnosis of neuromuscular disorders. To this end, it is

difficult to formulate the muscle classification problem in a standard supervised learning

setting in which both training and test data are represented as individual feature vectors.

Instead, the training and test data can be represented by sets or bags of feature vectors

or instances. Hence, the task of classifying muscles is represented as an instance of a

multiple instance learning (MIL) problem. In the MIL paradigm a bag of instances has a

label and the instance labels are hidden, contrary to standard supervised learning, where

each training instance is labelled. In MIL-based muscle classification, the instances are the

MUPs extracted from the EMG signals of the analyzed muscle and the bag is the muscle.

5



1.4 Thesis Contribution

This dissertation contributes to electrophysiological muscle classification (EMC) by propos-

ing novel methods to solve the traditional problem of MUP characterization without full

supervision. The detailed contributions of this work are highlighted as follows.

� A novel MIL framework to model electrophysiological muscle classifica-

tion: A machine learning literature survey [9] shows that MIL encompasses two

different learning scenarios: MIL with the purpose of labeling bags, and MIL with

the purpose of labeling instances. Classifiers that optimize performance on bags,

may not provide the best possible instance labels. Additionally, these instance labels

may change and be unstable under different training phases. These behaviours are

not desirable, especially in cases where the instance labels carry medical significance.

Hence, a potential MIL-based EMC system should by design provide the stability of

instance labels as well as a high level of accuracy. We propose an MIL framework

which provides stable instance (MUP) labels and accurate and robust bag (muscle)

classification results.

� A novel density-based clustering algorithm to discover natural clusters:

Traditional clustering algorithms model the clustering problem as an optimization

task, in which the objective is defined based on minimizing specific metrics. These

algorithms are limited to find clusters with convex polytopes. In contrast, density-

based clustering algorithms aim at overcoming this limitation and try to partition

data objects into meaningful groups that have relatively high density separated by

low-density regions. We propose a new clustering algorithm that improves upon

previous density-based clustering approaches. To this end, a dynamic density-based

clustering algorithm called Neighbourhood Distance Entropy Consistency (NDEC) is

proposed which simultaneously uses local and global density consistency information

as well as consistency of neighbourhood distance entropy to discover the intrinsic

clustering structure with arbitrary shape, size, and density.
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NDEC is capable of identifying outliers and does not require prior knowledge about

the number of clusters. In addition, it is not sensitive to initialization since the

starting conditions are the same for all runs of the algorithm. Experiments on syn-

thetic and real benchmark clustering datasets have demonstrated the efficiency and

effectiveness of the NDEC method. Comparisons with k -means, DBSCAN, OPTICS,

and Density Peaks clustering algorithms further show that NDEC can successfully

discover natural clusters. Additionally, in this thesis, the utility of NDEC is demon-

strated with its application on two real-world problems including segmentation of

white matter tracts in diffusion tensor imaging and characterizing motor unit poten-

tial trains extracted from electromyographic signals.

� A novel method to infer MUP labels without full supervision: Electrophysi-

ological muscle classification involves characterization of extracted motor unit poten-

tials (MUPs) followed by the aggregation of these MUP characterizations. Existing

techniques consider three classes for both MUP characterization and electrophysio-

logical muscle classification. However, disease-induced MUP changes are continuous

in nature, which makes it difficult to find distinct boundaries between normal, my-

opathic and neurogenic MUPs. Hence, MUP characterization based on more than

three classes is better able to represent the various effects of disease.

In this thesis, an MIL-based electrophysiological muscle classification system is pre-

sented which considers a dynamic number of classes for characterizing MUPs. To

this end, NDEC is utilized to find clusters with arbitrary shape and density in a

MUP feature space. These clusters represent several concepts of MUP normality and

abnormality and are used for MUP characterization instead of the conventional three

classes (i.e., normal, myopathic, and neurogenic).

� A novel method for muscle classification which relies on the characteriza-

tion of MUPs: The electrophysiological muscle classification problem is naturally

formulated using the MIL setting and needs an adaptation of standard supervised

classifiers for the purpose of training and evaluating on the bags of instances. We
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propose a novel MIL-based EMC system in which the muscle classifier uses the pre-

dictions made on MUPs to infer muscle labels. Quantitative results show the supe-

rior and stable performance of the proposed MIL-based EMC system compared to

previous works performed with other supervised, semi-supervised and unsupervised

methods.

There are three journal publications and one under review related to the main contri-

butions of this work:

1. T. Kamali and D. W. Stashuk, Electrophysiological Muscle Classification using Mul-

tiple Instance Learning and Unsupervised Time and Spectral Domain Analysis, IEEE

Transactions on Biomedical Engineering, 2018.

2. T. Kamali and D. W. Stashuk, A Density-Based Clustering Approach to Motor Unit

Potential Characterizations to Support Diagnosis of Neuromuscular Disorders, IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, (7), pp.

956-966, 2017.

3. T. Kamali and D. W. Stashuk, Automated Segmentation of White Matter Fiber

Bundles using Diffusion Tensor Imaging Data and a New Density based Clustering

Algorithm, Artificial Intelligence in Medicine 73, pp.14-22, 2016.

4. T. Kamali and D. W. Stashuk, NDEC: A Density-Based Clustering Algorithm us-

ing Neighbourhood Distance Entropy Consistency, IEEE Transactions on Knowledge

and Data Engineering, 2018 (Under Review).

1.5 Thesis Organization

There are seven chapters in this thesis including the Introduction. Chapter 2 provides

a brief overview of muscle anatomy and physiology, neuromuscular disorders and electro-
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physiological basics of EMG signal generation. In addition, previous works done to classify

muscles using quantitative electromyography are summarized and a brief review of previ-

ous MIL techniques is presented. Chapter 3 states and formulates the electrophysiological

muscle classification problem and provides an overview of the framework proposed in this

work. Chapter 4 presents the basic concepts of cluster analysis and reviews briefly classical

clustering algorithms from the literature. In addition, Neighbourhood Distance Entropy

Consistency (NDEC) clustering algorithm is introduced and evaluated using a variety of

artificial and real benchmark clustering datasets. In Chapter 5, the MIL-based EMC sys-

tem using supervised time domain analysis is presented and evaluated on 103 sets of MUPs

recorded in tibialis anterior muscles. In Chapter 6, the MIL-based EMC system using un-

supervised time and spectral domain analysis is presented and assessed on 63, 83, 93, and

84 sets of MUPs recorded in deltoid, vastus medialis, first dorsal interosseous, and tibialis

anterior muscles, respectively. Chapter 7 concludes the thesis and discusses opportunities

for future work.
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Chapter 2

Background and Related Work

This chapter presents an overview of the basic physiology of muscle contraction and EMG

signal generation and detection techniques used for clinical applications as well as a brief

description of EMG decomposition. Understanding these fundamental electrophysiologi-

cal concepts assists in the appreciation of and provides a better insight into the methods

presented in the next chapters. Furthermore, in this chapter, a review of existing quanti-

tative EMC techniques is presented and the weaknesses and strengths of each technique

are discussed. Finally, a brief review of current multiple instance learning classification

techniques is presented.

2.1 Background

2.1.1 EMG Generation and Detection

The skeletal muscle is composed of numerous multinucleated densely packed muscle fibers

that are surrounded by a thin layer of connective tissue. A muscle fiber is a very thin

thread which has a length ranging from a few millimeters to 30 cm and a diameter of 10
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µm to 100 µm. Each muscle fiber is connected to a motor neuron via the synapses of its

neuromuscular junction [3].

The motor neuron cell body is located in the ventral horn of the spinal cord. Each

motor neuron innervates a set of different muscle fibers. The muscle fibers innervated by

one motor neuron plus the neuron cell body, the long axon running down a motor nerve

and its terminal branches, together constitute a motor unit (MU). The muscle fibers of a

healthy MU are spatially randomly distributed within a portion of the cross-sectional area

of a muscle (i.e. the motor unit territory) [10].

When a MU (demonstrated in Fig. 2.1) is activated, all fibers in the MU contract and

produce force. Groups of MUs work together to coordinate the contractions of a single

muscle. Muscles that require precision and fine movement control usually have many MUs

with a small number of fibers in each unit. There is an orderly recruitment of MUs. Small,

slowly contracting, fatigue resistant MUs, are first recruited and produce small forces.

With increasing force demands, large, fast contracting fatigable MUs join in [4].

Slower MUs are thereby more frequently used than faster ones. Muscle fibers possess

the property of being excitable. An action potential is an electrical impulse transmitted

from a nerve fiber branch to a muscle fiber at its neuromuscular junction. The electrical

impulse is transferred by release of a specific type of neurotransmitter molecules which

diffuse from the synapses of the motor nerve to the receptors on the plasma membrane

of the muscle fiber and cause the membrane to generate its own action potential which

travels along the muscle fiber at a rate of about 2 to 5 meters per second [5], [11].

In healthy muscles, an active motor neuron concurrently stimulates all muscle fibers

connected to it. The currents corresponding to these potentials propagate throughout the

extracellular muscle volume. Note that muscle fiber conduction velocities can vary as a

result of differences in the diameters of the muscle fibers. Consequently, the potentials

generated by different muscle fibers of the same MU have temporal dispersion. Electrodes

inserted inside the territory of a discharging MU detect these potentials within its uptake

area [12].
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Single muscle fiber generated waveforms are called muscle fiber potentials (MFPs) and

the summating potentials generated by different muscle fibers of the same motor unit are

called motor unit potentials (MUPs). To maintain or increase the exerted force produced

by a muscle, MUs are repeatedly activated and thus generate trains of MUPs which are

called motor unit potential trains (MUPTs). MU firing frequency is defined as the number

of recurring MUPs along a train per second. Note that the greater the number of MUs

activated and their discharge frequency, the greater the generated force will be. Finally,

an EMG signal is defined as the summation of the MUPTs detected during a contraction

[7].

 

Figure 2.1: A simple representation of the motor unit and motor control process [2].

EMG signals can be detected using two possible types of electrodes: needle and surface
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electrodes. For clinical applications needle electrodes are utilized to record EMG signals

from the muscles despite their invasive nature and the discomfort they may cause patients.

A needle electrode is inserted directly into the muscle and is well suited for inferring motor

unit internal structure and size properties. As an example, fibrillation potentials, which are

potentials generated by single denervated muscle fibers and an important sign of disease

can only be detected using needle electrodes. On the other hand, signals recorded using

surface electrodes are better for analyzing the temporal pattern of activity, and fatigue of

a muscle as a whole or of muscle groups. They are mostly used in sport, rehabilitation and

occupational medicine where assessments have to be repeated frequently [2].

Neuromuscular disorders are a heterogeneous group of diseases impairing muscle func-

tion. Two main categories of neuromuscular disorders are myopathic and neurogenic where

the former is caused by the atrophy or death of muscle fibers and the latter is primarily

caused by damage to or death of motor neurons. The primary symptom in myopathies is

muscle weakness which is the result of dysfunctional muscle fibers. Other symptoms can

be muscle cramps, stiffness, and spasm [8].

In neuropathies, loss of motor neurons is an early sign, where fibers associated with

degenerating motor neurons, lose their neuronal connection and become denervated. Hence,

surviving motor neurons in the immediate vicinity of the orphaned/denervated muscle

fibers grow new axonal sprouts and re-innervate the denervated muscle fibers. Neuropathies

have different symptoms. Some patients may have temporary numbness, tingling, and

pricking sensations, sensitivity to touch, or muscle weakness. Others may experience more

severe symptoms, such as burning pain (especially at night), muscle wasting, paralysis, or

organ or gland dysfunction [13].

2.1.2 MUPT Extraction Using EMG Decomposition

EMG signals are defined as the linear summation of the MUPTs generated by the MUs

active in an examined muscle. Individual MUPTs can be extracted and analyzed from

EMG signals to assist in the diagnosis of neuromuscular disorders. The main purpose of
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EMG signal decomposition is to extract significant, constituent MUPTs from the composite

EMG signal. To this end, the decomposition algorithm should have the ability to identify

MUPs of the MUs significantly contributing to the composite EMG signal and to correctly

associate each detected MUP with the MU that generated it. Fig. 2.2 shows EMG signal

decomposition process conceptually and represents the relationship between a decomposed

EMG signal and the activity of individual MUs. EMG signal decomposition involves two

or three main steps which are explained as follows [14], [15]:

1. EMG Signal Segmentation: The first step of EMG signal decomposition is

signal segmentation. The main purpose of this step is to segment the EMG signal into

sections which contain significant MUPs. To this end, some detection thresholds are defined

according to some statistic calculated using the composite EMG signal. When the signal

characteristics generate a statistic value above the threshold value, a fixed or variable

length section(s) are selected which are assumed to contain significant MUP contributions.

Detection thresholds are usually based on signal amplitude, slope, or both [16].

 

Figure 2.2: MUPT can be extracted using EMG decomposition technique. Here, five motor units were detected and their
MUPTs were extracted using an EMG decomposition program [3].
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2. MUPs Clustering: After the MUPs are extracted from the composite EMG

signal, the correct number of significant MUPTs should be estimated. In addition, the

MUPT template shape of each contributing MU should be determined. These two tasks

can be performed by clustering the MUPs contributed to the whole EMG signal. MUPs

clustering partitions MUPs into a number of clusters. MUPs in the same cluster should be

more similar to the other members of its cluster than it is to the MUPs of any other clus-

ter. Euclidean distance, a dissimilarity measure, along with different clustering techniques

such as hierarchical, partitioning and density-based clustering are often employed for this

purpose.

Each of the obtained clusters represents a MUPT and a MUPT template is defined

as the mean of the characteristics of all the MUPs belonging to the same cluster. Some

of the existing decomposition algorithms are designed only based on clustering. In some

others, clustering is performed only on the MUPs contributed to the initial t second of the

signal and then a classifier is trained by the information obtained in the clustering phase.

In these cases, the objective of clustering is to provide the necessary initial information

required for classification such as the number of classes or MUPTs, a prototype for each

MUPT, and the motor unit firing pattern statistics for each MUPT [17], [18].

3. MUP Classification: Some decomposition algorithms are designed only based on

clustering [19], [20], [21]; however, in most algorithms, the clustering algorithm is followed

by MUP classification [22], [23], [24], [25] and the classification procedure is repeated across

several number of iterations. These iterations are terminated when the extracted MUPTs

are stable or some termination criteria are satisfied. As such, first, the MUP template

and MU firing pattern statistics of each MUPT are estimated based on the results of the

clustering stage. Next, MUP shape similarity assignment thresholds for each MUPT are

calculated. Finally, MUPs are classified to the extracted MUPTs with regards to their

shape and MU firing pattern statistics.

In some algorithms, MUP template and MU firing pattern statistics of each MUPT

are updated after classification. In addition, similar MUPTs are merged if they represent
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Figure 2.3: Morphological parameters of a motor unit potential [4].

the activity of the same MU, and then a new iteration for MUP classification is repeated

based on the updated MUP template and MU firing pattern statistics. Once MUPTs

are extracted from EMG signals using a decomposition algorithm, various features (see

Fig. 2.3) can also be obtained by applying quantitative techniques. These features can

help to determine whether the muscle is affected by a disease process and, if so, whether

it is mild or sever.
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2.2 Related Work

2.2.1 Critical Review of the Existing Electrophysiological Muscle

Classification Techniques

Electrodiagnosis of most neuromuscular disorders is based on the classification of involved

muscles. Table 2.1 presents details of some representative quantitative EMC systems.

Quantitative EMC techniques can be categorized as either muscle or MU level methods

based on the space or level in which the discriminative information used lies. Muscle-level

methods treat each muscle as a whole entity and train a classifier directly on discriminative

muscle level information extracted from acquired composite EMG signals [26] whereas,

MU-level methods classify muscles based on the aggregation of MU-level characterization

scores of a set of sampled MUs [2].

Muscle-level methods, sometimes called ”interference pattern analysis”, may not pro-

vide sufficient sensitivity for clinical application. This limitation is based on superpositions

of MUPTs which makes detection of marginal levels of disease involvement difficult. Hence,

small numbers of abnormal MUPTs may be obscured in composite EMG signals generated

by a majority of normal MUPTs. As a result, for clinical application, MU-level methods

are usually preferred.

MU-level muscle classifications are usually performed as a two-step procedure starting

with the characterization of a set of extracted MUPs followed by the aggregation of the

MUP characterizations. MUP characterization, in turn, is performed based on two different

approaches. In the first approach, a MUP is classified by determining if it was produced by

a normal or diseased MU. For this approach, an expert physician labels individual MUPs

in the training data and such labeling may be prone to errors and may not be feasible for

datasets comprised of a large number of extracted MUPs [19].

There are several reported supervised learning methods for determining MUP charac-

terization labels. Artificial neural networks (ANNs) have been used extensively for MUP
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Table 2.1:
Summary of the Representative Electrophysiological Muscle Classification Systems.

ID Classifier Year Muscle
#of

Muscles
#of

MUPs
MUP

Labelling

Discriminative
Information

Level
Accuracy(%)

1 ANNs 1995 [2] Biceps Brachii 44 880 Physician MU-Level 80-90

2 ANNs 1996 [27] Right Biceps 50 - - Muscle-Level 60-80

3 ANNs 1998 [28] Biceps Brachii 40 800 Physician MU-Level 79.6

4 ANNs 2007 [29] Biceps Brachii 62 365 Physician MU-Level 89

5 SVMs 2005 [30]
Biceps-Hypothenar

Group
59 - - Muscle-Level 92.3

6 SVMs 2010 [31] Biceps Brachii 27 - - Muscle-Level 70.4

7 SVMs 2012 [32] Biceps Brachii 27 - - Muscle-Level 97.67

8 SVMs 2013 [33] Biceps Brachii 27 - - Muscle-level 96.75

9 Fuzzy 2012 [26] Biceps Brachii 27 - - Muscle-Level 93.3

10 DTs 2012 [34] Biceps Brachii 27 - - Muscle-Level 96.05

11 RFs 2015 [35]
Biceps

Brachii-Medial
Vastus

25 - - Muscle-Level 96.67

12 KNN 2014 [36]
Biceps

Brachii-Medial
Vastus

25 - Muscle-Label MU-Level 98.8

13 GMMs 2014 [37]

Tibialis Anterior-
Fiurst Dorsal
Interosseous-

Deltoid- Vastus
Medialis

342 5764
Probabilistic

Labels
MU-Level 88.17
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classification due to their simplicity and ability to model complex non-linear systems.

These studies have found that ANNs have a high tendency towards overfitting and do not

generalize well. In addition, ANNs can be categorized as black box classifiers and do not

provide neccessary transparency due to the large number of transformations applied to the

input feature vectors [2], [20], [27], [28].

Linear discriminant analysis (LDA) has been used by several researches for MUP clas-

sification. LDA works best in cases having features with continuous quantities, and has

been found to be useful for MUP characterization. However, there are serious limitations

with LDA. LDA does not work well if the dataset is not balanced such that the number

of objects in various classes is highly different. In addition, LDA is not applicable for

separation of non-linear problems [32], [38].

Fuzzy logic techniques have been used for MUP classification with the purpose of im-

proving the transparency of MUP labelling results [26], [39]; however accuracy may de-

crease. In addition, constructing rules from domain knowledge is a tough task for human

experts especially in cases having feature spaces of more than three dimensions. Deci-

sion trees (DTs) have also been used with the purpose of increasing transparency while

maintaining high accuracy [20], [34] however the greedy nature of DTs can lead to a high

susceptibility to outliers and a tendency towards overfitting.

Support vector machines (SVMs) have been used in a variety of studies [30], [40], [41],

[42], [43] for MUP classification due to their high generalization capability. In addition, an

SVM can discriminate classes that have nonlinear complex decision boundaries. In most of

these works, first, an SVM classifier was used to discriminate the healthy subjects from the

diseased ones and then another SVM classifier was used to classify the diseased subjects

into myopathic and neurogenic classes.

Ensemble methods have been used for MUP classification [44], [45]. Ensemble models

build a strong learner from a group of weak learners with the purpose of increasing accuracy

while preventing overfitting. To this end, opinions of multiple learners are combined by

following several aggregation schemes such as majority voting and weighted voting.
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In the second approach to MUP characterization, MUPs in the training data are ini-

tially labeled based on the clinical classification of their corresponding muscle (i.e., MUPs

belonging to a myopathic muscle are all labeled as myopathic). A learning algorithm is

then applied to estimate a set of likelihood scores, one each for the MUP being detected

in a normal, myopathic and neurogenic muscle, respectively [29]. For this approach, the

MUP characterization scores are not based on the likelihood of the MU that generated

the MUP being normal, myopathic or neurogenic, but rather the likelihood of it being

detected in a muscle of a specific class. In addition, normal and diseased muscles have

normal MUs which in turn cause MUP characterization score distributions to be highly

overlapped. Therefore, because this method of MUP characterization does not directly re-

flect the presence of disease, the accuracy with which the obtained MUP characterization

scores can be used to classify muscles suffers.

There are several reported supervised learning methods for determining MUP charac-

terization scores. Pattern discovery (PD) which is based on quantization of all continuous

feature values into discrete events was used for MUP characterization. The main limita-

tion with PD, compared to other characterization methods, is a possible lack of robustness

due to the need to discretize continuous feature values [46]. Gaussian mixture models

(GMMs) have also been used [37], but are susceptible to outliers because of their reliance

on maximization of likelihood functions assumed to have Gaussian distributions.

For muscle classification, obtained MUP characterization labels or scores need to be

aggregated. In previous works, the aggregation of MUP characterization scores was ac-

complished using fixed combination rules (ex. weighted sum and maximum) or a Bayesian

aggregation rule [46], [37]. Fixed combination rules are sensitive to extreme values and

cannot provide accurate measures in cases with extreme values or dispersed MUP charac-

terization scores. In addition, muscle classification scores generated using Bayes rule tend

to saturate to 0 or 1 as more evidence (higher number of diseased MUPs) is presented,

which is not desirable when the classifier is uncertain of the outcome. In this case, the

classification score provided should reflect the level of uncertainty, rather than saturate to

a value supporting an incorrect category [46].
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2.2.2 Existing Multiple Instance Learning Techniques

A classifier in the standard supervised learning paradigm is designed according to a train-

ing set consisting of instances with associated class labels. In contrast, a classifier in the

multiple instance learning (MIL) paradigm is designed according to a training set con-

sisting of bags of instances, where each bag has an associated label, but the individual

instances usually do not have any label. In addition, all the instances in the bag are not

necessarily relevant and there might be some instances inside one bag that do not convey

any information about the bag class label, or that are more relevant to other classes of

bags, providing confusing information [9].

A bag is a set, and the elements of the set are instance feature vectors, and the number

of instances inside bags may be different across the training set. All the instances are

represented in a d -dimensional feature space, called the instance space. The main goal of

the MIL classification problem is to learn a model which can be used to predict the class

label of unseen bags. The usual framework in the MIL literature is binary classification

(positive vs. negative instances), hence for multi-class problems, a one-versus-all strategy

is usually employed [47]. The MIL classification methods are broadly categorized into two

groups based on how the multiple instance information is exploited. These categories are

usually called instance-level and bag-level MIL paradigms [48], [49].

In the instance-level paradigm, the discriminative information is exploited at the in-

stance level. Hence, an instance-level classifier is trained to classify the instances. The bag

level classifier is obtained by aggregating instance level scores generated by the instance-

level classifier. The key challenge in instance-level methods is how to infer an instance

level classifier without having a training set of labelled instances [50], [51]. To this end,

some assumptions must be made about the relationship between the labels of the bags in

the training set and the labels of the instances contained in these bags [9]. In this sense,

two sub-categories of instance-level methods emerge in the literature: the ones following

the classical multiple instance assumption and the ones following the collective assumption.

The classical multiple instance assumption states that only a small fraction of the instances
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inside the bag provide information about the class label of the bag. A well-known exam-

ple of the classical multiple instance assumption is called the standard assumption which

assumes every positive bag contains at least one positive instance, while all the instances

in every negative bag are negative. In contrast, the collective assumption states that all

instances in a bag contribute equally to the bags label [50], [52].

In the bag-level paradigm, the discriminative information is exploited at the bag-level.

Hence, each bag is treated as a whole entity and a bag-level classifier is trained to classify

the whole bag. Some bag-level methods assume that bags from the same class are similar.

In most implementations, all the instances of the bags are involved in calculating bag

similarity. Based on the obtained similarities, a bag-level classifier is trained to predict the

label of unseen bags. These methods usually do not assign labels to the instances and the

classifiers are trained to classify the whole bags [53], [54].
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Chapter 3

Problem Formulation

In this chapter, the problem of electrophysiological muscle classification is mathematically

formulated and an overview of the proposed EMC system is presented.

3.1 Overview of the Electrophysiological Muscle Clas-

sification Problem

Physicians diagnose neuromuscular disorders by considering characteristics of a set of ex-

amined muscles. An individual muscle is electrophysiologically characterized as normal,

myopathic or neurogenic, by first qualitatively analyzing sets of MUPs representing MUs

sampled in the examined muscle and then aggregating their MUP characterizations. Quan-

titative EMC systems, like physicians, consider sets of MUPs representing sampled MUs,

and quantitatively characterize individual MUPs and then aggregate these characteriza-

tions to obtain a muscle classification. Fig. 3.1 shows a schematic representation of a

quantitative EMC system.

In electrophysiological muscle data, training examples are not singletons. Instead, they

are presented in the form of bags of instances where each bag represents a muscle and
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The Examined Muscle is Classified. 

Figure 3.1: A simple schematic representation of a typical quantitative EMC system

has an associated label, and the instances inside a bag are MUPs extracted from needle-

detected EMG signals acquired from that muscle. The individual instances do not have

any label. All the instances inside the bag are not relevant to the class label of their muscle

and they may provide confusing information. Furthermore, the instances inside one bag

may even be more related to a class other than the class of their muscle. The number of

instances inside each bag is not the same, however they all lie in a common d -dimensional

feature space.

Considering the above muscle data characteristics, it is difficult to formulate the muscle

classification problem in a standard supervised learning setting in which both training and

test data are represented as individual feature vectors. Instead, the training and test data

can be represented by sets or bags of feature vectors or instances. In other words, the

electrophysiological muscle data consists of muscles (bags) with associated labels and each

electrophysiological muscle data set consists of several MUPs (instances) that do not have

any labels. Furthermore, the muscle-level classifier should by design be induced by a MUP-

level classifier. Consequently, the problem of electrophysiological muscle classification can
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be naturally cast in an MIL setting, which unlike supervised learning, does not require

label information for each training instance, but rather for collections of instances or bags.

Mathematically, the MIL-based electrophysiological muscle classification (MIL-based

EMC) problem can be presented in the following form. The i th muscle has a label Yi ∈ Υ ,

where Υ denotes the set of possible class labels for muscles. A muscle (bag) is represented

by the set of MUPs (instances) extracted from the clinically-detected EMG signals acquired

from the muscle. Let Xi = {−→xi1, . . . ,−→xini
} denote the set of ni MUPs detected in the i th

muscle. Each MUP is represented by an M dimensional feature vector −→xij ∈ RM . The

muscle classification training set is then represented as D = {(X1, Y1) , . . . , (XN , YN)}
where N is the number of muscles used to create the dataset. Given this, the final objective

is to learn an MIL-based electrophysiological muscle classifier, which classifies a muscle as

being healthy or affected by a disease process. If the muscle is diseased, the MIL-based

electrophysiological muscle classifier should also determine the type of disease.

3.2 Overview of the Proposed Method

For the purpose of diagnosing a neuromuscular disease process and determining its level of

involvement, MUPs extracted from the EMG signals detected from the examined muscle

should be characterized. In other words, several classes of MUPs presented in the muscle

data need to be identified. These classes are discovered in an unsupervised way and can

be obtained by running a clustering algorithm on the MUP feature space. Based on the

obtained classes, the MUPs of the examined muscle are characterized. The examined

muscle, then, can be classified with regards to the aggregation of its MUP characterization

classes.

Current quantitative EMC systems are not sufficiently accurate and robust to be re-

liably used for clinical needle electrodiagnostic examination. They consider only three

possible classes for both MUP characterization and electrophysiological muscle classifica-

tion. Because disease causes continuous, rather than discrete, modifications to both MU
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Figure 3.2: Steps of the proposed MIL-based electrophysiological muscle classification system

fiber spatial and diameter distributions, disease induced changes in MUP characteristics

will also be continuous in nature. This means that, except for extreme cases, it is not

possible to find distinct boundaries between MUPs generated by normal, myopathic or

neurogenic MUs. As such, a MUP characterized based on the type and severity of the

effects of a disease process on its generating MU and not just three conventional groups,

is preferred.

Discovering a dynamic number of distinct groups in a set of MUPs represented in a MUP

feature space requires a clustering algorithm capable of finding natural clusters. A natural

cluster has arbitrary shape and density, a fact not considered in several groups of clustering

algorithms as they assume clusters to have globular shape or a specific user defined density.

However, disease-induced MUP changes are continuous and possibly nonspecific in nature,

which makes it difficult to find distinct normal versus myopathic versus neurogenic class

boundaries. Hence, MUP characterization based on more than three classes may better

represent the various effects of disease.

There are three main groups of clustering algorithms which can be categorized based

on their ability for finding natural clusters. The first group includes those algorithms that

can find clusters with specific shape and specific density (SSSD). For instance, center-based

clustering algorithms like k -means [55] assume clusters to have known geometrical shapes

like a sphere or an ellipse. A second group of clustering algorithms includes those that

can find clusters with arbitrary shape and specific density (ASAD). As an example, some

density-based clustering algorithms, including DBSCAN [56], use a static model to char-

acterize the density of the data. A third group of clustering algorithms includes those that
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are able to find clusters with arbitrary shape and density(ASAD). These algorithms usu-

ally employ local and global similarity information to organize data into sensible groupings

with dynamic properties such as density and shape. As an example, Chameleon [57], a

hierarchical clustering algorithm, uses a dynamic global model to find clusters with arbi-

trary shape and density. With Chameleon, the creation of several initial clusters and the

overhead of using graph partitioning leads to increased time complexity.

In this thesis, a novel EMC system is proposed that focuses on using a dynamic number

of classes for characterizing MUPs. To this end, a novel density-based clustering algorithm

called Neighborhood Distance Entropy Consistency (NDEC) is proposed to find represen-

tations of several concepts of normality and abnormality in the MUP feature space to be

used for MUP characterization. The MUPs sampled from an examined muscle are then

characterized, using the increased number of MUP classes, and the MUP characterizations

are embedded into a feature vector to represent the examined muscle. The embedded

feature vector is then fed to an appropriate supervised classifier to obtain the electrophys-

iological muscle classification. Fig. 3.2 shows the main steps of the proposed MIL-based

EMC system.
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Chapter 4

NDEC:

A Density-Based Clustering

Algorithm using Neighbourhood

Distance Entropy Consistency

The work described in this chapter previously appeared in:

T. Kamali and D. W. Stashuk, NDEC: A Density-Based Clustering Algorithm using Neighbourhood Dis-
tance Entropy Consistency, IEEE Transactions on Knowledge and Data Engineering, 2018 (Under Review).

T. Kamali and D. W. Stashuk, Automated Segmentation of White Matter Fiber Bundles using Diffusion
Tensor Imaging Data and a New Density Based Clustering Algorithm, Artificial Intelligence in Medicine
73 (2016): 14-22 [58].
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4.1 Introduction

Electrophysiological muscle classification training data is an example of a multiple in-

stance learning paradigm and consists of data arranged in collections called bags. In this

paradigm, a label is associated with each bag, however the individual instances inside the

bag do not have any label. Furthermore, all the instances in the bag are not necessarily

relevant and there might be some instances inside one bag that do not convey any informa-

tion about the bag class label, or that are more relevant to other classes of bags, providing

confusing information. In the framework proposed in Chapter 3 for electrophysiological

muscle classification, we are interested in clustering the instances of all bags (muscles).

This task is totally unsupervised and aims to identify classes of instances that are present

in muscle training datasets. The obtained clusters will next be used as instance (MUP)

characterization classes and will be utilized to construct a more discriminative feature set

for a subsequent muscle classification procedure. These clusters will have an associated

semantic label based on expert domain knowledge. In this chapter, a new density-based

clustering algorithm is proposed which is used to find a dynamic number of MUP charac-

terization classes.

One of the most fundamental tasks in data mining is clustering. Cluster analysis

refers to the unsupervised classification of patterns into groups or clusters based on their

similarity [59]. This has applications in a wide variety of fields ranging from geographic

information systems, to bioinformatics, image segmentation, and pattern recognition [60],

[61], [62], [63]. Clustering can be used as an efficient tool to observe hidden patterns

and meaningful concepts in an analyzed dataset [64]. A literature survey shows that no

established definition of a cluster exists and the definition of a cluster is usually dependent

on the nature of the dataset under study. Therefore, there exists a wide range of clustering

algorithms with diverse assumptions about the structure of a given data set. With respect

to generalization, a clustering algorithm which uses few assumptions about the density,

shape and structure of the obtained cluster is highly preferred.

Finding natural clusters with arbitrary shape, size, and density is challenging due to
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the complex nature of the problem. The main challenges of this task are briefly explained

below:

1. Little/No Prior Information: Most clustering algorithms find clusters based

on prior assumptions. For instance, some algorithms assume that the number of clusters

is known in advance and that the shape of all the clusters are convex (i.e. globular or

spherical). Other algorithms assume that the density of each cluster is similar. These

assumptions restrict the ability of the clustering algorithm to find natural clusters and

result in poor performance when the clustering assumptions are violated [65].

2. Expensive Similarity Measures: Most clustering algorithms are designed based

on capturing similarity between data points. Many similarity measures can be computed

between data points. Most of these measures have high computational complexity. Hence,

calculating all pair-wise similarity measures is not computationally efficient and/or feasible

in a variety of applications [66].

3. Clustering Result Validation: The process of estimating how well a partition

fits the structure underlying the data is known as cluster validation. Usually there is no

ground truth knowledge available about the data structure, hence, determining the utility

of clustering results is challenging [67].

4. Identify Noise: An important aspect of clustering is how to identify noise objects.

Noise is defined as those objects that do not belong to any cluster. Given this defini-

tion, an ideal clustering algorithm is the one which can correctly assign samples to their

corresponding clusters and delineate samples that do not belong to any clusters.

4.2 Related Work

A good cluster analysis should capture the intrinsic structure of the data and be able to

identify clusters that have arbitrary shape and density. This principle is not considered

by several groups of clustering algorithms as they assume clusters to have globular shape
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or a specific user defined density [68]. Clustering algorithms can be divided into three

main groups with respect to their abilities for finding natural clusters. These groups are

explained briefly below.

1. Specific Shape and Specific Density (SSSD): Clustering algorithms in this

group can find clusters with specific shape and specific density. As an example, center-

based clustering algorithms like k -means [55], PAM [69], CLARANS [70] and BIRCH [71]

assume clusters to have known geometrical shapes like a sphere or an ellipse. In addition,

some hierarchical clustering algorithms including Single, Average and Complete linkage

[72], and CURE [73] fail to find clusters with arbitrary shapes.

2. Arbitrary Shape and Specific Density (ASSD): Clustering algorithms in this

group can find clusters with arbitrary shape but specific density. For instance, grid-based

models like Wave Cluster [74] and some density-based clustering algorithms including DB-

SCAN [56], DENCLUE [75], SSN [76] and GDD [77] use a uniform model to characterize

the density of the data. Some hierarchical clustering algorithms, such as OPTICS [78],

propose methods to discover a flat partition by utilizing a global density threshold. OP-

TICS may not be able to find the most significant clusters if these clusters have different

density [79]. The clustering algorithms in the ASSD group rely on user defined parameters

to determine constant density thresholds and do not consider the actual density distribu-

tions of the underlying data. As a result, their abilities are limited to finding clusters with

arbitrary shapes but constant densities.

3. Arbitrary Shape and Arbitrary Density (ASAD): Clustering algorithms in

this group are able to find clusters with arbitrary shape and density. In ASAD group,

usually local and global similarity information are utilized to organize data into meaning-

ful/useful groupings with dynamic shape and density properties [80].

In early work, Zahn [81], represented each cluster using a minimum spanning tree

(MST) and removed inconsistent edges from the MST to obtain a clustering solution.

According to Zahn’s definition, an edge in a MST is inconsistent if its weight is larger

than its neighbouring edge weights mean and standard deviation considering a specified
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factor. This approach only works for simple data sets since it only measures local density

consistency.

In contrast, a hierarchical agglomerative clustering algorithm called Chameleon [57]

finds clusters with arbitrary densities and shapes based on a dynamic global model. This

model utilizes the k -nearest neighbours (kNN) graph, relative inter-connectivity and close-

ness indices weighted by user defined parameters to discover the clusters. Chameleon is

robust to noise and outliers, however, it has problems when the partitioning process does

not generate sub-clusters which happens often when clustering high-dimensional data. In

addition, for testing each individual parameter, a complete hierarchy needs to be created

which makes parameter selection difficult and time consuming. Furthermore, Chameleon

only considers the consistency of edges in a global sense [82].

Another example of a dynamic density based clustering algorithm is Mitosis [83], which

attempts to find clusters with arbitrary shape and density based on distance-relatedness

concepts. Initially, Mitosis creates associations for each individual pattern in the data

based on local distance similarity and then puts associated patterns into one cluster if

they satisfy distance consistency criterion. For singleton patterns in associations, local

distance relatedness information is considered, whereas for non-singletons global distance

relatedness information is evaluated. Mitosis tries to overcome some of the weaknesses of

Chameleon by employing either local or global distance information in each merge step.

However, as cluster sizes increase, given that some clusters have non-homogeneous density,

the algorithm fails to find appropriate clusters.

In density peaks clustering (DPC)[84], the center of a cluster is identified as the sample

which has the highest local density among its neighbor points. In addition, the center of a

cluster has a relatively large distance from other points with higher densities. These two

criteria are utilized to determine the cluster centres. The clusters are then constructed by

assigning points to the same cluster to which its nearest neighbor of higher density belongs.

DPC provides an effective and simple way to discover clusters with arbitrary shape and

density in most cases. However, when a cluster has more than one center, DPC may fail
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to find the most significant clusters.

4.3 The NDEC Clustering Algorithm

Algorithm 1 shows the pseudocode of the NDEC clustering algorithm. NDEC attempts to

find natural clusters with arbitrary shape and density without utilizing any prior knowledge

or assumptions about the number, shape and density of the clusters. To this end, the

following steps are performed. 1) Local density estimation using the k -nearest neighbours;

2) Generation of sub-clusters based on local and global density consistency; 3) Generation of

final clusters based on neighbourhood distance entropy consistency; 4) Outlier identification

and handling. Details of each step are explained below.

4.3.1 Preprocessing

In this step, local density is estimated using the k -nearest neighbors and an abstraction

for the dataset under study is created. According to Hartigan [55], clusters are identified

as regions with high density isolated from other such regions by regions of low density.

Density can be estimated using parametric or non-parametric methods. Parametric meth-

ods simply estimate parameter values of an assumed distribution shape which can restrict

the adaptivity of the density estimates to intrinsic data characteristic [85], which in turn

restricts the discovery of clusters with arbitrary properties. Non-parametric methods do

not suffer from these restrictions.

Clusters with arbitrary shape and density have varying local densities. This issue can

be resolved by determining the density of a region based on the behaviour of the neigh-

bourhood distances. In this scenario, smaller distances relate to higher densities and larger

distances relate to lower densities. Consequently, in NDEC local density is estimated based

on local averaging of nearest neighbour distances which are determined using a binary met-

ric tree similar to the one proposed in [86] to improve the efficiency of searching through
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high dimensional data.

Local Density Information (LDI): Let p be an arbitrary sample in the dataset D,

and NNk(p) be a set that consists of the k -nearest neighbour distances of p where k is a

user defined parameter. The LDI for p is then defined as the average of the distances (di)

in NNk(p).

LDI(p) =
1

k

k∑
i=1

{di ∈ NNk(p)} (4.1)

The information about the nearest neighbours of individual samples is saved in the

listNN (see Eq. 4.2), where p and q are two arbitrary samples in D, and d (p, q) is the

symmetric Euclidean distance between them. After listNN is created, it is sorted ascendingly

based on d (p, q) and duplicate associations are removed from it. From this point forward,

listNN is used as an abstraction for dataset D.

listNN = {(p, q, d (p, q) )| p, q ∈ D ∧ q ∈ NNk (p)} ∀p∈D (4.2)

4.3.2 Generation of Sub-Clusters based on Local and Global

Density Consistency

NDEC creates clusters following an agglomerative hierarchical approach. In this way, listNN

is traversed and eligible members of this list are put into clusters. This eligibility is initially

specified by considering the consistency of local density information and then after creat-

ing sub-clusters, the consistency of global density information is considered. The NDEC

clustering algorithm starts merging singletons and creating clusters by traversing through

listNN. Each time a tuple (p,q,d(p,q)) is analyzed, if d(p,q) is consistent with both LDI(p)

and LDI(q) and simultaneously LDI(p) and LDI(q) are consistent (see Algorithm 1), then

p and q are put into one cluster and their associated tuple is removed from listNN.
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While traversing through listNN and analyzing an association (p,q,d(p,q)), if either of p

or q belongs to a cluster, global density information (GDI) is calculated and used to define

the distance consistency criteria (see Algorithm 1 ) and if the distance consistency criteria

are met for a singleton sample, it is assigned to the cluster. The GDI of the cluster Cp is

defined based on the following definition.

Global Density Information (GDI): Assume Cp represents the cluster to which

sample p belongs, listNN(Cp) is a list of all associations that belong to Cp, and Np is the

length of listNN(Cp), the GDI(Cp) is calculated as the average of the distances (dj) in

listNN(Cp):

GDI (Cp) =

∑
∀dj∈listNN (Cp)

dj

Np

(4.3)

4.3.3 Generation of Final Clusters based on Entropy Consistency

Entropy is an index that measures the amount of irregularity within a set of data. The

consistency of the neighbourhood distance entropy of two sub-clusters implies density ho-

mogeneity within the potentially merged cluster. Consequently, while traversing through

listNN and analyzing an association (p,q,d(p,q)), if both p and q belong to cluster(s), a

new measure, called ”Global Entropy Information (GEI)” is calculated and if the GEIs are

consistent the candidate sub-clusters are merged.

The entropy H(f) of a continuous probability density f(x) is calculated by the following

equation.

H (f) = −
∞
∫
−∞

f (x) logf (x) dx (4.4)

This method of calculating entropy can be used when f(x) is known. However, in some

cases the density f(x) is unknown, but a sample of size N from this density is available.
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In this case, two approaches can be followed to calculate entropy. The first approach is

called a plug-in estimate in which any standard density estimation technique is first used

to estimate the unknown density f(x) from a sample and then, the entropy of the density

estimate f̂ (x) is calculated as an estimate of the true entropy of f [87]. Plug-in estimates

is well suited for densities with known parametric form.

There is another method which is used for estimating one-dimensional entropies. This

method is based on the order statistics of a sample and provides a consistent and rapidly

converging entropy estimator which can be used when the density f(x) in unknown. As a

result, in this work, entropy estimation based on order statistics is used [88].

Global Entropy Information (GEI): Assume Cp represents the cluster to which

sample p belongs, listNN(Cp) is the list of all associations that belong to Cp and Np is the

length of listNN(Cp), then the GEI (Cp) is computed using the following steps:

1. Calculate the order statistics of the distances in listNN(Cp), which is simply the

distances of listNN(Cp) rearranged in an increasing order
({
d(1), d(2), . . . , d(Np)

})
.

2. Estimate the entropy of the distances in listNN(Cp) using Eq. 4.5 based on calculating

the m-spacings of the order statistics of the distances in listNN(Cp), where m =
√
Np .

This entropy estimator is asymptotically efficient and was proposed by Miller [89].

GEI (Cp) =
1

Np −m

Np−m∑
n=1

Log(
Np + 1

m
(d(n+m) − d(n))) (4.5)

4.3.4 Outlier Identification and Handling

There is no standard procedure in the literature explaining how to handle noise objects.

Usually based on the problem domain, one of the following alternatives is employed: 1)

assign each noise sample to a singleton cluster, 2) assign all noise samples to a single

cluster, 3) discard all noise samples, and 4) assign each noise sample to its closest cluster
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Algorithm 1: NDEC
Input : Dataset D with n samples, k (number of nearest neighbors), l (distance consistency) and

h (entropy consistency) user-defined parameters
Output: A set of discovered clusters and outliers.

NN(i): A list of k nearest neighbors of sample i
ListNN ← ∅
for i=1:n do

ListNN.append(i, NN(i), dist(i, NN(i));
ListNN.RemoveDuplicates;
ListNN.Sort(’ascend’);

end

while Change (ListNN.Length) do
for i=1:ListNN.Length do

(p,q,d(p,q))=ListNN(i);

if Singleton(p) == True ∧ Singleton(q) == True then

if d(p,q) < l ×Min(LDI(p), LDI(q)) ∧
Max(LDI(p),LDI(q)) < l ×Min(LDI(p), LDI(q)) then

Put p and q into one cluster
ListNN(i).Delete;

end

else if Singleton(p) == True ∧ Singleton(q) == False then

if d(p,q) < l ×Min(LDI(p), LDI(q)) ∧
Max(LDI(p),GDI(q)) < l ×Min(LDI(p), GDI(q)) then

Put pattern p into cluster associated with q
ListNN(i).Delete;

end

else if Singleton(p)==False ∧ Singleton(q)==True then

if d(p,q) < l ×Min(LDI(p), LDI(q)) ∧
Max(GDI(p),LDI(q)) < l ×Min(GDI(p), LDI(q)) then

Put pattern q into cluster associated with p
ListNN(i).Delete;

end

else if Singleton(p)==False ∧ Singleton(q)==False then

if d(p,q) < l ×Min(LDI(p), LDI(q)) ∧ GEI(Cpq)-GEI(C p) < h then

Merge clusters associated with p and q
ListNN(i).Delete;

end

end

end
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[67]. In NDEC, each remaining singleton in listNN is considered an outlier and based on the

problem requirements, any of the above alternatives can be followed to handle the outliers.

4.3.5 NDEC Complexity

Given that n is the size of the dataset and d represents the dimension of the data items,

the average time complexity of NDEC is O(dn logn2 ). The time complexity is calculated as

follows: 1) A binary metric tree is constructed for the dataset and is used to identify the

nearest neighbours (O(dn logn2 )), 2) The associations are sorted (O(n logn2 )), and 3) The

list of associations is traversed and clusters are created (O(n)).

A strong point of the NDEC clustering algorithm is that it only utilizes neighbourhood

distance information. As a result, all pair-wise distances in the given dataset are not

required to be calculated. Hence NDEC time complexity is bounded by searching through

a metric tree. Since in most cases Euclidean distance is used as the dissimilarity metric,

the dimension d is an important factor to be considered when estimating average time

complexities. This value can be neglected when we have low-dimensional data.

4.4 Evaluation

The performance of NDEC was assessed using a variety of synthetic and real data sets with

a range of data charcateristics and application domains. Table 4.1 shows a description of the

artificial and real-world datasets used in this work. Most artificial datasets were obtained

from the University of Eastern Finland (UEF) website [90]. In addition to UEF data,

three artificial datasets of varying sizes were produced using the scikit learn toolkit [91]

as suggested in [92] to analyse the effect of dataset size on NDEC parameters. The real-

world datasets include data from the UCI Machine Learning Repository [93], the Olivetti

Face dataset (ORL), and diffusion tensor imaging (DTI) data from the Johns Hopkins

University brain MRI laboratory.
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Table 4.1:
Artificial benchmark datasets description.

Artificial

Name Source n d c Description

Aggregation UEF 788 2 7 Narrow bridges between clusters, uneven-sized clusters [94]

Flame UEF 240 2 2 Arbitrary shaped clusters with constant density [95].

Compound UEF 399 2 6
No clear center in a cluster, densities in the same cluster are various,

densities in different clusters are also various [81].

Spiral UEF 312 2 3 Spiral shaped clusters [96]

D31 UEF 3100 2 31 Concave shaped clusters [97].

Jain UEF 373 2 2 Arbitrary shaped clusters with non-uniform density [98].

R15 UEF 600 2 15 All of the clusters have similar Gaussian distribution [97].

Path Based UEF 300 2 3 Gaussian distributed clusters surrounded by a circular cluster [96].

Blobs
scikit-
learn

1K
10K
100K

3 5 Isotropic Gaussian blobs

Moons
scikit-
learn

1K
10K
100K

2 2 Interleaving half circles

Circle
scikit-
learn

1K
10K
100K

2 2 A large circle containing a smaller circle

Real

Name Source n d c Description

Iris UCI 150 4 3 Combination of linearly and non-linearly separable classes/clusters

Glass UCI 214 9 6

Leaf UCI 340 15 30 [99]

Sonar UCI 208 60 2

ORL AT&T 400 10304 40
Ten different images of each of the 40 subjects taken at different times, with

variable lighting, facial details and expressions [100].

DTI JHU 15 60 3
Diffusion tensor imaging data from pediatric subjects aged between 7 and

18 [101]

39



The Adjusted Rand Index (ARI)[102] and Normalized Mutual Information (NMI)[103]

were used as the external evaluation criteria to assess the quality of a clustering solution

based on a provided ground truth. ARI indicates the similarity between an obtained

clustering and a pre-existing clustering (i.e., a ground truth) and is related to accuracy.

ARI also accounts for chance agreements. NMI quantifies the amount of mutual dependence

between the two clustering solutions.

To examine the relative efficiency of NDEC compared to other clustering algorithms,

four state-of-the-art clustering algorithms were used. As discussed in Section 4.2, clustering

algorithms can be categorized into three groups based on their abilities for finding natural

clusters within a given data set. The NDEC algorithm is from the ASAD group. For

comparison purposes, density peaks clustering (DPC) [84], a well-known non-parametric

clustering algorithm in the ASAD group was used. From the ASSD group, DBSCAN [56]

and OPTICS, two widespread density-based clustering algorithms were used. From the

SSSD group, k -means [55], the most popular partitional clustering algorithm was used.

With respect to the k -means input parameter k, the right number of clusters based on

the ground-truth was used. DBSCAN has two parameters, Eps, and Minpts, where Eps

determines a threshold on distance range, and Minpts determines the minimum number of

neighbours required to form a dense region. For DBSCAN, Eps was selected from the set

of Eps values equal to the Minpts nearest neighbour distance of each sample, and Minpts

was selected from the set {1, 5, 10, 20}.

For OPTICS, Minpts was selected from the same set of values used for DBSCAN with

the maximum Eps value set to the maximum Minpts nearest neighbour distance, and

steepness parameter ε chosen from the range 0 ≤ ε ≤ 1 [92]. For DPC, as the authors

suggested [84], the density was determined by the average distance of 2 percent of the

neighbours, and cluster centres were selected manually using the DPC decision graph. In

this work, Euclidean distance was used in all cases and clustering parameters were selected

based on maximizing both ARI and NMI.
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4.4.1 NDEC Parameters Estimation

NDEC has three parameters including number of nearest neighbours (k), distance consis-

tency (l), and entropy consistency (h). Parameter k controls the neighbourhood size. The

value of k should be changed incrementally by small steps to prevent unnecessarily big

neighbourhood sizes that can decrease the clustering algorithm speed.

Parameter l controls the degree to which samples\sub-clusters will be merged together.

Increasing values of l, for the the same k value, means decreasing the number of obtained

clusters, and vice versa. Note that, in case of decreasing\increasing k, a corresponding

increase\decrease in l is required to have analogous clustering results. Parameter h con-

trols the degree of neighbourhood distance homogeneity within a cluster. The values of

parameters k and l are always positive and can be selected just above the value of 1. The

estimate of entropy based on sample-spacings can be negative and as a result, the value of

h can also be negative.

In the case of k and l we choose k ∈ {3, 4, ..., 11, 12} and l ∈ {1.1, 1.2, 1.3, . . . , 2}
respectively. The value of h was selected as h ∈ {−1, −0.9, . . . , 0.9, 1} . Based on empir-

ical evaluations, the value of h can be fixed at 0.1 for most datasets and the value of k can

also be fixed at 4/5 for small datasets. Only the value of l has significant practical effect on

clustering. In this section, one potential unsupervised heuristic for selecting appropriate

values for these parameters is presented. This heuristic is based on an existing internal

clustering validation metric called Density Based Clustering Validation (DBCV)[104]. This

index is designed to measure within and between cluster density connectedness and gen-

erates values in the range of [-1, 1], with greater values indicating better clustering results

[104]. The DBCV index can be used to assess the quality of a clustering solution and is

calculated as follows:

Let O = {o1, . . . , oN} be a set of data including N samples with d dimension, Dist

be an N × N matrix including pairwise distances d (op, oq) where op, oq ∈ O, KNN(o,i)

be the distance between sample o and its ith nearest neighbor and C = {Cj} , 1 ≤ j ≤ k

represent a clustering solution consisting of k clusters for which Nj is the size of the jth
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cluster. Then the following terminologies are used to formulate the DBCV index [104].

1. Core distance of a sample O which belongs to cluster Cj is defined as:

c dist (o) =


∑Nj

j=2

(
1

KNN(o,j)

)d
Nj − 1


− 1

d

(4.6)

2. Mutual reachability distance between two samples oi, oj is defined as:

dmreach (oi, oj) = max {c dist (oi) , c dist (oj) , d (oi, oj) } (4.7)

3. Mutual reachability distance graph is a complete graph with all of the samples in O as

vertices and edges weighted using the mutual reachability distance between the respective

pair of samples.

4. Mutual reachability distance minimum spanning tree (MSTMRD) is a minimum spanning

tree (MST) of the mutual reachability distance graph created with all samples in O.

5. Density sparseness of a cluster (DSC(Cj)) is the maximum edge weight of the internal

edges of MSTMRD.

6. Density separation between cluster Ci and Cj (DSPC(Ci,Cj) is the minimum reachability

distance between internal nodes of their MSTMRDs.

7. Validity index of a cluster VC(Cj) is defined as:

VC (Cj) =
min (DSPC (Ci, Cj)−DSC (Cj))

max (min (DSPC (Ci, Cj)) , DSC (Cj))

1 ≤ i ≤ k , i 6= j

(4.8)
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Table 4.2:
NDEC parameters selected based on maximizing ARI/DBCV

Dataset Selection Method k l h ARI DBCV

Aggregation
ARI 4 1.7 0.1 1 0.3

DBCV 4 1.7 0.1 1 0.3

Spiral
ARI 4 1.6 0.1 1 0.5

DBCV 5 1.4 0.1 0.5 0.6

Jain
ARI 5 1.9 0.1 1 0.15

DBCV 5 1.1 0.1 0.94 0.41

R15
ARI 5 2 0.1 0.99 0.87

DBCV 5 2 0.1 0.99 0.87

Compound
ARI 4 1.2 0.1 0.99 0.41

DBCV 4 1.5 0.1 0.94 0.50

Flame
ARI 4 1.5 0.1 0.97 0.64

DBCV 4 1.5 0.1 0.97 0.64

8. Finally, the validity index of a clustering solution is the weighted average of the validity

indexes of all clusters in C and is defined as:

DBCV (C) =

j=k∑
j=1

Nj

N
VC (Cj) (4.9)

Table 4.2 shows NDEC parameters selected based on two different methods for six of

the artificial datasets. The first row for each dataset shows parameters selected based

on maximizing ARI and its resulting DBCV, whereas in the second row parameters were

selected based on maximizing DBCV and its resulting ARI are presented. As the table

shows, in most cases, parameters selected using both methods are identical. The correlation

between DBCV and ARI has been shown in [67]. It is worth noting that the correlation is

positive and consequently an appropriate value for k, l, and h might be selected based on

the DBCV measure. However, this correlation is not +1, hence selecting parameters based

on DBCV might not result in optimal outcomes with respect to ARI.
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One helpful feature to investigate regarding NDEC is the effect dataset size n has on the

choice of the number of nearest neighbours k, the distance consistency parameter l, and the

entropy consistency parameter h. Table 4.3 shows the ARIs obtained after applying NDEC

to three artificial datasets with different sizes. For each dataset, the process of generating

data remains constant and only the number of drawn samples is changed. From this table,

we can observe that the parameters selected for small value of n (1K) and larger values

of n (10K, 100K) are identical. These results are specially interesting and they suggest

that if a large sufficient sample is available, the parameters k, l, and h may be selected by

sampling that dataset.

Table 4.3: Effect of dataset size on NDEC parameters

Blobs Moon Circle

Size k l h ARI k l h ARI k l h ARI

1K 10 1.7 0.1 1 10 1.3 0.1 1 10 1.2 0.1 1

10K 10 1.7 0.1 1 10 1.3 0.1 1 10 1.2 0.1 1

100K 10 1.7 0.1 1 10 1.3 0.1 1 10 1.2 0.1 1

4.5 Results and Discussions

In this section, the efficacy of the NDEC clustering algorithm is assessed using several

synthetic and real clustering benchmark datasets. Furthermore, the performance of NDEC

is compared to that of other state-of-the-art clustering algorithms. In addition, diffusion

tensor imaging (DTI) data from the Johns Hopkins University brain MRI laboratory is

utilized to demonstrate the usefulness of NDEC a in real-world application.

4.5.1 Benchmark Datasets

Fig. 4.1 presents the clustering results of k -means, DBSCAN, DPC, and NDEC on four

synthetic two-dimensional datasets described in Table 4.1 . Except for Aggregation, most
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of the clusters in these datasets do not have clear distinct centres. Hence, k -means has

difficulty in identifying the correct clusters. Visual inspection of Fig. 4.1 shows that clusters

obtained by NDEC and DPC are the same as the ground truths for Aggregation and Spiral.

In contrast, for the Compound dataset NDEC is clearly able to get the closest to the ground

truth clusters. In the Compound dataset, the densities within the two upper left corner

clusters vary. In addition, the two clusters in the upper right corner have consistent within

cluster densities and clearly different densities. Consequently, DBSCAN has difficulty in

correctly identifying these clusters. It is worth noting that DPC cannot identify the bigger

cluster in the lower left corner since that cluster does not have a distinct centre.

Table 4.4:
A quantitative comparison of NDEC with four state-of-the-art clustering algorithms on benchmark datasets. Note that

Aggr and Comp stand for Aggregation and Compound respectively.

k-means DBSCAN OPTICS DPC NDEC

Dataset ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

Aggr 0.760 0.878 0.869 0.869 0.993 0.984 1 1 1 1

Flame 0.431 0.394 0.857 0.771 0.896 0.805 1 1 0.971 0.931

Comp 0.536 0.719 0.907 0.780 0.923 0.813 0.592 0.799 0.997 0.994

Spiral -0.005 0.000 1 1 0.307 0.537 1 1 1 1

D31 0.952 0.966 0.740 0.882 0.875 0.911 0.934 0.956 0.994 0.990

Jain 0.304 0.357 0.941 0.862 1 1 0.643 0.597 1 1

R15 0.992 0.994 0.916 0.942 0.960 0.969 0.992 0.994 0.996 0.990

Path 0.461 0.547 0.656 0.704 0.684 0.685 0.530 0.491 0.934 0.886

Iris 0.736 0.762 0.568 0.761 0.565 0.745 0.453 0.658 0.675 0.650

Glass 0.247 0.400 0.275 0.515 0.216 0.411 0.092 0.241 0.384 0.429

Leaf 0.008 0.316 0.187 0.7584 0.228 0.769 0.151 0.623 0.354 0.646

Sonar -0.002 0.007 0.000 0.359 0.002 0.036 0.019 0.105 0.193 0.131

Table 4.4 shows the corresponding ARI and NMI of the clustering solutions obtained

using k -means, DBSCAN, OPTICS, DPC, and NDEC on the artificial and the real bench-
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(a) Aggregation-GT (b) k-means (c) DBSCAN (d) DPC (e) NDEC

(f) Flame-GT (g) k-means (h) DBSCAN (i) DPC (j) NDEC

(k) Spiral-GT (l) k-means (m) DBSCAN (n) DPC (o) NDEC

(p) Compound-GT (q) k-means (r) DBSCAN (s) DPC (t) NDEC

Figure 4.1: Four 2-dimensional benchmark datasets clustering results. Note that the black samples were identified as
outliers.
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mark datasets described in Table 4.1. As the obtained results show, k -means has difficulty

in finding appropriate clusters in most of the analysed datasets. This behaviour can be

attributed to the fact that clusters in these datasets do not always have globular shape as

k -means assumes. In addition, k -means is susceptible to noise and may not estimate the

cluster centres correctly if outliers are present in the dataset under study. The performance

of DBSCAN and OPTICS is better than that of k -means in most cases because these al-

gorithms use a density-based definition of a cluster and consequently they are relatively

robust to noise and can discover clusters that could not be discovered using k -means.

Fig. 4.2 shows the results of applying NDEC to the Olivetti Faces dataset to categorize

the images of the faces of the same woman or man to a cluster. This dataset is a widespread

and challenging benchmark used to assess the performance of different unsupervised ma-

chine learning algorithms. The Olivetti Faces dataset includes ten different images for

each of 40 different persons. Each face is represented by a vector of 10304 features. The

clustering task in this dataset is quite challenging since the number of instances is much

fewer than the number of features. In this work, the similarity between two images was

calculated following the recommendations in [105]. The ARI obtained using NDEC is 0.7

which is significantly higher than the ARI obtained using DPC clustering which is 0.3.

4.5.2 Real-World Applications

In this section, the application of NDEC in neuroscience is evaluated using the JHU-

DTI dataset (see Table 4.1). Accurate and robust segmentation of brain white matter

(WM) fiber bundles plays a significant role in neuropsychiatric studies and facilitates di-

agnosing and assessing progression or remission of autism, schizophrenia, and depression.

We proposed a WM fiber bundle segmentation method in [58], which involves four main

steps including fiber tractography, fiber tracks resampling, similarity matrix calculation,

and segmentation using a density-based clustering algorithm. Here, we applied NDEC as

a density-based clustering algorithm to reconstructed fibers from difusion tensor imaging

tractography. The objective was to segment the data into three interested bundles including
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Figure 4.2: Olivetti Faces clustering result obtained by using NDEC. In this figure, the clustering result for the first ten
subjects in the dataset is presented. The images of the same color belong to one cluster. The grey images are those that

were not assigned to any cluster.
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Table 4.5:
WM fiber bundle segmentation results using NDEC and three state-of-the-art clustering algorithms

Dice Ratio (± std) k-means DBSCAN Spectral Clus. NDEC

IFO 0.75±0.08 0.80±0.05 0.86±0.03 0.91±0.03

ILF 0.77±0.05 0.86±0.04 0.89±0.04 0.94±0.03

Fmajor 0.90±0.06 0.88±0.05 0.89±0.03 0.92±0.02

the inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), and the

forceps major (Fmajor) [58]. Table 4.5 shows the performance of NDEC compared to three

other clustering algorithms with respect to the Dice ratio [106]. In addition to k -means

and DBSCAN, spectral clustering [107], a dominant clustering algorithm in the WM seg-

mentation area, was utilized. Spectral clustering is capable of identifying arbitrary-shaped

clusters. This algorithm uses eigenvalues of a similarity matrix of the data to perform

dimensionality reduction and then applies k -means in a lower dimensional space. As it is

shown, NDEC outperforms the other three clustering algorithms with regards to both the

mean and standard deviation of the Dice ratios.

Fig. 4.3 presents visualization results for one subject which was selected randomly. As

visual inspection shows, the IFO, ILF, and Fmajor results obtained by NDEC are very

similar to those obtained by manual segmentation. Furthermore, NDEC is less sensitive to

noise compared to the other utilized clustering algorithms. We can observe that k -means,

spectral clustering and DBSCAN have trouble in correctly identifying and handling the

noise which is pervasive in this domain due to the quality of the tractography results.

4.6 Conclusion

This chapter concentrated on proposing a novel dynamic density based clustering algorithm

called Neighbourhood Distance Entropy Consistency (NDEC) and evaluating its absolute

and relative performance. NDEC employs both local and global feature space density
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Manually Segmented NDEC Spectral Clus. DBSCAN k-means 

     

     

     
 

Figure 4.3: Clustering outcomes of one subject selected randomly. The first, second, and third row show IFO, ILF, and
Fmajor respectively.

information as well as neighbourhood distance entropy consistency to discover natural

clusters existing in data that have arbitrary shapes and densities. The superiority of

NDEC over representative algorithms from three different groups of clustering paradigms,

with respect to ARI and NMI performance indices, was demonstrated using a variety

of benchmark artificial and real clustering datasets. The evaluated clustering paradigms

include clustering algorithms which are capable of finding clusters with arbitrary shape

and arbitrary density, clusters with arbitrary shape and specific density and clusters with

specific shape and specific density.
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Chapter 5

Electrophysiological Muscle

Classification Using Multiple

Instance Learning and Supervised

Time Domain Analysis

The work described in this chapter previously appeared in T. Kamali and D. W. Stashuk, A Density-
Based Clustering Approach to Motor Unit Potential Characterizations to Support Diagnosis of Neuromus-
cular Disorders, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, (7), pp.
956-966, 2017 [1].
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5.1 Introduction

In this chapter, a novel electrophysiological muscle classification system is introduced based

on the framework proposed in Chapter 3, which focuses on using a dynamic number of

classes for characterizing MUPs. To this end, the NDEC clustering algorithm introduced

in Chapter 4 is utilized to find representations of several concepts of normality and abnor-

mality in the MUP feature space to be used for MUP characterization. The MUPs sampled

from an examined muscle are then characterized, using these increased number of MUP

classes, and the MUP characterizations are embedded into a feature vector to represent

the examined muscle. The embedded feature vector is then fed to an ensemble of support

vector machine (SVM) and nearest neighbor (NN) classifiers to obtain the electrophysio-

logical muscle classification. For 103 sets of MUPs recorded in tibialis anterior muscles,

the proposed system had a 97% electrophysiological muscle classification accuracy, which

is significantly higher than in previous works.

5.2 Methods

The proposed system has five main steps: 1) MUP representation using morphological and

stability features; 2) MUP feature selection using a supervised genetic algorithm; 3) MUP

clustering using NDEC; 4) Muscle representation by embedding its MUP characterizations

in a feature vector; and 5) Muscle classification using an ensemble of SVM and nearest

neighbor classifiers. Details of each step are presented in the following sections.

5.2.1 MUP Representation

Each MUPT is represented by its ensemble of MUPs and an estimated MUP template

which is usually calculated by averaging the characteristics of its ensemble of MUPs. This

representation assists in analyzing the stability of MUP shape across multiple MU firings.
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Broadly speaking, the MUP features can be categorized into two groups: (1) Morphological

features, and (2) stability features. Morphological features are extracted from the MUP

template and stability features are extracted from its ensemble of MUPs and reflect the

MUP morphology changes across all the MUPs in an MUPT. Morphological features, in

turn, are classified into three groups with regards to the MUP morphology aspect that

they can represent best. These groups include size, shape, and complexity features [108].

Size features are related to the number and sizes of fibers in a given MU. As an ex-

ample, amplitude and duration are two important size features. The amplitude normally

has a value in the range of a few microvolts to several thousand microvolts. The duration

can change based on the age of the patient and normally has a value in the range of 5 to

15 ms. Shape features describe the overall shape of a MUP. As an example, thickness is

one important shape feature which is measured in milliseconds and represents the width

of an MUP. In certain disease states, discriminating normal vs. myopathic and normal vs.

neurogenic is tricky. Sometimes MUPs detected from myopathic and neurogenic muscles

can have amplitudes comparable to MUPs detected from normal muscles. However, myo-

pathic MUPs usually have a smaller value of thickness due to the loss of muscle fibers and

neurogenic MUPs have a larger value of thickness due to reinnervation [10], [4].

Local and global complexity features describe MUP complexity at local and global levels

respectively. Normal motor unit fibers are usually spatially dispersed more homogenously

compared with fibers in diseased motor units. In addition, the muscle fiber potentials

generated by normal motor units usually have less temporal dispersion than those created

by diseased motor units. As a result, normal MUPs are more uniform and simple whereas

diseased MUPs are usually more complex. As an example, the number of phases is an

important global complexity feature which is usually less than four in normal MUPs. In

contrast polyphasic MUPs can be detected in neurogenic and myopathic muscles [108]. In

this work, each MUP was initially represented by a set of 18 morphological and stability

features that are briefly described in Table 5.1. Note that the set of MUPs represented by

these features create DMUP . Hence, the MUP training dataset is defined as follows. The

ith muscle has a label Yi ∈ {1, 2, 3} and is represented by the set of MUPs extracted from
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Table 5.1:
MUP Morphological and Stability Features

ID Group Name Definition

1

Size

Duration The time difference between the start and end point of an MUP template.

2 Amplitude
The difference in voltage from the minimum positive and maximum negative

peak of an MUP template.

3 Area Rectified MUP template integrated over its duration.

4 Shape Thickness Area/Amplitude

5

Global Complexity

Length Index

Length−2×Amplitude
2×Amplitude

, Length is calculated as the summation of the absolute

amplitude differences for every 2 consecutive samples within the duration of
the MUP template [108].

6 Shape Width Area/Length

7 # of Turns Number of positive and negative peaks.

8 # of Phases Discrete number of zero crossings plus one.

9 Fiber Count Number of near MU fibers [113]

10

Local Complexity

Turn Area Area/Turns

11 Phase Area Area/Phases

12
Phase

Complexity
Turns/Phases

13
Turn

Amplitude
Amplitude/Turns

14 Turn Length Length/Turns

15 Turn Width ShapeWidth/Turns

16

Stability

NF Jiggle Shape variability of band-pass filtered MUPs

17 Jiggle
Shape variability of raw MUPs recorded using a conventional needle

electrode

18
Shimmer

Covariance
SD (MUPDist)

mean (MUPDist)

Note that SD stands for the standard deviation. MUPDist= distances of the MUPs of a MUPT to its MUP template

the clinically-detected EMG signals acquired from the muscle. Let Xi = {−→xi1, . . . ,−−→ximi
}

denote the set of mi MUPs detected in the ith muscle. Each MUP is represented by

an M dimensional feature vector −→xij ∈ RM . The MUP dataset is then represented as
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DMUP = {(X1, Y1) , . . . , (XN , YN)} where N is the number of muscles used to create the

dataset.

5.2.2 MUP Feature Selection

MUP features were selected based on maximizing the NDEC-based DBCV index (see

Chapter 4 for a detailed description of DBCV) using a genetic algorithm (GA) (see Figure

5.1) with the following setting:

1. The length of each GA chromosome was 21. The first eighteen genes (the same size

as the number of features presented in Table 5.1) are binary, where zero elements

eliminate the feature and non-zero ones preserve the corresponding feature. The last

three genes correspond to the NDEC parameters that were selected based on the

intervals shown below:

1 < l ≤ 7, 1 < k ≤ 3, 1 < h ≤ 2 (5.1)

2. The roulette wheel was selected to collect a rich generation. An unbiased one-point

crossover was used for generating offspring.

3. The mutation rate was set to 3% to avoid being trapped in phenotypic and genotypic

dilemma. The mutation operator for the floating point parameters (i.e., k and h) was

defined to pick a new uniform random value between the upper and lower bounds as

defined in Eq. 5.1.

4. The merit function was chosen as maximizing within cluster densities while mini-

mizing between cluster densities. This helped to find features that result in better

separability among normal and diseased states. This merit function was calculated

using DBCV that considers both the density and shape properties of clusters.

5. The population and generation number was set to 50 and 100 respectively.
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The GA was utilized to select a subset of the M MUP features and the cluster-

ing algorithm parameter values based on their ability to generate a clustering solution

with high within cluster densities and low between cluster densities (see Figure 5.1).

The output of GA-based MUP feature selection is a new dataset denoted as D∗MUP =

{(X1, Y1) , . . . , (XN , YN)} where Xi =
{−→
x∗i1, . . . ,

−−→
x∗imi

}
and
−→
x∗ij ∈ Rd and d ≤M .

5.2.3 MUP Clustering using NDEC

NDEC was applied to a set of MUPs extracted from EMG signals recorded in a set of

electrophysiologically similar muscles comprised of healthy/normal muscles and muscles

affected, to different extents, by myopathic and neurogenic disorders. The clusters discov-

ered in a MUP feature space were then used as classes for MUP characterization instead of

the conventional three classes. Discovering a dynamic number of groups, which represent

various possible states of MU health, is challenging due to two main reasons. 1. Neuro-

muscular disorders are inherently continuous processes and there is no distinct boundary

between normal and different stages of disease. Therefore, the clustering algorithm should

be able to find clusters with non-convex shape. 2. The level of disease involvement may

vary which leads to an unknown number of clusters. Therefore, providing the optimal

number of clusters in an initial step of an algorithm is not feasible.

Clusters found in a MUP feature space correspond to different groups of represented

MUPs and may be related to different states of MU normality and abnormality. These

clusters can be discovered by identifying regions with higher densities isolated from regions

with lower densities. The density of a region is determined based on the behavior of the

neighborhood distances between sample MUPs; smaller distances relate to higher densities

and large distances relate to lower densities. In addition, MUPs belonging to the same

cluster should have stable neighborhood distances and consequently stable densities. For

this purpose, NDEC was utilized to discover these clusters. After creating listNN that is

an abstraction for the MUP feature dataset (see Chapter 4 for a detailed description of the

NDEC steps), outlier members were removed using the Modified Thompson Tau rejection
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Find Clusters in MUP Space 

DBCV Calculation 

 GA Generation is 100 

GA Operations 

Yes 

No 

Select MUP Features Randomly 

MUP Feature Space Dataset (DMUP) 

𝑋1 𝑋𝑁  ………. 

Select Clustering Solution with the Maximum 

DBCV Value  {𝑪𝟏, … , 𝑪𝑲} 

Select Clustering Parameters Randomly 

Select MUP Features Used in the Clustering 

Solution with the Maximum DBCV Value   

Figure 5.1: Steps for selecting MUP features and finding MUP characterization classes.

rule. For the purpose of finding and removing outliers, the following steps are performed.

Let N indicate the length of listNN .

1. Calculate the mean (d ) and the standard deviation (S) for all distances (di) in listNN .

2. Calculate the absolute value of the deviation of each association distance in listNN

from (d̄):

δi =
∣∣di − d̄∣∣1≤i≤N (5.2)

3. Calculate the modified Thompson Tau (τ) according to the critical value of the
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Student's t PDF. In Eq. 5.3, tα/2 is the critical Student's t value for =0.05 and

df=N-2.

τ =
tα/2 × (n− 1)

√
n×

√
n− 2 + tα/2

2
(5.3)

4. For each distance (di) in listNN , if δi > τS , remove the corresponding association

from listNN .

NDEC Merge Criteria: The NDEC algorithm used in this work starts merging

singletons and creating clusters by traversing listNN , each time a tuple (p,q,d(p,q)) is

analyzed, if d(p,q) is consistent with both LDI(p) and LDI(q) (Eq. 5.4) and simultaneously

LDI(p) and LDI(q) are consistent (Eq. 5.5), then p and q are put into one cluster and

their associated tuple is removed from listNN .

d (p, q) < l ×min (LDI (p) , LDI (q)) (5.4)

max(LDI (p) , LDI (q)) < l ×min (LDI (p) , LDI (q)) (5.5)

If either of p or q belongs to a cluster, the consistency in Eq. 5.4 is checked and instead

of LDI in Eq. 5.5, GDI is calculated for non-singleton MUP (i.e. a MUP that is not

associated with any cluster) and used in Eq. 5.5 to define the distance consistency criteria

and if the distance consistency criteria are met for a singleton MUP, it is assigned to the

cluster. If both p and q belong to clusters, the consistency in Eq. 5.4 is checked and GEIs

are calculated and used instead of LDI in Eq. 5.5 and instead of l, another user-defined

parameter h is used in Eq. 5.5 and if the distance consistency criteria are met, then the

two clusters are merged. The merging process is repeated until no change occurs in the

length of listNN .
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5.2.4 Muscle Representation

In this step, a muscle representation is created by embedding its sampled MUPs into a new

k -dimensional feature vector ~v = (v1, . . . , vk) where k is the number of discovered clusters

(MUP characterization classes) in the MUP feature space. To this end, a matching between

the MUPs
{−→
x∗i1, . . . ,

−→
x∗im

}
sampled from the muscle Xi and the MUP characterization classes

{Cj}∀j∈[1,k] is performed. Consequently, first the degree to which a given MUP belongs to

each of the obtained MUP characterization classes ({Cj}∀j∈[1,k]) is calculated using Eq.

5.6. Second, the MUP is characterized (labelled) as a member of the characterization class

with the best relative fit (Eq. 5.7).

Let p be a given MUP, and q be an arbitrary MUP that belongs to cluster Cj. The

degree to which p belongs to Cj is calculated using Eq. 5.6

Bln (p, Cj) = min{d (p, q)}∀q∈Cj
(5.6)

The MUP p class label is determined by Eq. 5.7:

Cp = argminCj

{
Bln (p, Cj)

GDI (Cj)

}
∀j∈[1,k]

(5.7)

After MUP characterization labels are determined, the examined muscle is repre-

sented in terms of an embedded MUP characterization feature vector based on the la-

bels/characterizations of its sampled MUPs. A muscle Xi is represented by a feature

vector
−→
Mi of length k as shown in Eq. 5.8, where mi is the number of MUPs sampled from

muscle Xi and xij is the jth MUP sampled from muscle Xi.

−−→
Mi =


∣∣∣{xij ∈ C1}1≤j≤mi

∣∣∣
mi

, . . . ,

∣∣∣{xij ∈ Ck}1≤j≤mi

∣∣∣
mi

 (5.8)
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5.2.5 Electrophysiological Muscle Classification

Finally, as shown in Fig. 5.2, EMC is performed using the embedded MUP characterization

feature vector and an ensemble of support vector machines (SVMs) and nearest-neighbour

(NN) classifiers. A SVM is selected as a base classifier since it has good generalization

capability. The selected SVM has a Gaussian radial basis (RBF) function kernel that is

 MUP 

Characterization 

 
Label MUPs  

MUP Characterization Classes  

{𝑪𝟏 , … , 𝑪𝑲}  

Set of MUPs Sampled from an 

Examined Muscle 
Muscle  

Representation 

 

Embed MUP 

Characterizations  

Muscle Is Classified as Normal, Myopathic, or Neurogenic 

 Electrophysiological Muscle Classification 

SVM_Neuro SVM_Myo SVM_Nor 

Agreement Is Met 

YES 

NO 

NN 

Figure 5.2: Steps for finding the label of an examined muscle. Note that the MUP characterization classes are the output
of MUP feature space dataset clustering phase.

expressed as follows:

K (x, x′) = e−γ||x−x
′||2 (5.9)

Where x is the input feature vector to the SVM, x
′
is the center of the kernel, and γ is the

width of the kernel. The use of an ensemble of classifiers can enhance the decision about a

pattern to be classified. The EMC problem has three possible class labels while an SVM is a

binary classifier; consequently, according to the one-against-all scheme, three base classifiers

are considered including: SVM-Nor, SVM-Myo, and SVM-Neuro. SVM-Nor discriminates

between normal and diseased muscles, SVM-Myo discriminates between myopathic and
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other types of muscles (i.e. normal and neurogenic) and SVM-Neuro discriminates between

neurogenic and other types of muscles (i.e. normal and myopathic).

For the purpose of increasing accuracy, the embedded feature vector
−→
Mi is multiplied

by one of three feature weighting vectors, defined as follows, before being input to the

SVM-Myo, SVM-Neuro or SVM-Nor base classifiers, respectively. The basic idea is to

assign different weights to different features of the feature space such that the SVM base

classifiers learn the decision surface according to the relative importance of feature values

in the training dataset.

wmyo =
{
f(C1,myo), . . . , f(Ck,myo)

}
(5.10)

wneuro =
{
f(C1,neuro), . . . , f(Ck,neuro)

}
(5.11)

wnor =
{
f(C1,nor), . . . , f(Ck,nor)

}
(5.12)

The elements of the ranking vectors f(Ci,myo), f(Ci,neuro) and f(Ci,nor) are defined using

Eq. 5.13, 5.14 and 5.15, respectively, where Cj is the jth MUP characterization class,

n(Cj ,myo) is the number of times MUPs from Cj are observed in myopathic muscles of the

MUP training set D∗MUP , n(Cj ,neuro) is the number of times MUPs from Cj are observed

in neurogenic muscles of D∗MUP and n(Cj ,nor) is the number of times MUPs from Cj are

observed in normal muscles of D∗MUP . Nmyo, Nneuro, and Nnor are the number of myopathic,

neurogenic and normal muscles that contributed MUPs to DMUP ∗ , respectively.

f(Cj ,myo) =
n(Cj ,myo)

Nmyo

(5.13)

f(Cj ,neuro) =
n(Cj ,neuro)

Nneuro

(5.14)

f(Cj ,nor) =
n(Cj ,nor)

Nnor

(5.15)

If only one of the three base SVM classifiers selects a specific muscle label, the muscle is
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classified using this label. As an example, if SVM-Myo selects myopathic, and both SVM-

Nor and SVM-Neuro select others, then the muscle is classified as myopathic. Otherwise,

due to the complexity of the current decision to be made, a classifier with a complex

boundary is required. Note that classifiers with globally complex decision boundaries in

general have low generalization capability. As a result, a local classifier should be utilized.

As shown in Fig. 5.2, an NN classifier is employed in this work, in cases when there

is disagreement among the base SVM classifiers. As an example, if SVM-Myo selects

myopathic and SVM-Nor selects normal and SVM-Neuro selects others, then the final

decision is made by the NN classifier.

5.3 Evaluation

5.3.1 Data Set

The experiments were performed on EMG data that were sampled from tibialis anterior

muscles. The EMG data were acquired under institutional review board (IRB) approval

and sanitized of any personal identifying information. The dataset consists of 48 normal

muscles with 868 MUPTs, 31 neurogenic muscles with 429 MUPTs and 24 myopathic

muscles with 548 MUPTs. The level of disease involvement across the set of studied mus-

cles ranged from slight to moderate to severe. The subjects ranged in age from 21 to 90.

The patients with neurogenic disorder had a wide variety of diagnoses including polyneu-

ropathy, polyradiculopathy, and motor neuron disease. The patients with myopathy had

inflammatory myopathies or dystrophies such as facioscapulohumeral muscular dystrophy

or oculopharyngeal muscular dystrophy.

The data were collected using a concentric needle electrode and a Nicolet Viking EMG

machine, with a 10 Hz to 10 kHz bandwidth and a 48 kHz sampling rate at the Mayo Clinic

in Phoenix AZ, USA. Needle positioning was performed during low level muscle contraction

and then the level of contraction was increased until 40-60 MUPs/s were detected and
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then 15 s of EMG signal was acquired. For each muscle, this process was repeated at four

spatially distributed locations to get a statistically representative MU sample from the

muscle under study.

Each examined muscle was determined to be affected by a myopathic or neurogenic dis-

order or to be normal by an experienced neurologist based on manual assessments of MUPs

detected during low level muscle contraction across all sampled needle positions. Next,

MUPTs were extracted from composite EMG signals using decomposition-based quanti-

tative electromyography (DQEMG) [16]. DQEMG is comprised of a set of algorithms for

the decomposition of intramuscular EMG signals acquired during isometric contractions.

DQEMG decomposes an EMG signal offline by band-pass filtering the signal, detecting the

position of MUPs in the filtered signal by a threshold crossing technique, and then grouping

the detected MUPs using clustering and knowledge-based classification algorithms.

5.3.2 MUP Clustering Evaluation Criterion

The quality of a clustering solution is evaluated using a relative clustering validity index

called Density Based Clustering Validation (DBCV) [104] which considers both density

and shape properties of clusters. The DBCV index generates values in the range of [-1, 1],

with greater values indicating better clustering solutions (see Chapter 4 for more details).

5.3.3 Electrophysiological Muscle Classification Evaluation

In this work, learning parameters of a SVM, including γ and the penalty factor C [109] were

set using grid-search via leave-one out cross validation. To this end, various pairs of (C, γ)

were tested and the one with the best cross-validation accuracy was selected. The values for

these test pairs were selected following the recommendations in [110]. The performance of

the proposed electrophysiological muscle classification system was evaluated using a leave-

one-out cross validation method using the embedded MUP characterization feature vectors

representing the muscles who contributed MUPs to the MUP training set D∗MUP . Eight
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performance indicators were used for this purpose including an accuracy measurement,

myopathic, neurogenic and normal sensitivities, and myopathic, neurogenic and normal

specificities and the UPA index (Eq. 5.18) which is a combination of the seven mentioned

performance indicators [45]. The reported accuracy (ATot) was calculated by estimating the

mean value of individual muscle class (i.e., myopathic, neurogenic, and normal) accuracies.

Individual muscle class accuracy was the ratio of the number of correctly classified muscles

to the total number of muscles belonging to that class.

Spc = (Avg (SpcMyo, SpcNro, SpcNor)× 0.6) (5.16)

Sen = (Avg (SenMyo, SenNro, SenNor)× 0.4) (5.17)

UPA = 0.5 × ATot + 0.5×
(
Spc+ Sen

)
(5.18)

5.3.4 Comparison to State-of-the-art Clustering Algorithms

To examine the relative efficiency of NDEC compared to other clustering algorithms for

the task of classifying muscles, four other state of the art clustering algorithms were im-

plemented. These algorithms included k -means from the SSSD group, DBSCAN from the

ASSD group, and spectral clustering (SC) [111] and Chameleon from the ASAD group. The

electrophysiological muscle classification system based on NDEC is called MC-NDEC and

the electrophysiological muscle classification systems based on Chameleon, SC, DBSCAN,

and k-means are referred to as MC-Cham, MC-SC, MC-DB, and MC-KM, respectively.

Note that all these electrophysiological muscle classification systems are designed based on

the method explained in section 5.2.4 and 5.2.5. However, each of these systems, use a

different clustering algorithm to define the MUP characterization classes.
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5.4 Results and Discussions

In this section, the experimental evaluation of NDEC is first presented and its performance

with regard to finding MUP characterization classes, is compared with four state of the

art clustering algorithms. Second, the performance of MC-NDEC, is compared with the

performance of MC-Cham, MC-SC, MC-DB, and MC-KM, respectively. Finally, the per-

formance of MC-NDEC, is compared with the performance of four previous EMC systems

proposed in [37], which are based on three conventional (i.e. normal, myopathic, and

neurogenic) classes for MUP characterization.

Finding the MUP characterization classes can be performed in serial or parallel. In

serial, a cluster related to MU normality is first found and its members are removed from

the dataset (step I) and then additional clusters are discovered using the remaining data

(step II). In parallel, all clusters/MUP characterization classes are found simultaneously.

Applying NDEC to a MUP feature dataset in both serial and parallel was investigated.

Between them, the serial procedure resulted in more accurate outcomes and consequently

was selected as the better way to define the MUP characterization classes. The final values

selected for NDEC parameters including l, k, and h following step I of the serial procedure

are 5, 1.6, and 1.4 respectively. The final values for l, k, and h following step II of the serial

procedure are 4, 1.4, and 1.2 respectively.

After applying NDEC to a MUP feature dataset, several clusters are obtained. The

cluster with the maximum number of MUPs is assumed to be a representation of MU

normality. This selection is performed due to the following facts. First, myopathic and

neurogenic muscles usually contain normal MUs. Second, the probability distribution of

MUPs related to normal MUs in normal and diseased muscles are the same. In addition,

the probability of detecting abnormal MUPs in normal muscles is low. As a result, MUPs

representing MU normality are expected to be members of the cluster that has the largest

number of MUPs.
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Figure 5.3: Best DBCV values obtained by applying different clustering algorithms to the MUP feature space dataset.

Fig. 5.3 shows the DBCV values of the best clustering solutions obtained using NDEC

and the four other clustering algorithms applied in serial to MUP feature datasets. The

best clustering solution obtained from applying NDEC, Chameleon, SC, DBSCAN and

k -means was composed of 10,8,10,6, and 10 clusters respectively. As can be seen, in both

steps of the serial procedure, NDEC resulted in the best clustering solution as measured by

the DBCV index. In addition, the ASAD clustering algorithms found the best clustering

solutions compared with the ASSD and SSSD groups. The superior clustering solutions

obtained using algorithms from the ASAD group supports the notion that clusters found

in MUP feature spaces have arbitrary shape and density. Fig. 5.3 also shows that the

DBCV values following step II are slightly higher than the DBCV values following step I.

This happens because discriminating MUPs related to normal MUs from MUPs related to

slightly diseased MUs is more difficult than discriminating MUPs related to MUs affected
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by different degrees of myopathic or neurogenic abnormality.

Table 5.2 shows the selected feature sets obtained using the GA and the DBCV index

to define MUP characterization classes. Table 5.2 shows that area, shape width and NF

jiggle are the most consistent features used to define MUP characterization classes. These

features were selected by all five applied clustering algorithms in both steps of the serial

procedure. It is worth noting that these selected features are consistent with the qualitative

analysis of MUPs performed by physicians. Physicians need to include all aspects (i.e. size,

shape, global complexity, local complexity and stability) of MUPs for interpretation. Using

a single feature is usually insufficient.

Table 5.2:
Selected Feature Sets for the Purpose Of Defining MUP Characterization Classes

Features Selected to Represent MU Normality

Clustering
Method

Size Shape Global Complexity Local Complexity Stability

NDEC Area Thickness Shape Width Phase Area NF Jiggle

Chameleon Area Thickness Shape Width Phase Area NF Jiggle

SC Area Thickness Shape Width Phase Area NF Jiggle

DBSCAN Area Thickness Shape Width Turn Width NF Jiggle

K-means Area —— Shape Width Turn Length NF Jiggle

Features Selected to Define Additional MUP Characterization Classes

Clustering
Method

Size Shape Global Complexity Local Complexity Stability

NDEC Area Thickness Shape Width ——
NF Jiggle-Shimmer

Covariance

Chameleon Area Thickness Shape Width ——
NF Jiggle-Shimmer

Covariance

SC Area Thickness Shape Width ——
NF Jiggle-Shimmer

Covariance

DBSCAN Area —— Shape Width Phase Area
NF Jiggle-Shimmer

Covariance

K-means Area —— Shape Width Turn Width
NF Jiggle-Shimmer

Covariance
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Table 5.3:
Performance Indexes of Five EMC Systems

ID Muscle Classification SpcMyo SpcNeuro SpcNormal SenMyo SenNeuro SenNormal ATot UPA

1 MC-NDEC 98.71 97.18 100 95.65 96.66 97.91 97.02 97.44

2 MC-Cham 94.87 100 94.33 91.30 86.66 97.91 93.06 93.84

3 MC-SC 98.71 85.91 100 86.95 96.66 85.41 89.10 90.94

4 MC-DB 100 95.77 75.47 52.17 93.33 93.75 84.15 85.14

5 MC-KM 96.15 98.59 69.81 39.13 83.33 97.91 80.19 81.24

Table 5.2 also shows that the feature sets used to find a representation of MU normality

by most clustering algorithms, are composed of only one feature from the aspect of MUP

stability. While when finding the additional MUP characterization classes, two features

related to MUP stability were selected. This can be related to the fact that for neurogenic

and myopathic MUs, often MUP stability is quite different compared to normal MUs.

Consequently, analyzing the MUP stability aspect in abnormal cases is more important

than for normal ones.

Fig. 5.4 shows the actual MUP clusters found by applying NDEC. The pie charts rep-

resent the percentage of MUPs in each cluster that were recorded in normal, myopathic,

and neurogenic muscle, respectively, and show the likelihood that a cluster includes a MUP

recorded in a muscle of a specific class. The box plots show the distributions of the MUPs of

each cluster with respect to the specific muscle classes. As shown, clusters 2 and 5 predom-

inantly contain MUPs recorded in neurogenic muscles, cluster 10 predominately contains

MUPs recorded in myopathic muscle and the rest of the clusters have various mixtures

of MUPs recorded from myopathic, normal and neurogenic muscles. These visualization

results show that except for cluster 2, a single MUP is not diagnostic and electrophysio-

logical muscle classification must be based on a set of MUPs generated by a representative

sample of a muscles MU.
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Figure 5.4: Visualization result of clusters obtained by applying NDEC to the MUP feature space dataset. MUPs sampled
from normal, myopathic, and neurogenic muscles are represented by green, red, and blue respectively. Cluster 1 was

obtained following step I of the serial procedure and clusters 2-10 were obtained following step II of the serial procedure.
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Table 5.3 shows the performances indexes of the five implemented EMC systems. The

final values selected for learning parameters of SVM including penalty factor C, and kernel

width γ are 100, and 0.1 respectively. As the obtained myopathic and neurogenic specifici-

ties show, all electrophysiological muscle classification systems are capable of identifying

non-myopathic (SpcMyo) and non-neurogenic (SpcNeuro) muscles with at least 85% accuracy.

In addition, with respect to identifying non-myopathic and non-neurogenic muscles, all of

the EMC systems evaluated had similar performance. In contrast, EMC techniques using

clustering algorithms from the ASAD group resulted in the detection of diseased muscles

(SpcNormal) with at least 94% accuracy whereas methods based on DBSCAN (75%) and

k-means (69%) have difficulties identifying disorders.

This shortcoming can be attributed to the fact that clusters in the MUP feature datasets

are not always of the same shape, as assumed by k -means, or the same density, as assumed

by DBSCAN. In addition, k -means is a type of squared error based clustering algorithm

that is highly susceptible to outliers. Comparing acquired specificities leads to the conclu-

sion that discriminating normal muscles from diseased ones is a tough task compared with

discriminating non-myopathic and non-neurogenic cases. This happens because transition

from normal to diseased is a continuum and there is no distinct boundary between normal

and diseased muscles.

Results obtained from sensitivities show that identifying neurogenic and normal muscles

is easier compared to identifying myopathic muscles. All of the EMC systems evaluated

were able to recognize normal and neurogenic muscles with acceptable sensitivities whereas

recognizing myopathic muscles is a difficult task when DBSCAN and k -means clustering

is used. Early stage myopathic muscles have very similar characteristics to normal ones,

consequently their discrimination requires considering density parameters when clustering

the MUP feature datasets, which are only considered by algorithms of the ASAD group.

The obtained accuracies show that using a clustering algorithm from the ASAD group

can lead to more accurate electrophysiological muscle classification compared to using

clustering methods from the ASSD and SSSD groups, since ASAD algorithms can find
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Table 5.4:
Comparison of Different EMC Techniques

ID 1 2 3 4 5

Method MC-EAR-O MC-EAR-U MC-GMM-O MC-GMM-U MC-NDEC

ATot 94.1 90.4 92.69 89.66 97.02

# of MUP
Characterization
Classes

3 3 3 3 > 3

natural clusters with arbitrary shape and density in the data. The performance of MC-DB

from the ASSD group is better than MC-KM from the SSSD group since DBSCAN first

finds a single kernel density estimate for the entire data space and then identifies regions of

high density within the data space and consequently can find clusters with arbitrary shape,

whereas k -means is only able to find clusters with globular or spherical shapes. Table 5.3

shows that among all implemented electrophysiological muscle classification systems, MC-

NDEC is more accurate considering both UPA and total accuracy. In addition, MC-NDEC

is more robust and has less variation across the seven performance metrics.

In order to test the significance of the differences among classifier accuracies, an ANOVA

test with α = 0.05 was performed. The null hypothesis, that all reported mean accuracies

are equal, was rejected significantly with a P-value of 0.000983. After rejection of the

null hypothesis, the Tukey-Kramer multiple comparison test was performed. The Tukey-

Kramer test concluded that there are significant differences among MC-NDEC and the

four other muscle classifiers.

Table 5.4 shows a comparison between the accuracy obtained in this work using MC-

NDEC and the accuracies reported in previous work [37] that are based on three classes

for MUP characterization, using the same tibialis anterior muscle dataset. In this previ-

ous work [37], four different approaches for electrophysiological muscle classification were

proposed, two of them are based on event association rules (EAR) and the others are

based on Gaussian mixture models (GMMs). Multi-class electrophysiological muscle clas-
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sification was implemented using both ordered and unordered binarization mappings and

resulted in four different groups of muscle classifiers including electrophysiological muscle

classification based on GMM using ordered binarization mapping (MC-GMM-O), electro-

physiological muscle classification based on GMM using unordered binarization mapping

(MC-GMM-U), electrophysiological muscle classification based on EAR using ordered bi-

narization mapping (MC-EAR-O), and electrophysiological muscle classification based on

EAR using unordered binarization mapping (MC-EAR-U). For comparison purpose, in

Table 5.4, the best results obtained in this previous work [37] for each proposed group

of electrophysiological muscle classification technique are presented. As Table 5.4 shows,

electrophysiological muscle classification based on NDEC, for which the number of MUP

characterization classes is dependent on clustering a MUP feature dataset, outperforms

electrophysiological muscle classification systems that are based on only three MUP char-

acterization classes.

5.5 Conclusion

In this chapter, a new EMC system is proposed which classifies muscles based on MUPs

detected during isometric contractions. The number of classes for MUP characterization

used by the proposed EMC system is dependent on clustering a MUP feature dataset as

opposed to conventional EMC systems in which only three classes (i.e. normal, myopathic,

and neurogenic) are used for MUP characterization. To this end, a novel dynamic density

based clustering algorithm, called Neighbourhood Distance Entropy Consistency (NDEC)

is utilized to cluster a reference MUP feature dataset. NDEC uses both local and global

MUP feature space density information to discover natural clusters existing in the data

that have arbitrary shapes and densities.

The clusters discovered by NDEC are then used as MUP characterization classes. As

such, EMC is performed by first characterizing MUPs based on the discovered MUP char-

acterization classes, followed by embedding the MUP characterizations of the MUPs sam-
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pled from a muscle to be classified into a feature vector input to an ensemble of SVM and

nearest neighbor classifiers to obtain the electrophysiological muscle classification. Results

of this work demonstrate that NDEC can be used to discover effective MUP characteri-

zation classes. In addition to NDEC, four clustering algorithms using various clustering

approaches were implemented to find a relationship between final EMC accuracy and the

discovered MUP characterization classes.

The obtained results demonstrate that NDEC can provide superior outcomes with re-

gard to both EMC accuracy and the DBCV relative clustering validation index. The results

also show the superior and stable performance of the proposed NDEC-based electrophysi-

ological muscle classification system compared to previously reported electrophysiological

muscle classification systems based on only three MUP characterization classes. The pro-

posed clustering algorithm, may also be used as an effective technique in other pattern

recognition and medical diagnostic systems in which discovering natural clusters within

data is a necessity.
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Chapter 6

Electrophysiological Muscle

Classification using Unsupervised

Time and Spectral Domain Analysis

The work described in this chapter previously appeared in T. Kamali and D. W. Stashuk, Electrophys-
iological muscle classification using multiple instance learning and unsupervised time and spectral domain
analysis, IEEE Transactions on Biomedical Engineering, 2018 [112].
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6.1 Introduction

Electrophysiological muscle classification is a crucial step in the diagnosis of neuromuscular

disorders. In Chapter 5, an MIL-based EMC system using supervised time domain analysis

was presented. In an effort to make the system more robust and accurate so that it can be

clinically reliably used, a new MIL-based EMC system is presented in this chapter which

is designed based on the framework proposed in Chapter 3.

The evaluation data consists of 63, 83, 93, and 84 sets of MUPs recorded in deltoid,

vastus medialis, first dorsal interosseous, and tibialis anterior muscles, respectively. The

proposed system discovered representations of MUPs detected in normal, myopathic and

neurogenic muscles for each specific muscle type and resulted in an average muscle classi-

fication accuracy of 98%, which is higher than in previous works. The results shows that

modelling EMC as an instance of MIL solves the traditional problem of characterizing

MUPs without full supervision. Furthermore, finding representations of MUP normality

and abnormality using morphological, stability, near fiber, and spectral features improves

muscle classification accuracy. The proposed method is able to characterize MUPs with

respect to disease categories, with no a priori information.

6.2 Methods

This system has five main steps: 1) MUP representation using morphological, stability,

and near fiber parameters as well as spectral features extracted from wavelet coefficients;

2) MUP feature selection using unsupervised Laplacian scores; 3) MUP clustering using

neighborhood distance entropy consistency to find representations of MUP normality and

abnormality; 4) Muscle representation by embedding its MUP cluster associations in a fea-

ture vector; and 5) Muscle classification using support vector machines or random forests.

The following sections explain the details of each step of the proposed system.
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6.2.1 MUP Representation

Time Domain Features

Table 6.1 shows a brief description of the features used to represent an MUPT. Each MUPT

can be represented by its ensemble of MUPs and an estimated MUP template which is

calculated by ensemble averaging its MUPs. This representation assists in analysing the

stability of MUP shapes across multiple MU firings. MUPT time domain features can be

categorized into three groups: (1) Morphological features, (2) Stability features, and (3)

Near fiber (NF) features. Morphological features are extracted from the MUP template

and stability features are extracted from the ensemble of MUPs comprising the MUPT

and reflect MUP morphological stability across the MUPs in the MUPT. NF features are

extracted from a high-pass filtered MUP template.

High-pass filtering helps to isolate contributions of fibers that are close to the electrode

and consequently can potentially provide more robust and detailed information concerning

neuromuscular transmission variability. Morphological features, in turn, are classified into

three groups with regards to the MUP morphological aspect that they can represent best.

These groups include size, shape, and complexity features. Size features are related to the

number and sizes of fibers in a given MU. Shape features describe the overall shape of a

MUP. Complexity features describe MUP complexity at local and global levels.

Spectral Domain Features

The discrete wavelet transform (DWT), a multi-resolution time-frequency [114] analysis

is utilized to represent the relative spectral content of the MUPs. Based on empirical

analysis, Daubechies mother wavelet is used because of its high correlation with MUPs.

Using DWT results in a high dimensional feature space. Dimensionality is reduced by

representing each sub-band by its normalized sub-band energy (NSE) which is defined as

the sub-band energy divided by the total energy.
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Table 6.1:
MUP Morphological, Stability, and NF Features [1]

ID Group Name Definition

1

Size

Duration
The time difference between the start and end point of an MUP

template.

2 Amplitude
The difference in voltage from the minimum positive and maximum

negative peak of an MUP template.

3 Area Rectified MUP template integrated over its duration.

4 Shape Thickness Area/Amplitude

5

Complexity

Shape Width Area/Length

6 # of Turns Number of positive and negative peaks.

7 # of Phases Discrete number of zero crossings plus one.

8 Stability NF Jiggle Shape variability of NF MUPs

9

NF

NF Duration
The time difference between the start and end point of a NF MUP

template.

10 NF Dispersion
The time interval between the first and last detected fiber

contribution to the NF MUP.

11 NF Count
Number of near MU fibers that are close to the electrode detection

surface [113]

6.2.2 MUP Feature Selection

In the approach outlined in this chapter, initially, a MUP is represented by a set of mor-

phological, stability, NF, and DWT features. Usually, some of these features are redundant

and/or irrelevant. Hence, an appropriate dimensionality reduction method can enhance

the sensitivity and specificity of the developed system. To this end, three main challenges

should be considered. 1) MUP training data is unlabelled. 2) For MUP characterization,

the local structure of the feature space is more important than the global structure. 3)

For the purpose of allowing better diagnosis and treatment planning, the developed EMC

system should be interpretable for clinicians, which means that the original meaning of the

features needs to be preserved in the new low dimensional subspace.

Reducing dimensionality can be performed by either feature selection or feature extrac-
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tion. Feature selection methods select an optimal subset of the original features, whereas

the feature extraction methods transform the original features into a new low dimensional

subspace, where the new features are a linear or non-linear combination of the original

features. Hence, feature selection is used when the original meaning of the features is

important.

Feature selection methods can be categorized into four groups including wrapper, em-

bedded, filter, and hybrid methods. A wrapper method selects an optimal subset based

on a specified learner. An embedded method selects the best subset during the learning

phase of a specific learner. In contrast, the filter method selects a subset with regards to

pre-specified evaluation metrics or intrinsic characteristics of the data. The hybrid method

combines the advantages of the wrapper and filter based methods and selects a subset with

regards to both an independent criterion and a specific learning algorithm.

Considering the MUP dimensionality reduction challenges and the pros and cons of each

of the feature selection methods, we used an unsupervised filter feature selection method,

called Laplacian score (LS)[115], which is independent of any learning algorithm and can

be used to reflect the locality preserving power of each feature. As a result, the features

selected in this work, can be used in other EMC systems. Here, for each feature, its LS is

computed.

Let Lr denote the LS of the r -th MUP feature, fri denote the i -th sample of the r -th

feature, i = 1, . . . ,m, and t be a suitable constant. A nearest neighbor graph G with

weight matrix S is created based on m nodes. Given the i -th node corresponds to xi, if

either xi or xj is among the k -nearest neighbors of each other, then i and j are connected

and Sij = e−
‖xi−xj‖2

t , otherwise Sij = 0. The LS of the r -th feature is computed as follows

[115]:

fr = [fr1, ..., frm]T , D = diag(S1),1 = [1, ..., 1]T , L = D − S (6.1)

f̃r = fr −
fTr D1

1TD1
1, Lr =

f̃r
T
Lf̃r

f̃r
T
Df̃r

(6.2)
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Smaller LS values correspond to features with greater locality preserving power. Con-

sequently, the MUP features are ranked in ascending order based on their LS values and

those which have LS values smaller than a specific threshold are selected as the final MUP

features.

6.2.3 MUP Clustering

MUP clustering is performed by utilizing the NDEC clustering algorithm (see Chapter 4).

NDEC has four main steps including: 1) Dataset abstraction; 2) Local density estimation

using k -nearest neighbours; 3) Generation of sub-clusters based on local and global density

consistency; and 4) Generation of final clusters based on entropy consistency. A brief

overview of each step is provided below.

Dataset Abstraction

listNN is an abstraction for the dataset D which is defined using Eq. 6.3. Assume p and q

are two arbitrary MUPs in D, d (p, q) is the symmetric Euclidean distance between them,

and NNk(p) is a set that comprises of the k (a user defined parameter) nearest neighbours

of p.

listNN = {(p, q, d (p, q) )| p, q ∈ D ∧ q ∈ NNk (p)} ∀p∈D (6.3)

After listNN is created, it is sorted in ascending order with regards to d (p, q).

Local Density Estimation

Local density information (LDI) for MUP p is defined as the average of the distances in

the NNk(p) set and is calculated for all the MUPs in D.

LDI(p) =
1

k

k∑
i=1

{di ∈ NNk(p)} (6.4)
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Generation of Sub-Clusters

NDEC starts merging singletons and creating clusters by traversing listNN. Each tuple

(p,q,d(p,q)) in the list is analyzed for two conditions. First, the consistency of d(p,q) with

both LDI(p) and LDI(q) is investigated. Second, the consistency of LDI(p) and LDI(q)

is analyzed (see Chapter 4). If these conditions are met, p and q are put into one cluster

and their associated tuple is removed from listNN. Note that if either of p or q belongs

to a cluster, global density information (GDI) is calculated and utilized instead of LDI to

define the above distance consistency criteria (see Chapter 4). To define GDI, assume Cp

represents the cluster to which MUP p belongs, listNN(Cp) is a list of all associations that

belong to Cp, and Np is the length of listNN(Cp). The GDI for Cp is calculated as the

average of the distances (dj) in listNN(Cp):

GDI (Cp) =

∑
∀dj∈listNN (Cp)

dj

Np

(6.5)

Generation of Final Clusters

While traversing listNN and analyzing an association (p,q,d(p,q)), if both p and q belong

to a cluster, the global entropy information (GEI) for each cluster is calculated and if the

GEIs are consistent (see Chapter 4) the sub-clusters are merged. GEI is defined as follows:

First, calculate the order statistics of the distances in listNN(Cp) which are the distances

of listNN(Cp) arranged in ascending order
({
d(1), d(2), . . . , d(Np)

})
. Second, estimate the

entropy of the distances in listNN(Cp) using Eq. 6.6 based on calculating the m-spacings

of the order statistics of the distances in listNN(Cp), where m =
√
Np . [89].

GEI (Cp) =
1

Np −m

Np−m∑
n=1

Log(
Np + 1

m
(d(n+m) − d(n))) (6.6)

The obtained k clusters ({Cj}∀j∈[1,k]) will be used as the MUP characterization classes.
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6.2.4 Muscle Representation

Similar to the method proposed in section 5.2.4, a muscle is represented by a k -dimensional

feature vector ~v = (v1, . . . , vk), where k is the number of obtained clusters in the MUP

feature space. To create this embedding, the MUPs
{−→
x∗i1, . . . ,

−→
x∗in

}
sampled from the muscle

Xi should be characterized/labelled. Let p be a given MUP, and q be an arbitrary MUP

that belongs to cluster Cj. The degree to which p belongs to Cj is calculated using Eq.

6.7:

Bln (p, Cj) = min{d (p, q)}∀q∈Cj
(6.7)

The MUP p class label is determined using Eq. 6.8:

Cp = argminCj

{
Bln (p, Cj)

GDI (Cj)

}
∀j∈[1,k]

(6.8)

A muscle Xi is then represented by a feature vector
−→
Mi using Eq. 6.9 where mi is the

number of MUPs sampled from muscle Xi and xij is the jth MUP sampled from muscle Xi.

−−→
Mi =


∣∣∣{xij ∈ C1}1≤j≤mi

∣∣∣
mi

, . . . ,

∣∣∣{xij ∈ Ck}1≤j≤mi

∣∣∣
mi

 (6.9)

6.2.5 Electrophysiological Muscle Classification

To assess the performance of the proposed MIL-based EMC system a global and an ensem-

ble learning model classifier were used. A support vector machine (SVM) [109] was selected

as the global model classifier, due to its good generalization capability, and a random forest

(RF) [116] was selected as the ensemble model classifier, due to its good transparency and

generalization capability.

SVM is a binary classifier whereas the muscle classification problem has three classes,

as a result, according to the one-against-all scheme, three classifiers were considered: SVM-
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Nor (normal vs. others), SVM-Myo (myopathic vs. others), and SVM-Neuro (neurogenic

vs. others). All three SVM classifiers had a Gaussian radial basis (RBF) function kernel

(Eq. 6.10), where x is the input feature vector to the SVM, x’ is the center of the kernel,

and γ is the width of the kernel.

K (x, x′) = e−γ||x−x
′||2 (6.10)

A RF was created from the combination of T decision trees grown from bootstraps

sampled from the embedded MUP characterization feature vectors. Individual trees were

grown using a greedy procedure, and for each node, Shannon entropy [117] was used as

the measure of an impurity criterion.

6.3 Evaluation

The experiments were performed on EMG data that were sampled from four electrophys-

iologically different groups of muscles (i.e. muscles with different structure and motor

control properties). These groups include proximal arm, proximal leg, distal arm, and

distal leg muscles. Routine clinical needle EMG was performed in deltoid (DLT), vastus

medialis (VM), first dorsal interosseous (FDI), and tibialis anterior (TA) muscles. Table

6.2 provides a detailed description of the number of muscles studied and the corresponding

number of MUPTs extracted from each muscle type.

The EMG data were sanitized of any personally identifiable information and approved

by the institutional review board (IRB). The individuals participated in this study were

between 21 to 90 years of age. The studied muscles had different levels of disease in-

volvement ranging from slight to moderate to severe. A variety of neurogenic diagnoses

such as polyradiculopathy, polyneuropathy, and motor neuron disease and myopathic di-

agnoses such as inflammatory myopathies, and facioscapulohumeral muscular dystrophy

were observed in the patients.
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Table 6.2:
Evaluation Dataset Description

Muscle # of Normal # of Myopathic # of Neurogenic

Group Name Muscles MUPTs Muscles MUPTs Muscles MUPTs

Proximal
Arm Deltoid 40 915 10 196 13 247

Leg VM 60 1230 9 171 13 272

Distal
Arm FDI 59 1223 8 113 26 426

Leg TA 49 1142 10 207 25 431

The data were detected using a Nicolet Viking EMG machine and a concentric needle

electrode. The bandwidth was 10 Hz to 10 kHz and the sampling rate was 48 kHz. For

each studied muscle, EMG data were collected from four spatially distinct locations to

get a statistically representative MU sample. To this end, first, a concentric needle was

positioned during low level muscle contraction. Next, the level of contraction was increased

until 40-60 MUPs/s were acquired and then 15 s of EMG signal was detected.

Muscles were labelled by an experienced neurologist as normal, myopathic or neuro-

genic based on manual assessments of MUPs detected during low level muscle contraction

across all sampled needle positions. Next, MUPTs were extracted from the composite

EMG signals using decomposition-based quantitative electromyography (DQEMG) [16].

The DQEMG algorithms decompose intramuscular EMG signals acquired during isomet-

ric contractions. To this end, the signal is band-pass filtered and the position of the MUPs

in the filtered signal is detected using a threshold crossing method, and then the detected

MUPs are grouped using clustering and knowledge-based classification algorithms. The

proposed MIL-EMC system performance was evaluated using seven performance indicators

including an accuracy measurement (ATot), as well as, normal, myopathic and neurogenic

sensitivities and specificities.
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6.4 Results and Discussions

In this section, the results of the experimental evaluation of the proposed MIL-based EMC

system are presented and then its performance is compared with that of four previous EMC

systems proposed in [37] which are based on three conventional (i.e. normal, myopathic,

and neurogenic) MUP characterization classes.

Fig. 6.1 shows the LS values of both time and spectral domain MUP features of the

four different muscle types. In all cases, the number of nearest neighbors used for LS

calculation was 4. This number was determined empirically. We constructed a nearest

neighbour graph considering 3, 4, 5, and 6 nearest neighbours and among them 4 nearest

neighbours resulted in more meaningful clusters with regards to the electrophysiological

concepts.

Figure 6.1: LS values of time-domain and DWT MUP features

The LS algorithm ranks MUP features based on their ability to preserve locality, which

can be helpful to find representations of MUP normality and abnormality. Hence, the LS

cutoff threshold for MUP feature selection should be selected based on the validity and

quality of the resulting clustering solution. Note that no ground truth exists for MUP
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clustering, as a result, the best clustering solution was determined by its resulting EMC

accuracy. Consequently, the final LS cutoff threshold is the one which is associated with

the clustering solution that provides the best EMC accuracy. In this work, the LS cutoff

threshold was 0.3. In all four muscle classes, Area, ShapeWidth, NF Duration, NF Jiggle,

and NSEs of D9, D8, D7, D6, D5, and D4 were selected as the best features.

Table 6.3: MUP dataset clustering results. Note that row sums under Cluster Percentages and column sums under Data
Percentages are 100.

Cluster Percentages Data Percentages

Mus. Cl# Size %Nor %Myo %Neuro %Nor %Myo %Neuro

DLT

1 748 92 0 8 75 0 25

2 290 77 7 16 24 11 18

3 165 0 100 0 0 84 0

4 140 0 0 100 0 0 57

5 15 33 67 0 1 5 0

VM

1 718 91 1 8 47 3 22

2 665 87 1 12 53 4 30

3 159 0 100 0 0 93 0

4 131 0 0 100 0 0 48

FDI

1 994 86 0 14 70 0 33

2 420 88 1 11 30 4 11

3 240 0 0 100 0 0 56

4 108 0 100 0 0 96 0

TA

1 1102 81 3 16 78 14 42

2 505 49 31 20 22 75 23

3 151 0 0 100 0 0 35

4 22 0 100 0 0 11 0

Table 6.3 shows the results obtained after applying NDEC to the selected MUP feature

space of four different muscle types. Depending on the level of disease involvement, my-

opathic and neurogenic muscles usually have several normal MUs. As such, normality is

represented by clusters that have mixed patterns of ”normal” MUPs recorded in normal,

myopathic and neurogenic muscles. For all four muscle types, NDEC has discovered a
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Figure 6.2: TA MUP Clustering Results. For each cluster, 3 representative MUP templates (i.e. MUP templates with
close to median cluster area) are presented (25 ms sweep). Green, red and blue represent recordings from normal,

myopathic and neurogenic muscles respectively. Time domain features were min-max normalized.

purely myopathic and a purely neurogenic cluster. For the DLT, VM, and FDI musles, the

myopathic data percentages for the myopathic clusters (84%, 93%, 96%) are greater than

the neurogenic data percentages for the neurogenic clusters (57%, 48%, 56%). Myopathic

processes affect muscle fibers based on their spatial distribution and independent of their

MU composition, as a result muscle fibers from different MUs can be simultaneously af-

fected. The level of myopathic involvement is dependent on the number of fibers affected.

As the disease progresses, most MUs will be affected.

In contrast, neurogenic processes affect motor neurons. All of the muscle fibers be-

longing to a MU of an affected motor neuron are affected and can become denervated and

subsequently reinnervated by a healthy motor neuron. The degree of neurogenic involve-

ment is related to the number of MUs affected. With increased neurogenic involvement

the sizes of surviving MUs and the MUPs they generate increase. If reinnnervation is

ongoing, unstable MUPs will be recorded. However, a relatively large number of healthy

MUs generating normal MUPs may still exist. For the TA muscles, 75% of the MUPs

recorded in myopathic muscles belong to cluster 2, which in turn could be interpreted as a
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myopathic cluster despite 69% of its MUPs being recorded in non-myopathic muscles. It is

worth noting that normal and neurogenic muscles can produce MUPs that look myopathic.

This usually happens due to MU sampling phenomenon. Some MUs may have one or two

fibers close to the detection surface whereas the bulk of their fibers are far away. In this

case, those distant MUPs are going to have similar characteristics as myopathic ones due

to dropping amplitude with volume conduction.

The box plots of Fig. 6.2 show the distributions of the features of TA MUPs for each

NDEC cluster with respect to the class of muscle they were recorded in (i.e. normal, my-

opathic, or neurogenic). Cluster 4 contains MUPs recorded in myopathic muscles, cluster

3 contains MUPs recorded in neurogenic muscles and the other two clusters have various

mixtures of MUPs recorded in normal, myopathic or neurogenic muscles. The clustering

results are consistent with expected disease process effects. A relative increase in high spec-

tral content and low values for size features reflect myopathy whereas, a relative increase

in low spectral content and high values for size features reflect neuropathy.

The box plots of Fig. 6.3 show the distributions of the time domain feature values of

VM DQEMG data samples for each NDEC cluster with respect to the class of muscle they

were recorded in (i.e., normal, myopathic, or neurogenic). As can be seen, each obtained

cluster represents a concept. Cluster 4 contains data from MUPTs recorded in neurogenic

muscles, cluster 3 contains data from MUPTs recorded in myopathic muscles and the other

two clusters have various mixtures of data from MUPTs recorded in normal, myopathic

or neurogenic muscles. The clustering results are consistent with expected disease process

effects. We can observe that low values for area reflect myopathy whereas, high values for

area reflect neuropathy.

Table 6.4 shows the performance of the proposed MIL-based EMC systems. The SVM

learning parameters (γ and the penalty factor C ) [109] were determined via grid-search

using the leave-one out cross validation process. For this purpose, the classification accura-

cies using various pairs of (C, γ) were calculated and the pair with the best cross-validation

accuracy was selected. The number of decision trees, T in the RF was also selected via
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Figure 6.3: Vastus medialis DQEMG clustering results. Data recorded from neurogenic, myopathic, and normal muscles
are represnted using blue, red, and green respectively. In order to have better representation, min-max normalization

method used for time domain features.

Table 6.4:
Performance Indexes of the proposed MIL-EMC system.

Classifier Muscle SpcMyo SpcNeur SpcNor SenMyo SenNeur SenNor ATot

SVM DLT 100 100 95.65 100 92.30 100 98.41

SVM VM 100 100 95.45 100 92.31 100 98.78

SVM FDI 100 100 94.12 87.50 96.15 100 97.85

SVM TA 98.65 98.31 100 90 96 100 97.61

RF DLT 100 100 100 100 100 100 100

RF VM 100 100 95.45 100 92.31 100 98.78

RF FDI 100 100 94.12 87.50 96.15 100 97.85

RF TA 97.30 98.31 100 90 92 100 96.42

leave-one out cross validation. The SVMs used were trained using a penalty factor C of

100 and a kernel width γ of 0.1. The number of RF trees used was 68.

As Table 6.4 shows, the normal sensitivities in all muscle types are 100 which shows that

the NDEC clusters obtained to represent MUPs recorded in muscles affected by myopathic
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and neurogenic disorders are highly diagnostic. In addition, the specificities are often equal

to 100 when pathological muscles are considered. This result may be influenced by the

small number of myopathic and neurogenic muscles compared with normal ones. However,

as the number of myopathic and neurogenic muscles increase, we expect that the clustering

algorithm will be better able to find representations of myopathic and neurogenic MUPs.

Hence, the final classification accuracies, sensitivities, and specificities should not be altered

significantly.

Table 6.5:
Comparison between MIL-EMC and previous EMC techniques

Muscle OGM-EMC UGM-EMC OEA-EMC UEA-EMC MIL-EMC

DLT 83.2 74.68 84.87 79.81 100

FDI 86.02 81.5 89.05 84.32 97.85

Table 6.5 shows a comparison between the EMC accuracies obtained in this work and

the accuracies reported in a previous effort [37], using the same DLT and FDI muscle

datasets. In this previous work, four different EMC methods were implemented including

EMC based on a Gaussian mixture model (GMM) using ordered binarization mapping

(OGM-EMC), EMC based on a GMM using unordered binarization mapping (UGM-EMC),

EMC based on event association rules (EAR) using ordered binarization mapping (OEA-

EMC), and EMC based on EAR using unordered binarization mapping (UEA-EMC). All

of these methods used only three conventional MUP characterization classes. As Table

6.5 shows, the performance of the proposed MIL-based EMC system is significantly higher

than that of the other EMC systems. This improvement can be due to two factors including

utilizing spectral and NF features and characterizing MUPs based on a dynamic number

of MUP characterization classes which is dependent on clustering a MUP feature dataset.
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6.5 Conclusion

Electrophysiological muscle classification can naturally be cast as an instance of a multiple

instance learning problem. In this chapter, a new electrophysiological muscle classification

system is proposed which transforms the main multiple instance learning problem into a

standard supervised learning problem. To this end, morphological, stability, near fiber and

spectral distribution features are used to represent MUPs detected during standard clinical

EMG examination of a muscle. A mapping function is then utilized to embed the sampled

MUPs of the muscle into a single feature vector. Finally, a muscle-level classifier is used

to classify the muscle as normal, myopathic or neurogenic.

To determine the mapping function, training sets of suitably represented MUPs were

clustered to group MUPs associated with normal and differently diseased MUs. Laplacian

scores, unsupervised measures of the locality preserving quality of a feature, were used to

select suitable time and spectral domain MUP features. This work considers more than

the three conventional groups (i.e. normal, myopathic, and neurogenic) for characterizing

MUPs. This improves representation of the effects of disease on both fiber spatial distribu-

tions and fiber diameter distributions which lead to a continuity of MUP characteristics.

Quantitative results show the superior and stable performance of the proposed MIL-based

electrophysiological muscle classification system compared to previous works.
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Chapter 7

Conclusions and Future Work

In this chapter, a summary of the thesis contributions and their potential significance are

presented. In addition, important research directions that can be pursued for future work

are discussed.

7.1 Thesis Contributions

A Novel Density-Based Clustering Algorithm to Discover Natural Clusters

In this thesis, a novel dynamic density based clustering algorithm called Neighbourhood

Distance Entropy Consistency (NDEC) is described and its absolute and relative perfor-

mance when applied to a variety of synthetic and real data sets with a range of data

characteristics and application domains is presented and discussed. NDEC employs both

local and global feature space density information as well as neighbourhood distance en-

tropy consistency to discover natural clusters existing in data that have arbitrary shapes

and densities. NDEC does not require any prior knowledge or assumptions about the num-

ber, shape, or density of the clusters. The NDEC clustering algorithm has four main steps

including: 1) Local density estimation using the k -nearest neighbours; 2) Generation of
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sub-clusters based on local and global density consistency; 3) Generation of final clusters

based on neighbourhood distance entropy consistency; and 4) Outlier identification and

handling.

Furthermore, one heuristic for selecting NDEC parameters was presented and its va-

lidity was further investigated using several artificial datasets with respect to the ARI

measure. The superiority of NDEC over representative algorithms from three different

groups of clustering paradigms, with respect to the ARI and NMI performance indices,

was demonstrated using benchmark artificial and real clustering datasets. The evaluated

clustering paradigms include clustering algorithms that are capable of finding clusters with

arbitrary shape and arbitrary density, clusters with arbitrary shape and specific density

and clusters with specific shape and specific density. In addition, the utility of NDEC was

shown in two specific contexts including segmentation of white matter tracts in diffusion

tensor imaging and characterizing motor unit potential trains extracted from electromyo-

graphic signals. The results show that the NDEC clustering algorithm is helpful for clinical

research and practice.

A Novel MIL Framework to Model Electrophysiological Muscle Classification

The objective in MIL-based EMC is to train a classifier fMUS, which can classify previously

unseen muscles. This task can be achieved either by following a MUP-level, or muscle-

level approach. Using a MUP-level approach, first, a MUP classifier fMUS is trained and

subsequently fMUS is defined by combining the outputs of fMUP . Note that in muscle

training datasets, labels are only provided at the muscle level. Hence, fMUP must rely on

assumptions about the relationship between MUP and muscle labels. Remember that there

might be some MUPs recorded from a muscle that do not convey any information about

the class label of the muscle, or these MUPs may be even more related to other classes of

muscles. Hence, in practice it is not possible to pre-establish a defined relationship between

the MUP label and its corresponding muscle label.

Using a muscle-level approach, fMUS is trained directly by defining a supervised rep-
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resentation of the muscles. Muscle-level methods, sometimes called ”interference pattern

analysis”, may not provide sufficient sensitivity for clinical application because of superpo-

sitions of MUPTs, which makes detection of marginal levels of disease involvement difficult.

While current methods are designed to learn the discriminant information either at

the MUP or muscle level, we propose to incorporate both levels of information. To this

end, a discriminative embedding of the original feature space is defined based on the

characterizations provided by the cluster-adapted MUP classifier. Furthermore, a certain

type of information may only be discovered if we consider the discriminative information

of the ensemble of MUPs extracted from an EMG signal acquired from the muscle, and

not only at the characteristics of the individual MUPs. The proposed method in this thesis

incorporates the strengths from both paradigms and hence increases the robustness and

accuracy of the obtained results.

A Novel Method to Infer MUP Labels without Full Supervision

Traditional EMC systems assume that MUPs can be classified into just three classes: nor-

mal, myopathic, and neurogenic. Additionally, they assume a given relationship between

the labels of the MUPs and those of the muscles they were recorded from. Given this

assumption, these methods learn a MUP-level classifier. However, the assumption that

there are only three classes of MUPs does not necessarily hold in reality. It might well

happen that a myopathic muscle is characterized by containing several classes of MUPs.

In this work, a novel method was proposed to characterize MUPs into a dynamic number

of characterization classes. To this end, the NDEC clustering algorithm was utilized to

discover natural clusters existing in a MUP feature space.

This was performed to highlight the effects of disease on both fiber spatial distribu-

tions and fiber diameter distributions, which lead to a continuity of MUP characteristics.

In addition to NDEC, four clustering algorithms using various clustering approaches were

implemented to find a relationship between final muscle classification accuracy and the ob-

tained representations for MU normality and abnormalities. The obtained results demon-
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strate that NDEC can provide superior outcomes with regards to both muscle classification

accuracy and the DBCV relative clustering validation index.

A Novel Method for Muscle Classification which relies on the Characterization

of MUPs

In this thesis, a new muscle classification system was proposed, which classifies muscles

based on MUPs detected during isometric contractions. To this end, each muscle is rep-

resented by one feature vector that indicates the proportions of classes of MUPs that are

present in the EMG signals acquired from that muscle. As such, muscle classification is

performed by first characterizing MUPs based on the discovered characterization classes,

followed by embedding MUP characterizations into feature vectors input to a standard

supervised classifier. SVMs, Random Forests and Nearest Neighbour classifiers were used

to classify muscles.

7.2 Future Research

The following interesting challenges can be taken on in the future to extend the methods

proposed in this work.

� Quantify the Diagnostic Information of the Discovered MUP Characteri-

zation Classes: When clustering a MUP feature dataset, several clusters are found.

Typically, only a small number of the discovered clusters are meaningful or inter-

esting. Hence, cluster ranking should be applied to select the important clusters.

To this end, the importance of a typical cluster should be quantified based on the

diagnostic information of that cluster. In this regard, two factors need to be consid-

ered including: cluster cohesion, and the probability of observing the cluster in the

myopathic, neurogenic, and normal muscle classes.
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� Develop an Appropriate Aggregation Scheme for MUP Characterization

Scores: The notion of a diseased muscle can range from at least one MUP extracted

from an EMG signal of the muscle being characterized as diseased to all MUPs

being characterized as diseased. Hence, we cannot have any prior knowledge about

the exact fraction of diseased MUPs extracted from the EMG signals of a diseased

muscle. As a result, a diverse set of aggregation functions should be implemented

and analyzed.

� Develop an Automatic Method to Estimate the NDEC Parameters: NDEC

has three parameters: (1) Number of nearest neighbours (k), (2) Distance consistency

(l), and (3) Entropy consistency (h). In this thesis, one potential unsupervised

heuristic for selecting appropriate values for these parameters was presented. This

heuristic is based on an existing internal clustering validation metric called Density-

Based Clustering Validation (DBCV)[104]. It is worth noting that the correlation

between DBCV and ARI is positive; consequently an appropriate value for k, l, and h

might be selected based on the DBCV measure. However, this correlation is not +1,

hence selecting parameters based on DBCV might not result in optimal outcomes

with respect to ARI. A different direction for future research could be to propose a

new heuristic to estimate the NDEC parameters.

� Develop a Transparent EMC System: The main role of EMC is guiding the

electrophysiological muscle training data analysis and interpretation. This task in-

volves effective and efficient communication of final EMC results to experts. Thus,

human-interpretable representation of these results is critical. The MIL-based EMC

system proposed in this dissertation has some degree of transparency. The discov-

ered clusters representing MUP characterization classes and the unsupervised filter

MUP feature selection method based on Laplacian scores, which reflects the locality

preserving power of each feature, are two important examples that help in providing

transparency. A transparent muscle-level classifier could also be investigated as an

effort to supply experts with sufficient transparency.
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[76] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding clusters of different

sizes, shapes, and densities in noisy, high dimensional data. In Proceedings of the

2003 SIAM International Conference on Data Mining, pages 47–58. SIAM, 2003.

[77] Bao-Zhi Qiu, Xi-zhi Zhang, and Jun-yi Shen. Grid-based clustering algorithm for

multi-density. In Machine Learning and Cybernetics, 2005. Proceedings of 2005 In-

ternational Conference on, volume 3, pages 1509–1512. IEEE, 2005.

[78] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Op-

tics: ordering points to identify the clustering structure. In ACM Sigmod record,

volume 28, pages 49–60. ACM, 1999.

104



[79] Sheng Li, Lusi Li, Jun Yan, and Haibo He. Sde: A novel clustering framework based

on sparsity-density entropy. IEEE Transactions on Knowledge and Data Engineering,

2018.

[80] Soumaya Louhichi, Mariem Gzara, and Hanêne Ben-Abdallah. Unsupervised varied
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