
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

A Survey on Classification algorithms of
Brain Images in Alzheimer’s disease
based on Feature Extraction techniques
RUHUL AMIN HAZARIKA1, ARNAB KUMAR MAJI1, SAMARENDRA NATH SUR2 (SENIOR
MEMBER, IEEE), BABU SENA PAUL3 (MEMBER, IEEE), AND DEBDATTA KANDAR1
1Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India, 793022 (e-mail: rahazarika@gmail.com,
arnab.maji@gmail.com, kdebdatta@gmail.com)
2Department of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim, India,
737136 (e-mail: samar.sur@gmail.com)
3Department of Electrical and Eloctronic Engineering Department, University of Johannesburg, University of Johannesburg, Johannesburg Area, South Africa,
PO Box 524 Auckland Park, 2006 (e-mail: bspaul@uj.ac.za)

Corresponding author: Debdatta Kandar (e-mail: kdebdatta@gmail.com).

ABSTRACT Alzheimer’s disease (AD) is one of the most serious neurological disorders for elderly people.
AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD
patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and
the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging
research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through
an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages,
namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the
case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress
on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed
few existing state-of-art works for AD detection and classification, based on different feature extraction
approaches. We have summarized the existing research articles with detailed observations. We have also
compared the performance and research issues in each of the feature extraction mechanisms and observed
that the AD classification using the wavelet transform-based feature extraction approaches might achieve
convincing results.

INDEX TERMS Alzheimer’s Disease (AD), Hippocampus, Magnetic Resonance Imaging (MRI), Mild
Cognitive Impairment (MCI), Progressive MCI (PMCI), Stable MCI (SMCI)

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurological disorder that
mainly destroys the memory cells in the human brain. In
AD, patients experience symptoms like memory loss, visual
changes, confusions, etc [1]. AD destroys the memory and
thinking skills slowly and in the end, it kills the capability to
carry out even the simplest tasks[1]. The effects of AD can
be observed from the age of the early 60s. In 2019, "National
Institute on Aging, U.S.A", has done a survey and found
that around 6 million people from the U.S.A are affected
by AD [2]. In a similar kind of report, the "Alzheimer’s and
Dementia Resources" has concluded that in India, more than
4 million people are suffering from AD [3]. Worldwide, the
growth of AD patients is enormous and alarming.

MCI is a dementia stage, where a patient experiences
more cognitive declination than a CN individual of the same
ages [4]. Although people in MCI experience problems with
languages, memories, thinking skills, etc., their symptoms
are not as severe as those of AD. According to a research
report, 8 out of 10 people with MCI develop AD within 7
years, whereas the probability of converting to AD from CN
is 3 out of 10 [5]. Therefore, MCI is considered an early stage
of AD. MCI is classified into two stages namely SMCI and
PMCI. After following up the dementia stage for an MCI
patient, over the years, if the dementia stage remains stable,
or if it shows a very slow rate of progression to the AD, then
the patients are said to be in SMCI dementia stage [6]. Some
MCI subjects experience a high rate of cognitive declination
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over the ages, and after a few years they may progress to the
stage of AD, which are known as the PMCI subjects [7].

A. CLASSIFICATION OF AD USING BRAIN IMAGES
Dr. Alois Alzheimer discovered AD in the year 1906 [8].
Since then, researchers have been trying to develop a mech-
anism that can detect AD accurately. Some of the popular
approaches for AD diagnosis are described in table 1.

The manual classification of AD by the neurologist is
time consuming and may not provide accurate results all the
time. Many factors may affect the manual diagnosis process,
such as the patient’s age, nervousness, poor eyesight, etc.
Researchers have been trying to determine the complicated
changes in brain tissues that occur in early stages as well as
during the progression of AD [9]. According to the research
reports, changes in the brain tissues may begin much before
a person develops AD, i.e, toxic changes occur in the brain
before the symptoms of AD occurs [10][11]. When a person
develops AD, the brain experiences some unusual transfor-
mations of proteins from amyloid plaques and tau tangles
[12][13]. The process gradually makes the healthy neurons
stop working and connection among all other neurons starts
splitting [14].

The initial damage occurs in the areas of the brain which
are responsible for forming memories, such as the Hippocam-
pus, Entorhinal Cortex, Amygdala, etc. [15][16][17]. Gradu-
ally, more neurons die, which causes additional damage in
other parts of the brain and leads to volumetric shrinkage.
Structural imaging tools, such as MRI, Computed Tomog-
raphy (CT), etc. can provide information about the shapes,
positions, and volumes of brain tissues [18]. Hence, these
brain imaging tools can be used for diagnosing the AD
[19][20]. By segmenting the affected tissues in the brain
images, it is possible to observe the neurological changes
that occur in AD, and the information can be used to train
a classifier to classify AD more accurately [21][22].

Challenges in the detection of AD: Diagnosing AD is a
complex task. Based on the memory test, it is a challenge
for the neurologist to decide whether a person is developing
AD or not, because, significant memory loss (more or less)
is common in normal aging too [23]. Hence, classification
of AD, based on the bio-markers in the brain tissues is
preferable. During the progression stage of AD, the most
major affected brain regions are responsible for the cognitive
operations [24]. The major challenges in classifying AD
using brain images are proper segmentation of brain MRI’s,
detection of Region of Interest(RoI), extraction of appropri-
ate feature set, and comparison amongst the tissues of all the
subject groups [25][26]. Hence, a proper feature extraction
technique is absolutely necessary for AD classification using
brain images.

B. COMMONLY USED METHODOLOGY FOR
CLASSIFICATION OF AD USING BRAIN IMAGES
For effective classification of any images, numerous steps are
involved. The initial task for classification is pre-processing

which includes removal of noise etc. Then appropriate
methodology is invoked for effective feature extraction. The
distinct features are selected for the appropriate classification
and a common methodology for the same is shown in figure
1.

1) Data Collection
The first step towards the classification approach is to obtain
a sufficient amount of brain images as well as the patient
details for different subject groups, such as CN, MCI, and
AD patients. The most common types of brain images used
by the researchers, namely Structural MRI, Fluid-attenuated
inversion recovery (FLAIR), Magnetization Prepared Rapid
Acquisition Gradient Echo (MP-RAGE), T2 Weighted, Func-
tional MRI (FMRI), Positron Emission Tomography (PET),
etc. Apart from the brain images, some other relevant infor-
mation, such as the patient’s medical history, Mini-Mental
State Exam (MMSE) score, genetic information, etc. are also
may be required in the study of AD. The most commonly
used publicly available online data sources for AD classifi-
cation, namely Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [27], Open Access Series of Imaging Studies (OA-
SIS) [28], etc.

2) Pre-processing
In the perspective of image classification, pre-processing is
the collection of operations to extract relevant information
before processing to further computational process [29]. To
get an accurate classification result, pre-processing is one of
the most important steps [30]. The most commonly used pre-
processing steps for AD classification include; image resiz-
ing, noise filtering, skull stripping, morphological operations,
etc. The brain imaging mechanisms capture some unwanted
pixels in the form of the skull, hence among all the pre-
processing steps, skull stripping is considered one of the most
essential steps [31].

Some of the most commonly used software’s/toolboxes
for medical image processing are: Diffeomorphic Anatomic
RegistrationThrough Exponentiated Lie (DARTEL) for im-
age registration [32], Montreal Neurological Institute tem-
plate (MNI) for affine registration [33], Statistical Parametric
Mapping (SPM) for realignment, smoothing and spatial nor-
malization [34], FreSurfer for volumetric feature extraction
[35], Voxel-based morphometry (VBM) for bias-correction
segmentation, morphological changes estimation, etc. [36],
FMRIB Software Library (FSL) for segmentation [37], In-
ternational Consortium for Brain Mapping (ICBM) for ex-
traction of the region of interests, etc [38]. Although VBM-
8 can produce convincing results in various pre-processing
steps, but sometimes it fails to determine the brain morpho-
logical changes accurately. Computational Anatomy Toolbox
(CAT) is another toolbox for estimating the morphometric
changes in the human brain. The combination of CAT-12 and
the VBM8 toolboxes can provide more accurate results in
estimating the morphological changes in the brain [39].
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TABLE 1: Summary of some of the commonly used AD diagnosis approaches introduced by several associations

AD Diagnosis Approaches Introduced by Advantages Limitations
Based on the score obtained from the Mini-Mental
State Examination (MMSE), Short Blessed Test,
Clinical Dementia Rating (CDR),
Clinical Impression of Global
Change (CIBIC), Alzheimer Disease Assessment
Scale (ADAS), etc.

American
Psychiatric
Association

The easiest way
for the diagnosis
of AD. Less technical
steps involved [40].

Time-consuming.
May not provide
accurate results all
the time [40].

AD diagnosis
based on the blood- based
Biomarkers.

Alzheimer’s
Precision
Medicine
Initiative

A blood test
is one of
the most feasible
approaches in
world-wide settings.
The process is less
costly and less
time consuming [41].

A variety of molecules such as,
proteins, peptides, nucleic acids, lipids,
metabolites etc. presents in the blood that
can be seen in plasma, exosomes,
cellular compartments etc.
To study such a large number
of components is a challenge
for the researchers [42].

Aβ/amyloid- Tau/Neurofibrillary-
Neurodegenerative (ATN) based
AD diagnosis (the decision is made
based on the amount of
Aβ/amyloid and Tau deposits).

National
Institute
on Aging
and
Alzheimer’s
Association
Research
Framework
for AD

This approach imposes
a little financial
burden to the patients
which is easily
accessible too. Moreover,
this approach
does not comprise
acquaintance to the
radioactivity [43].

The differentiation based
on this biomarker is
sometimes arbitrary as
in many diseases
other than AD,
almost the same
type of differentiation
can be seen [44].

Transcranial Magnetic Stimulation
(TMS)-based AD diagnosis approach
(a non-invasive therapeutic method
where the concept of a
changing magnetic field is
used. A paired-pulse TMS
differentiates AD patients).

Alzheimer’s
Disease
and Related
Disorders
Association

The process is
non-invasive.
In this approach
the patients can
continues with their
regular routines [45].

The process is
time-consuming
(at an average 30
actions within 6 weeks).
Patients may experience
nervousness before
and throughout the
treatment.

Electroencephalography
(EEG) based AD diagnosis approach
(it archives the electrical action of
nerve cells and hence ramblingly
signifies fundamental
intelligence function in brain).

American EEG
Society

One major benefit
is the capability
to perceive brain
activity as it
discloses in real-time
(in milliseconds) [46].

One major drawback
is that it’s
difficult to determine
the exact brain
position from the
electrical activity comes [47].

ELECTROVESTIBULOGRAPHY
(EVestG) based AD diagnosis
approach (This approach is based
on a test that determines
the field potential activity in the
exterior ear channel in
response to vestibular stimuli).

NeuralDx, Monash
University, Clayton

In this approach,
the signals are
determined painlessly as
well as non-invasively.
The approach is cost-
effective too [48].

The main disadvantage
is that the signal
is depending on
the patient’s physical
condition also [49].

FIGURE 1: Block diagram of the Methodology for Classification of AD using Brain Images

3) Feature Extraction
Feature extraction (FE) is a dimensionality reduction tech-
nique, that proficiently characterizes the fascinating portions
of input images as the feature vectors [50]. FE is the pro-
cess of producing novel features from the existing ones and
extracts the essential features that are useful for classify-
ing an object. The newly compact features can recapitulate
utmost information confined in the original set of features
[51]. feature extraction helps the classification model for
better training, reducing time complexity, and producing a

better accuracy. The most useful features in medical images,
namely colors, shapes, textures, etc. In some medical im-
ages, where color information is less explainable, the texture
and shape-based feature extraction techniques [52] is used.
The most commonly used feature extraction approaches in
medical image processing include; Principle Components
Analysis (PCA), Independent Component Analysis (ICA),
Linear Discriminant Analysis (LDA), Locally Linear Embed-
ding (LLE), t-distributed Stochastic Neighbor Embedding (t-
SNE), Autoencoders, etc.
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FIGURE 2: Organization of the paper

4) Feature Selection

Sometimes, feature extraction methods extract some less
relevant features that force a model to learn falsely, and
the accuracy of the final classification gets affected. Feature
selection is the procedure to select only the most relevant
features by eliminating the unwanted features by following a
particular classification paradigm [53]. Some of the major ad-
vantages of using a proper feature selection approach, namely
faster training of the algorithm, reducing the complexity &
over-fitting issues of the model, improving the accuracy of
the model, etc [54].

Feature selection can be done in two types of approaches,
by using the supervised methods, or by using the unsuper-
vised methods. An unsupervised method uses the concept of
correlation and eliminates non-used features while ignoring
the target variables. But in supervised methods, target vari-
ables are compared with the input variables to eliminate the
irrelevant features [55]. Among all supervised feature selec-
tion methods, wrapper, filter, and intrinsic/embedded are the
most commonly used methods in medical image processing.
In wrapper methods, firstly a performance evaluation metric
is created, and then the suitable algorithm is used to gen-
erate several models having different sets of input features.
Finally, an effective feature is selected which contributes the
most for exploring the best performing model [56]. One of
the commonly used examples of wrapper feature selection
methods is the Recursive Feature Elimination (RFE) method
[57]. In filter methods, some statistical algorithms are used to
estimate the correlation among the input and target variables,
and then based on the correlation scores, the best variables
are considered in the model [58]. Some of the commonly
used filter feature selection methods are Pearson’s Correla-
tion, Linear Discriminant Analysis (LDA), etc. Embedded is
a feature selection approach, where the model is trained by
acquiring a large dataset, and selection of the most relevant
features is carried out automatically [53]. Among all the most
widely used embedded feature selection approaches, Least
Absolute Shrinkage and Selection Operator (LASSO), and

Decision Trees, are the most common methods.

The most commonly used feature selection methods in-
clude; SVM-REF (Support Vector Machine- Recursive Fea-
ture Elimination), Genetic algorithm based technique, Pear-
son’s Correlation Coefficient (PCC), T-test Score (TS), Fisher
Criterion (FC), Gini index (GI), Statistical Dependency (SD),
Mutual Information (MI), Information Gain (IG), etc.

5) Classification

Image classification is a procedure to categorize a group of
pixels, based on some protocols by using spectral or textu-
ral features. Classification methods can be categorized into
two parts, namely supervised classification and unsupervised
classification [59].

In supervised classification, the training data are selected
visually, and then data are assigned to some pre-determined
categories such as roads, buildings, etc. and after that, some
statistical measures are created to apply in the entire image
[60]. Using the sample data, for categorizing entire images,
the two most commonly used methods, namely maximum
likelihood, and minimum distance. On the other hand, un-
supervised classification is an automatic procedure where
training data is not used. In unsupervised classification, some
particular properties of an image are thoroughly determined
using an appropriate algorithm [61].

Some of the commonly used image classification tech-
niques , namely Logistic Regression [62], Naïve Bayes [63],
Stochastic Gradient Descent [64], K-Nearest Neighbours
[65], Decision Tree [66], Random Forest [67], Support
Vector Machine (SVM) [68] etc.

Organization of the paper: The organization of this paper
includes 4 sections and a total of 10 subsections. The organi-
zation is represented pictorially in figure 2.
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II. SURVEY ON DIFFERENT CLASSIFICATION
METHODS OF AD BASED ON DIFFERENT FEATURE
EXTRACTION APPROACHES
Research is going on to match the finest feature extraction
approach for classifying AD accurately. Several approaches
have been proposed by the researchers. Some of the com-
monly used feature extraction approaches for AD classifica-
tion are discussed below.

A. TEXTURE-BASED FEATURE EXTRACTION
The texture is a set of repetitive information in an image
with a uniform interval [69]. Texture generally refers to
a particular region (region of interest) of an image, that
provides the same information such as shape, density, pixel
value, etc [69]. The procedure to extract texture features from
an image is called texture feature extraction. Texture features
play a major role in medical image processing[70]. Texture
features help in finding discriminative features from a brain
image for the classification of neurological disorders such as
AD, MCI, etc. [71].

Gray-Level Co-occurrence Matrix (GLCM) is one of the
most widely used texture feature extraction approaches pro-
posed by Haralick et.al.[72]. GLCM determines the statistical
features, according to the gray intensity values of a pixel. In
the literature, [73], and [74], it is described that the texture
features extraction by co-occurrence matrices provides a
better result than other texture discrimination methods. One
of the first approaches in texture analysis in the whole brain
volume using GLCM is discussed in the literature [75]. In the
literature [75], the authors used the GLCM based approach
in Dopamine Active Transfer scan (DaTSCAN) brain images
to determine the patterns that change due to the Parkinson’s
disease (PD), then used the achieved texture based infor-
mation for final classification, and achieved a convincing
result. Similarly, in the literature [76], the authors proposed a
PD classification method based on the texture based feature
extraction by using the GLCM approach. The authors have
used the 123I-ioflupane imaging to achieve the best texture
based features. Based on the features extracted by the GLCM
approach, a SVM classifier is used which finally achieved
an accuracy of 97.4% while classifying the PD. One of the
major advantages of the co-occurrence matrix is that the co-
occurring sets of pixels can be spatially related in different
directions by taking reference of the distance and angular

spatial relationships [77]. One of the major drawbacks of
GLCM is that, it is a sparse matrix with many elements
valued as zero, which is unnecessary for texture features
calculation, hence it is computationally expensive [78] [79].
Some literature on AD classification using texture based
feature extraction approaches and their research issues are
discussed below.

In the articles [80] [81], the authors have proposed an
approach of AD classification, where GLCM is used for
feature extraction. In the literature, [80], Gabor filter is used
along with the GLCM. After extracting a sufficient number of
features, the authors have applied the SVM- RFE (Recursive
Feature Elimination) method for selecting the most appropri-
ate features. In the literature, [81], texture features, such as
edge information, color, and boundary information, etc. are
mined from the whole MR images, and clinical features such
as Functional Activities Questionnaire (FAQ), Neuropsychi-
atric Inventory (NPI), Geriatric Depression Scale (GDS), etc.
are mined from the Grey Matter(GM), White Matter(WM),
and Cerebrospinal Fluid (CSF) segmented regions using the
GLCM approach.

Krishnakumar Vaithinathana, et al. proposed a classifi-
cation framework for the classification of AD, based on
texture information extraction [77]. The voxels, which are
selected as Region of Interests (RoIs), are mined and com-
bined, and different textures are determined collectively. To
select the best features, the authors have used 3 approaches,
namely Fisher score, Elastic net regularization, and the SVM
Recursive Feature Elimination (SVM-RFE) technique. For
classification, the authors have used random forest, linear
SVM, and the k-Nearest Neighbor (kNN).

Based on brain structural changes, and hippocampal shape,
G. Wiselin Jiji, et al. proposed a novel method for detecting
AD [82]. For extracting the features, the authors have identi-
fied the busy texture information. Busy textures are those for
which there are rapid changes of intensities from one pixel
to its neighbor. The spatial frequency of intensity alteration
is very high. Therefore, suppression of contract aspect, from
the information about the spatial rate of change in intensity,
indicates the degree of business of a texture. The authors have
used SVM for classification.

The performance comparison for different AD classifica-
tion techniques using Texture-based feature extraction ap-
proaches is presented in table 2.

TABLE 2: Performance comparison of the AD classification techniques using Texture-based feature extraction approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Zhe Xiao,
et al. [80]

AD vs. CN: 92.86%,
MCI vs. CN: 97.22%,
AD vs. MCI: 91.18%

AD vs. CN: 87.04%,
MCI vs. CN: 95.23%,
AD vs. MCI: 100%

AD vs. CN: 98.28%,
MCI vs. CN: 100%,

AD vs. MCI: 83.33%

AD vs. CN: 97.28%,
MCI vs. CN: 100%,

AD vs. MCI: 84.21%

AD vs. CN: 89.06%,
MCI vs. CN: 93.75%,
AD vs. MCI: 100%

NA

Tooba Altaf,
et al. [81]

AD vs. CN: 97.8%,
AD vs. MCI: 85.3%,
MCI vs. CN: 91.8%

AD vs. CN: 100%,
AD vs. MCI: 75%,
MCI vs. CN: 90%

AD vs. CN: 95.65%,
AD vs. MCI: 94.29%,
MCI vs. CN: 93.33%

NA NA NA

Krishnakumar
Vaithinathana,

et al. [77]

AD vs. CN: 87.39%,
MCI vs. CN: 63.48%,
AD vs. MCI: 63.16%,

PMCI vs SMCI: 66.38%

NA NA NA NA NA
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G. Wiselin Jiji,
et al. [82] NA AD vs. CN:

80%
AD vs. CN:

60% NA NA NA

From table 2, it can be observed that, amongst several AD
classification techniques using texture-based feature extrac-
tion approaches, the maximum classification performance is
claimed by Tooba Altaf, et al. [81] with an accuracy rate
of 97.8%. But the overall highest average performance is
acquired by Zhe Xiao, et al. [80] with a rate of 93.96%.

B. VOXEL MORPHOMETRY (VM) BASED FEATURE
EXTRACTION
For brain structure study, Morphometry analysis is one of the
most common approaches that determine a comprehensive
quantity of structural variances within or across the clusters
in the whole brain [83]. Voxel-based morphometry (VBM)
is a commonly used method for measuring the variances in
local concentrations of brain cells, by performing a voxel-
wise evaluation, taking reference from several brain images
of the same group [84]. VBM can be applied to determine the
volumetric changes, especially in Grey Matter (GM) regions
among different subject groups such as AD, MCI, CN, etc
[85] [86].

One of the first uses of the voxel-wise statistical test in
medical image processing is proposed in the article [87]. In
all the pre-processed SPECT images, a t-test based approach
is used to determine the voxel-wise features, and finally,
the model returns a total of 3816 no’s of features for each
subject. Based on the features extracted, the authors have
used the SVM classifier and achieved a convincing result
while classifying AD subjects.

In a similar work, I. Alvarez, et al. discussed a novel AD
classification method in the literature [88]. The authors have
used the concept of ensemble SVM classifiers trained on
different parts of the brain images (SPECT and PET), such
as the majority-voting, least squares estimation, as well as
the double layer hierarchical combing, and then a pasting-
votes technique-based approach is used to ensemble the clas-
sifiers. The authors claimed that the accuracy of the proposed
method is 97.5% for SPECT and 100% for PET images.

Based on an SVM-based classifier, a novel AD classifica-
tion approach is proposed in the literature [89]. The SPECT
images are pre-processed using a filtered back projection
(FBP) algorithm and a Butterworth noise removal filter.
By using the SPM toolbox, all the images are spatially
normalized to 95×69×79 voxel representation, where the
voxels contain the grey level intensities. The most relevant
features are selected by using a Fisher linear discriminant
ratio based approach. For classification, the authors have used
the SVM classifier with Radial Basis Function (RBF) kernel
and achieved a convincing accuracy.

A novel CAD developed for detecting AD from the SPECT
images is described in the literature [90]. The brain images
are divided into different components as the chains of succes-
sive voxels in 3 orthogonal ways; coronal, axial, and sagittal,

and then used as feature vectors in the SVM classifier. In
order the select the most relevant set of voxels for the final
classification, the authors have used the concept of Classi-
fication and Regression Trees. The performance evaluation
shows that the combination of the SVM and the classification
trees can produce a better classification result.

Some of the recently published literature, where AD clas-
sification is performed using VBM based feature extraction
approaches, are discussed below.

In the literature [91], authors proposed an AD classifica-
tion method using Voxel-based morphometry (VBM) based
feature extraction to obtain the brain regions, where the grey
matter volumes decreased significantly, and hence marked
those regions as a 3D mask. The 3D masks are then applied
in all the pre-processed images to extract the voxel values as
raw-feature vectors.

For AD classification, in an article [92], authors have
proposed a classification mechanism to identify AD vs CN
subjects from the structural MR images, based on the Voxel-
based morphometry (VBM) analysis. The authors have used
Statistical Parametric Mapping (SPM)8, Voxel-based mor-
phometry (VBM)8 toolbox, and Diffeomorphic Anatomical
Registration using The Exponentiated Lie algebra (DAR-
TEL) toolboxes with Voxel-based morphometry (VBM) for
the enhancement correction of images. The authors have used
only grey matter information in their study, which is further
spatially smoothed with a Gaussian smoothing-based kernel.
Further, the changes in grey matter volumes are determined
by a voxel-based analysis. For identifying the Volume of
Interests (VoIs), a 3D mask is generated from the atrophy
regions, depending on the results of the Voxel-based mor-
phometry (VBM) and DARTEL approaches. For extracting
the regions, where grey matter volumes decreased, Voxel-
based morphometry (VBM) analysis of each training data set
is used through a 3D mask.

To classify AD vs CN, MCI vs CN, and MCI vs AD,
from brain MR images, in literature [93], the hippocam-
pal morphometry of CN, MCI, and the AD subjects are
mainly focused. For extracting the hippocampus, the authors
have used a 3D Automated Anatomical Labeling (AAL)-
based approach, where 3D images are superimposed on the
AAL, and the voxels which are categorized as hippocampal
are selected. The authors have used 2D Circular Harmonic
Functions (CHF) to select the contradicted patterns, slice by
slice basis. For analyzing the reduction in the hippocampus
volume, authors have counted the cerebrospinal fluid voxels
in the hippocampal region and concluded that CN people
have less cerebrospinal fluid than MCI and AD affected
people.

A multi-atlas based classification approach for AD di-
agnosis, based on the morphometry features, is described
in literature [94]. For obtaining the features on multiple
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atlases, the authors have performed a registration approach
for spatial normalization followed by a quantification ap-
proach for morphometric measurements. Then a grey matter
density map is extracted for feature representation from the
brain images. The watershed segmentation technique on the
correlation map is applied for selecting a set of Region
of Interests (RoIs). For selecting the most relevant voxels,
Pearson Correlation (PC) method is applied. Then all the
neighboring voxels, for which there is no increment of the
PC, are included iteratively. For each atlas space, 1,500 most
discriminative Region of Interests (RoIs) features are desig-
nated as the representation of a subject. The authors proposed
a View-Centralized Multi-Atlas (VCMA) approach with the
help of the Accelerated Proximal Gradient (APG) method,
for selecting the appropriate features from each atlas.

In the literature, [95], a novel classification technique for
classifying AD, MCI, and CN subjects is proposed based
on the morphometry feature analysis. The authors have used
FMRIB Software Library (FSL) package to segment brain
parts into 3 different tissues, namely grey matter, white mat-
ter, and cerebrospinal fluid. Image registration is performed
to obtain subject-labeled images, based on a template consist
of 93 manual labels. The grey matter tissue volume of each
region is computed and used as a feature, which is then
aligned to its particular image using a rigid transformation.
The average intensity of each Voxel of Interest is computed
as another feature. For each subject, a total of 93 features are
obtained from MRI and additional 93 features from a PET
image. The authors have used the multi-task feature selection
technique, which can preserve both the multi-modality cor-
relation within the same subject and the relationship across
modalities between different subjects. The Accelerated Prox-
imal Gradient (APG) method is applied for obtaining the
optimal solution of the proposed approach.

Using the structural MR images, a classification frame-
work to classify AD vs CN subject is proposed in the lit-
erature [96]. For the Diffusion Tensor Imaging (DTI) im-
ages, the authors have used the Brain-Visa toolbox while
performing the eddy current correction. Then diffusion ten-
sors are determined and then Apparent Diffusion Coefficient
(ADC) and Fractional Anisotropy (FA) maps are extracted.
Using the Statistical Parametric Mapping (SPM)2 toolbox,
the segmentation operation is performed to divide the struc-
tural images into 3 parts, namely grey matter, white matter,
and cerebrospinal fluid. The ADC maps are also segmented
into two parts namely cerebrospinal fluid, and the non-
cerebrospinal fluid maps. The Fractional Anisotropy images
are also segmented into two parts. They are white matter and
non-white matter maps. Then the maps of DTI-grey matter
are determined by the intersection of non-cerebrospinal fluid
and non-white matter maps. The intersection of DTI-grey
matter and structural grey matter map resulted in the final
grey matter map. The authors proposed to calculate the
common minimal brain volume. A binary mask is applied to
all the normalized images for calculating their intersection.
Then the common binary mask is mapped to the Automated

Anatomical Labeling (AAL) to retain the Region of Interests
(RoIs). Finally, 73 out of 90 Region of Interests (RoIs) are
considered from the AAL. The mean diffusivity (mean ADC)
is calculated from the Region of Interests (RoIs), and then the
voxel-wise multimodal properties are obtained from the ADC
and grey matter concentration ratio.

A multi-modality classification framework to classify AD
vs CN, MCI vs CN, and Progressive MCI (PMCI) vs Stable
MCI (SMCI) subjects is proposed in the literature [97], where
the morphometry properties have been considered for feature
extraction. The authors have proposed the framework to
partition the subject images into 93 regions of interests (RoIs)
with the help of atlas wrapping. From all the 93 Region of
Interests (RoIs), the grey matter tissue volume is calculated.
For the PET images, each image is rigidly aligned with its
respective MR image, and for each Region of Interests (RoI),
the average PET signal value is computed. Finally, for each
subject, a total of 93 features from MRI and 93 features from
PET image are obtained. Discriminative Multi-Task Feature
Selection (DMTFS) model deliberates the integral relations
among multimodality information and the distribution data
of both the intra-class and the inter-class subjects from all
the modalities. The proposed technique formulates the fea-
ture selection on multi-modality information as a multi-task
learning problem, then, two regularized terms are included,
namely; i) group-sparsity regularization, for ensuring only
the common brain region-specific features, jointly selected
from multimodality data, ii) Laplacian regularization for
preserving the compactness of intra-class subjects and the
separability of inter-class subjects to induce more dissimilar
features.

A feature-ranking-based classification framework to clas-
sify AD vs CN subjects is proposed in the literature [98],
where all input images are analyzed using a voxel-wise
parametric mapping. The grey matter volume changes are
detected by using the voxel-based analysis over the whole
brain. For isolating the Region of Interests (RoIs), Voxel-
based morphometry (VBM) based mining procedure, and
Diffeomorphic Anatomical Registration using The Expo-
nentiated Lie algebra (DARTEL) analysis is applied. The
regions, where a significant decrement of grey matter is taken
place are segmented using a 3D mask and the "MarsBaR
region of interest" toolbox.

A multi-modality, multi-task feature selection for
Alzheimer’s Disease and mild cognitive impairment iden-
tification is proposed in [99]. Initially, the brain MRI is
partitioned into 93 Region of Interests (RoIs) by using the
Jacob template. For each subject, the pre-processed PET
images are aligned to their respective MR images using
affine registration, and finally, 93 features from the MR
image and 93 features from the PET images are acquired for
each subject. The authors have proposed a multitask feature
selection technique for preserving the complementary inter-
modality information by taking the feature selection from
each modality as a separate task. A constraint for preserving
the inter-modality relationship is imposed, and enforce
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sparseness of the selected features from each modality
separately.

A hierarchical fusion of features and classifier decisions
for AD classification is proposed in the literature [100]. The
authors have performed a t-test for selecting the voxels with
significant group differences, considering the threshold value
(P) smaller than 0.05. The mean of the P-value is calculated
for all the selected voxels and sorted in ascending order. For
capturing both imaging, and structural information, 2 kinds
of features are mined for each of the patches, namely i) local
imaging features, based on the grey matter densities of the
patch, ii) correlations among local patches, known as the
spatial-correlation features.

Using the probability distribution function, a classifica-
tion framework to classify AD vs CN subjects is proposed
in the literature [101]. To extract and isolate the Volume
of Interests (VoIs), Diffeomorphic Anatomical Registration
using The Exponentiated Lie algebra (DARTEL), and Voxel-
based morphometry (VBM) analysis is applied. The regions
which experience a significant grey matter volumetric loss,
are identified by the DARTEL-Voxel-based morphometry
(VBM) approach and segmented using a 3D mask. The data
are divided randomly into 10 folds with an equal number of
AD and NC subjects in each fold. For every iteration, 1 fold
is used for testing and 9 folds are used for training. Based
on each training dataset, the authors have performed Voxel-
based morphometry (VBM)-DARTEL analysis to reveal re-
gions of decreased grey matter volume in patients as a 3D
mask. From a total of 59,395 to 69,170 voxels, 10 different
masks with different lengths are defined.

Based on cortical and sub-cortical features, an AD clas-
sification framework is proposed in the literature [102].
The cortical thickness and sub-cortical volume are extracted
from brain images using the Freesurfer toolbox. A to-
tal of 110 features are extracted from the 3D Structural
Magnetic Resonance Imaging (SMRI) T1-weighted image.
Freesurfer provides the ability to construct surface-based
morphometry (SBM) for representations of the cortex, from
which neuroanatomic volume, cortical thickness, and surface
area can be derived. The cortical surface lies either at the
white matter/grey matter tissue interface or in the grey mat-
ter/cerebrospinal fluid tissue interface.

Using the structural MR images, an AD classification
framework, based on the Voxel Morphometry (VM) based
feature extraction approach is discussed in the literature
[103]. From the normalized tissues of grey matter, white
matter, and the cerebrospinal fluid, the down-sampling op-
eration is performed on the densities of the voxels of 1
mm size. By performing the simple averaging, the voxels
are sampled into a size of 8 mm, which contains not more
than 10% density values and ignores more than 50% parts
of the total image for further analysis. The dimensions of
the maps are 22 × 27 × 22 voxels. From the maps, feature
vectors are introduced. To eliminate the cerebellum from
entire data sets, a Region of Interests (RoI) is drawn on the
custom template. To select the suitable features from the grey

matter, white matter, and cerebrospinal fluid densities, the
linear SVM based principle is applied. After selecting the
most appropriate features for classification, 26 neighborhood
voxels (in a 3 × 3 × 3 cube) carrying non-zero weight are
also considered in the classification. Newly formed weight
vectors are then represented as the highest absolute weight
in the surroundings of 3 × 3 × 3 cube of voxels. The weight
vectors are then considered as a threshold to get top-ranked
voxels.

For early diagnosis of AD, a novel classification mecha-
nism using combined features from voxel-based morphome-
try, cortical, sub-cortical, and hippocampus regions are de-
scribed in the literature [104]. For the extraction of fea-
tures, such as Voxel-Based Morphometry (VBM), Cortical
and subcortical volumetric features, and Hippocampus vol-
ume (HV), the authors have used FreSurfer and Statisti-
cal Parametric Mapping (SPM)12 toolbox. The Voxel-based
morphometry (VBM) performs voxel-wise statistical assess-
ments for determining the volume transformations among
different parts of the brain. The affine transformation by the
Statistical Parametric Mapping (SPM) templates is used for
data standardization to compensate for the size differences.
Adopting the unified tissue segmentation technique, all the
input images are segmented into three parts, namely grey
matter, white matter, and cerebrospinal fluid. All the linearly
distorted and segmented images are then non-linearly dis-
torted by applying the Diffeomorphic Anatomical Registra-
tion (DARTEL) method. Based on the Montreal Neurological
Institute (MNI)152 template, all images are modulated and
smoothed by applying an 8 mm full breadth at half maximum
kernel for creating the modified template of DARTEL. By
using the default constraints of the cross-sectional automated
Freesurfer routine, the important features from cortical and
subcortical sections are extracted. Volumetric quantities for
all lobes are mined by the Freesurfer. The Desikan-Killiany
atlas is used, which labeled the whole cortex in 68 sections
for each hemisphere. As hippocampus volume is one of the
most commonly used biomarkers in the diagnosis of AD, the
authors segmented both left and right hippocampus volume
using the FreeSurfer toolbox.

Based on the Mann–Whitney–Wilcoxon U-Test, an AD
detection approach is described in the literature [105]. All
images are reconstructed with a total of 67200 voxels.
The intensities of each voxel lie between 0 to 255. To
reduce the dimensionality, at first, the voxels with an inten-
sity value less than 70 are excluded. After that, using the
Mann–Whitney–Wilcoxon (MWW) U-Test, the most fitted
voxels for the classification are selected. By performing a
factor analysis, the selected voxels are then modeled. The
voxels are labeled according to linear combinations of the
factors. The factor loadings are determined for describing the
discriminability between the selected voxels, which help in
reducing the dimension of the data.

A classification framework to classify AD vs CN subjects
by sparse representation is proposed in the literature [106].
The average voxel intensity is calculated, and voxels having
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an intensity that is less than half of the average intensity
value, are discarded, and determined as the background vox-
els. For MR images, after performing the spatial normaliza-
tion using Voxel-based morphometry (VBM)-T1 template,
input images are segmented into three parts; grey matter,
white matter, and cerebrospinal fluid. Then in all images,
the Sparse Representation Classifiers (SRC) dictionary-based
approach is applied to choose the most effective voxels,
and to remove the voxels having less information. For the
voxels which are selected by the SRC method, Welch’s t-
test is performed separately. However, the authors have used
separate activation levels for different image types.

A local MRI analysis approach for diagnosing AD is
described in the literature [107]. With the help of the atlas-
based method, some Volume of Interest (VoI) is specified.
Once the templates are ready, a rigid registration technique is
used to map them onto the target MRI, and the correlation
coefficients are determined from the extracted VoIs. The
process returns VoIs having the best correlation value. For
this study, a total of 9 VoIs are extracted. The process of
VoI selection and extraction is done with the help of Insight
Segmentation and Registration Toolkit (ITK), FMRIB’s Lin-
ear Image Registration Tool (FLIRT), and Matrix Laboratory
(MATLAB) toolbox. The extracted 9 VoIs are then filtered
with 18 different kinds of filters. The neighborhood voxels
of each selected voxels are compared, and then, the Gaussian
mean, standard deviation, range, entropy, and Mexican-hat
filters are determined.

An optimal decisional space based method for the classi-
fication of AD and MCI is proposed in the literature[108].
To generate the variable vector discriminator for each sub-
ject, the Intracranial Volume (ICV) of all the variables are
determined and combined with the MMSE score. For deter-
mining the consequence of each variable, Student’s t-test is
adopted between AD and CN, or between MCI and CN. The
variables, whose t-test scores with a p-value are less than the
significance level, are nominated and ranked. For reducing
the dimensionality, an incremental error analysis method is
applied only to the top-ranked variables, determined by the
t-test.

A novel grading biomarker for the prediction of conversion
of MCI to AD is described in the literature [109]. For select-
ing the relevant features, the authors have adopted the Elastic
Net (EN) technique. One advantage of using EN is that, even
if the number of features is very large, it can easily select
the most appropriate features. The popular Least Absolute
Shrinkage and Selection Operator (LASSO) regression is
used, which helped in selecting the highly correlated features
from different groups. The implementation of EN is done
in the Sparse Modeling Software (SPAMS) toolbox. Finally,
the authors identified a biomarker by circulating the disease
labels of NC and AD to the MCI subjects. A global grading
value is determined for MCI subjects which are used as a

biomarker in the classification step. The CN and the AD
subjects are considered as the train population. The members
of the train population are compared along with their rela-
tionship with the MCI subjects and assigned a new grading
value for them.

An inherent structure-based multi-view learning with
multi-template feature representation is proposed for AD
classification in the literature [110]. For extracting the most
relevant features, an affinity propagation (AP) clustering
procedure is applied. The input images are partitioned into
several clusters. The centroid for each cluster is determined
and used as templates. The bisection method is applied for
determining a suitable predilection value to find out the most
similar data points from the centroids. A total of 10 templates
are selected in this study. The authors have applied a mass-
preserving shape transformation mechanism for capturing the
morphometric shapes of every considered subject with the
help of multiple templates. The segmentation and registration
steps are applied next to extract the volumetric structures.
The clustering tissues are adapted into the Region of Interests
(RoIs) of each template space to extract the relevant features.
Moreover, by adopting a subclass-based approach, the inher-
ent patterns of each template space are also extracted.

A classification approach to classify AD vs CN, MCI vs
CN, and Progressive MCI (PMCI) vs Stable MCI (SMCI)
subjects, using the volume-based morphometry is proposed
in the literature [111]. The Statistical Parametric Mapping
(SPM) toolbox is used to convert input images into numerous
tissue probability maps, where a grey matter probability map
is also included. The grey matter segmentation is performed
by using a Bayesian based image segmentation procedure,
known as the New Segment. With Jacobian determinants of
deformations, the map is spatially smoothed, and warped
for a referencing space to allow a voxel-wise assessment of
different subjects. Moreover, the reference space is iteratively
enhanced from grey matter and white matter probability
maps using the Diffeomorphic Anatomical Registration us-
ing The Exponentiated Lie algebra (DARTEL) algorithm.
FreeSurfer toolbox is used to segment the input images
in a large number of anatomical constructions, and then,
calculated volumes of all the corresponding segments. The
toolbox is primarily absorbed in temporal grey matter, total
grey matter, hippocampus, and ventricular volumes output
by FreeSurfer to determine the latent biomarkers from AD
related brain atrophy. The authors have implemented a brain
volumetric procedure, known as MorphoBox, that combines
simple and fast image analysis approaches for performing the
Volume-Based Morphometry (VolBM).

Some of the research articles on AD classification, using
Voxel Morphometry (VM) based feature extraction tech-
niques, are discussed, and the performance comparison is
presented in table 3.
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TABLE 3: Performance comparison of the AD classification techniques using Voxel Morphometry (VM) based feature
extraction approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Iman Beheshti,
et al. [91]

AD vs. CN:
93.01%,

PMCI vs. SMCI:
75%

AD vs. CN:
89.13%,

PMCI vs. SMCI:
76.92%

AD vs. CN:
96.80%,

PMCI vs. SMCI:
73.23%

AD vs. CN:
90.4%,

PMCI vs. SMCI:
62.6%

AD vs. CN:
88.3%,

PMCI vs. SMCI:
71.2%

AD vs. CN:
0.94,

PMCI vs. SMCI:
0.75

Iman Beheshti,
et al. [92]

AD vs CN:
92.48%

AD vs CN:
91.07 %

AD vs CN:
93.89% NA NA AD vs CN:

0.96

Olfa Ben Ahmed,
et al. [93]

AD vs. CN:
87%,

MCI vs. CN:
78.22%,

AD vs. MCI:
72.23%

AD vs. CN:
75.5 %,

MCI vs. CN:
70.73%,

AD vs. MCI:
75%

AD vs. CN:
100%,

MCI vs. CN:
83.34%,

AD vs. MCI:
70%

NA NA NA

Mingxia Liu,
et al. [94]

AD vs. CN:
92.51%,

PMCI vs. SMCI:
78.88%

AD vs. CN:
92.89%,

PMCI vs. SMCI:
85.45%

AD vs. CN:
88.33%,

PMCI vs. SMCI:
76.06%

NA NA

AD vs. CN:
0.96,

PMCI vs. SMCI:
0.81

Chen Zu,
et al. [95]

AD vs CN:
95.95%,

MCI vs CN:
80.26%

AD vs CN:
95.10%,

MCI vs CN:
84.95%

AD vs CN:
96.54%,

MCI vs CN:
70.77%

NA NA

AD vs CN:
0.97,

MCI vs CN:
0.81

Lilia Mesrob,
et al. [96]

AD vs. CN:
99.60%

AD vs. CN:
99.25%

AD vs. CN:
99.95% NA NA NA

Tingting Ye,
et al. [97]

AD vs. CN:
95.92%,

MCI vs. CN:
82.13%,

PMCI vs. SMCI:
71.12%

AD vs. CN:
94.71%,

MCI vs. CN:
87.68%,

PMCI vs. SMCI:
67.21%

AD vs. CN:
97.12%,

MCI vs. CN:
71.54%,

PMCI vs. SMCI:
73.93%

NA NA

AD vs. CN:
0.97,

MCI vs. CN:
0.82,

PMCI vs. SMCI:
0.68

Iman Beheshti,
et al. [98]

AD vs. CN:
96.32%

AD vs. CN:
94.11%

AD vs. CN:
98.52% NA NA AD vs. CN:

0.99

Feng Liu,
et al. [99]

AD vs. CN:
94.37%,

MCI vs. CN:
78.80%,

PMCI vs. SMCI:
67.83%

AD vs. CN:
94.71%,

MCI vs. CN:
84.85%,

PMCI vs. SMCI:
64.88%

AD vs. CN:
94.04%,

MCI vs. CN:
67.06%,

PMCI vs. SMCI:
70%

NA NA

AD vs. CN:
0.97,

MCI vs. CN:
0.83,

PMCI vs. SMCI:
0.70

Manhua Liu,
et al. [100]

AD vs. CN:
92%,

MCI vs. CN:
85.3%

AD vs. CN:
90.9%,

MCI vs. CN:
82.3%

AD vs. CN:
93%,

MCI vs. CN:
88.2%

NA NA

AD vs. CN:
0.95,

MCI vs. CN:
0.91

I. Beheshti,
et al. [101]

AD vs. CN:
89.65%

AD vs. CN:
87.73%

AD vs. CN:
91.57% NA NA AD vs. CN:

0.95

Yubraj Gupta,
et al. [102]

AD vs. CN:
99.34%,

MCI vs. CN:
99.2%,

AD vs. MCI:
97.77%

AD vs. CN:
98.14%,

MCI vs. CN:
99.02%,

AD vs. MCI:
100%

AD vs. CN:
100%,

MCI vs. CN:
100%,

AD vs. MCI:
95.23%

NA NA NA

Prashanthi Vemuri,
et al. [103] NA AD vs. CN:

88.4(±1.6) %
AD vs. CN:

88.6 (±1.3) % NA NA NA

Yubraj Gupta,
et al. [104]

AD vs. CN:
93.06%,

PMCI vs. SMCI:
86.95%,

MCI vs. CN:
95.23%

AD vs. CN:
87.87%,

PMCI vs. SMCI:
77.77%,

MCI vs. CN:
95.77%

AD vs. CN:
95.58%,

PMCI vs. SMCI:
92.85%,

MCI vs. CN:
92.30%

NA NA

AD vs. CN:
0.94,

PMCI vs. SMCI:
0.87,

MCI vs. CN:
0.96

F.J. Martínez
Murcia,

et al. [105]

AD vs. CN:
92.7%

AD vs.
CN: 97.6%

AD vs. CN:
92.6% NA NA NA

Andres
ORTIZ,

et al. [106]

AD vs. CN:
94% NA NA NA NA NA

Andrea
Chincarini,
et al. [107]

NA

AD vs. CN:
89%,

MCI vs. CN:
89%,

PMCI vs. SMCI:
72%

AD vs. CN:
94%,

MCI vs. CN:
80%,

PMCI vs. SMCI:
65%

NA NA

AD vs. CN:
0.97,

MCI vs. CN:
0.92,

PMCI vs. SMCI:
0.74

Qi Zhou,
et al. [108]

AD vs. CN:
92.4%,

PMCI vs. CN:
92.4%,

SMCI vs. CN:
92.4%

AD vs. CN:
84.0%,

PMCI vs. CN:
84.0%,

SMCI vs. CN:
84.0%

AD vs. CN:
96.1%,

PMCI vs. CN:
96.1%,

SMCI vs. CN:
96.1%

NA NA NA

Tong Tong,
et al. [109]

PMCI vs. SMCI:
84.1%

PMCI vs. SMCI:
88.7%

PMCI vs. SMCI:
76.5% NA NA PMCI vs. SMCI:

0.92
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Mingxia Liu,
et al. [110]

AD vs. CN:
93.83%,

PMCI vs. SMCI:
80.90%

AD vs. CN:
92.78%,

PMCI vs. SMCI:
85.95%

AD vs. CN:
95.69%,

PMCI vs. SMCI:
78.41%

NA NA NA

Daniel Schmitter,
et al. [111]

AD vs. CN:
89%,

AD vs. MCI:
68%,

PMCI vs. SMCI:
71%

AD vs. CN:
86%,

AD vs. MCI:
69%,

PMCI vs. SMCI:
75%

AD vs. CN:
91%,

AD vs. MCI:
67%,

PMCI vs. SMCI:
66%

AD vs. CN:
88%,

AD vs. MCI:
49%,

PMCI vs. SMCI:
75%

AD vs. CN:
89%,

AD vs. MCI:
82%,

PMCI vs. SMCI:
66%

NA

From table 3, it can be noticed that, among all the dis-
cussed methods, the highest performance is achieved by Lilia
Mesrob, et al. [96] with a rate of 99.60% accuracy, 99.25%
sensitivity, and 99.95% specificity.

C. WAVELET TRANSFORM-BASED FEATURE
EXTRACTION
Wavelet transform (WT), is a well-known approach for an-
alyzing signals, from where the detailed information of an
object can be evaluated. Since WT is defined in both spatial
frequency ‘v’ as well as the spatial position ‘t’, it can be
written as a function in the form of WT(v, t) [112]. WT breaks
down the signal with limited energy, from the spatial area to
a set of functions. WT is also one of the most widely used
feature extraction tools in image processing [113]. In WT, the
fusion of input images is transformed from the spatial domain
to a wavelet domain [114]. Wavelet domain characterizes the
wavelet coefficient, and then, wavelet decomposition is done
by moving the image through a sequence of low-pass and
high-pass filters. Several filter bands forms, where every band
produces a separate resolution and orientations.

One of the first AD classification methods using wavelet
analysis is proposed by P. Padilla, et al. [115]. The authors
have introduced the concept of the Gabor wavelet (GW)
based brain analysis approach on the input SPECT images
followed by a Fisher Discriminant Ratio (FDR) based feature
extraction technique. Then Principle Components Analysis
(PCA) feature selection technique is used to select the most
relevant features. The final classification is done by using the
SVM classifier. The proposed classification method produced
a convincing classification outcome.

WT still has some drawbacks, such as it can’t deal with the
shift in-variance, and also, it Can’t detect edges of a region
accurately. Moreover, it offers partial information along with
all the directions of a 3D image [116]. Some of the AD
classification approaches where wavelet transform is used for
feature extraction are discussed below.

For automated detection of Alzheimer’s disease, a novel
AD classification approach is proposed in the literature [117].
Initially, Contourlet Transform (CoT) is used for feature
extraction from the pre-processed brain MRIs. Later on,
for performance comparison, the authors have used some
more commonly used feature extraction techniques in the
same pre-processed brain MRIs, including, Curvelet Trans-
form (CuT), Complex Wavelet Transform (CWT), Dual Tree
Complex Wavelet Transform (DTCWT), Discrete Wavelet
Transform (DWT), Empirical Wavelet Transform (EWT),

and Shearlet Transform (ST). To select the most appropriate
features, a student’s t-test is used.

A classification framework to identify AD vs CN subjects
is proposed in the literature [118]. The concept of wavelet
transform is used for feature extraction. Inter-Class Variance
(ICV) in the axial direction is determined for all the slices of
a 3D image, and then a slice having the maximum ICV value
is picked up for further processing. After comparing several
wavelets, biorthogonal wavelet (bior4.4) is used because
transforms of bior4.4 are similar to the gray value changes
in brain images. Entropy S (Shanon entropy), is defined to
find out the degree of its randomness.

A twin SVM-based classification of Alzheimer’s disease,
using complex dual-tree wavelet principal coefficients and
Linear Discriminant Analysis (LDA) is discussed in the
literature [119]. Firstly, the authors have proposed the algo-
rithm for extracting the 5-level Dual Tree Complex Wavelet
Transform (DTCWT) coefficients from all the input MR
images, where, features of the 5th resolution scale are used.
Secondly, selected coefficients are used as the inputs in
Principal Component Analysis (PCA), to map the features
onto lower-dimensional space. For getting the most discrim-
inative features, PCA coefficients are projected onto an LDA
projection axis.

A novel approach for the classification of AD from MRIs
by using the fuzzy neural network is proposed in the litera-
ture [120]. The pre-processed images are represented as 2D
histogram signals and performed the intensity enhancement
operation. This step aims to take all the features, in the form
of vector approximation at every level of the wavelet de-
composition. Image decomposition is done using the wavelet
transformation (WT) and then output coefficient vectors are
determined by using the discrete wavelet transform. The
derived features are used to train the Fuzzy Neural Network
(FNN).

For diagnosing AD, a classification methodology using
dual-tree complex wavelet transform, Principal Component
Analysis (PCA), and feed-forward neural network is pro-
posed in the literature [121]. Dual-Tree Complex Wavelet
Transform (DTCWT) develops two Discrete Wavelet Trans-
form (DWT)s processing. The first DWT signifies the real
module, and the second DWT represents the imaginary mod-
ule of the transform. The DTCWT produced 6 directionally
selective sub-bands, oriented in ±15, ±45, and ±75 direc-
tions, for real and imaginary parts. By using DTCWT, the co-
efficients from each pre-processed image are extracted. Some
supplementary features, such as age, gender, handedness,
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education, Socio Economic Status (SES), and clinical exam-
ination are also used in classification. The PCA analytically
projects the input data to a lower-dimensional space, known
as the principal subspace. The operation is done over an
orthogonal alteration by conserving the data dissimilarities.
In the group of correlated variables, the alteration that results
in a group of linearly uncorrelated variables is known as the

principal components (PCs). The reason for implementing
PCA is to reduce the dimensionality of the DTCWT coef-
ficients for correct classification.

For the classification of AD, some methods, based on the
Wavelet Transform (WT) based feature extraction techniques
proposed by several researchers are discussed. The perfor-
mance of the discussed methods is presented in table 4.

TABLE 4: Performance comparison of the AD classification techniques using Wavelet transform-based feature extraction
approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

U. Rajendra
Acharya,

et al. [117]

AD vs. CN:
94.54%,

PMCI vs. SMCI:
69.3%

AD vs. CN:
96.3%,

PMCI vs. SMCI:
66.7%

AD vs. CN:
93.64%,

PMCI vs. SMCI:
71.2%

AD vs. CN:
88.33%,

PMCI vs. SMCI:
62.6%

AD vs. CN:
92.17%,

PMCI vs. SMCI:
71.2%

NA

Shui-Hua Wang,
et al. [118]

AD vs. CN:
92.40±0.83%

AD vs CN:
92.14±4.39 %

AD vs CN:
92.47±1.23% NA NA NA

Saruar Alam,
et al. [119]

AD vs. CN:
96.68±1.44%

AD vs. CN:
97.72±2.34%

AD vs. CN:
95.61±1.67% NA NA NA

Geetha C,
et al. [120]

AD vs. CN:
95.5%

AD vs. CN:
88%

AD vs. CN:
86% NA NA NA

Debesh Jha,
et al. [121]

AD vs. CN:
90.06±0.01%

AD vs. CN:
92.00±0.04%

AD vs. CN:
87.78±0.04% NA NA NA

From table 4, it can be observed that among all the
discussed AD classification methods using Wavelet Trans-
form (WT) based feature extraction approaches, the article
by Saruar Alam, et al. [119] provides the highest accuracy
(96.68±1.44%), highest sensitivity (97.72±2.34%), as well
as the highest specificity (95.61 ± 1.67%).

D. GRAPH/NETWORK-BASED FEATURE EXTRACTION
A graph is a collection of some connected nodes, where each
node represents the entities and each connection represents
relationships between the connected nodes. Graph based
feature extraction method uses the supervised information
while creating the neighboring relationship matrix of the
graph and determining the appropriate features by computing
their competence of conserving geometrical construction of
the graph. However, graph-based approaches determine the
features independently, hence, sometimes it is unable to
handle the redundant features accurately [122]. Some of the
literature where the concept of graph/network construction is
used to extract the most feasible features are discussed below.

For classification of dementia using brain MRI, a novel
method is discussed in the literature [123]. A graph-based
multiple instances learning method is used to train the bag
level classifier. In the proposed method, a graph is con-
structed for each image. In the graph, patches are treated as
nodes, and edges between different nodes are established ac-
cording to the relationships between the patches. The graphs
can represent the appearances of patches, and reflect the rela-
tionships among the extracted patches from the same subject.
Some patches are extracted from AD subjects, and some are
from Progressive MCI (PMCI), Stable MCI (SMCI), and CN
subjects. The resulting graphs are expected to be different
for each subject group. A graph kernel is defined for distin-
guishing the positive and negative bags. Finally, a bag-level

classifier is adopted using a kernel machine, influenced by
the support vector machine (SVM). By using the computed
graph kernels, SVM is used to train the classifier. In the test
stage, labels of unseen images are estimated using the trained
classifier.

A classification approach to classify AD vs CN, and MCI
vs CN subjects, is proposed in the literature [124]. Total
239,391 features are extracted from all the subjects, which in-
clude, 83 nos. of MRI volume features, 239,304 nos. of PET
images intensity features, 3 cerebrospinal fluid measures, and
1 genetic categorical feature. The brain MRI is segmented
into 83 anatomical regions by Multi-Atlas Propagation with
Enhanced Registration (MAPER) approach, which helps in
extracting the region-wise features. All Fluorodeoxyglucose
(FDG)-PET images are motion-corrected, and associated
with their corresponding MRIs, which are distorted to the
Montreal Neurological Institute (MNI) template space using
Statistical Parametric Mapping (SPM)8 toolbox, and then
images are smoothened to an isotropic spatial resolution
of 8 mm full-width-at-half-maximum (FWHM). Intensity
normalization is performed, and the voxel wise intensities are
extracted as features. Cerebrospinal fluid of all the subjects
is extracted by lumbar puncture, and then, the Aβ42 level,
T − tau, and P − tau are measured. The APOE genotype
information, which is determined from the blood samples
of all the subjects, is obtained from ADNI Biomarker data
information. A graph, Gi = (V i;Ei) has constructed by the
authors for each subject, where V i corresponds to n subjects
of ith modality, andEi for ith modality are weighted by sim-
ilarities of the subjects. To determine similarities, the random
forest method is used between pairs of subjects. Authors have
used the normalization operation to all the similarity matrices
in order to fuse the graphs, based on an assumption that,
local contacts, having the most similarities, are more reliable
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than non-local connections. The authors have proposed to
concatenate features from all modalities to a solo feature
vector for classification, to provide a straightforward way by
using multi-modality data.

An algorithm for classification of AD and prediction of
MCI Conversion using a histogram-based analysis is dis-
cussed in the literature [125]. All input images are bias
refined and then segmented into 3 parts , namely grey matter,
white matter, and cerebrospinal fluid, by using the Voxel-
based morphometry (VBM)8 toolbox. Modified brain net-
works are built using the 3×3×3 grey matter voxels cube of
size 6 × 6 × 6 mm3. The constructed brain networks can
be distinctively mapped to an M × M connectivity zero-
diagonal and symmetric matrix Z, where, xj,k is an element
of z, that signifies the maximum correlation between the (j,k)
cube pair. For reducing the high dimensionality, and unreli-
able size of the vector, a histogram-based approach is used
to map the vector in a statistical pattern. The defined vector
is having lower dimensionality, which provides circulation
of the repeating values, falls into the interval bins in the
raw-feature vector, which is known as the Histogram Feature
Vector (HFV).

Using the concept of regional saliency maps, a classifica-
tion framework to classify AD vs CN, and MCI vs CN, is
proposed in the literature [126]. For automatic extraction of
the regions, which are associated with important pathology
from each slice of the MRIs, some randomly sampled patches
are extracted. To get the compact set of visual primitives
(visual words), a set of training images are considered, which
are characterized using a multi-scale edge analysis. Next,
a probabilistic Latent Semantic Analysis (pLSA) is trained
to gather hidden information associated with those regions.
Then the slices are processed using the probabilities learned
with pLSA. Initially, a group of slices of each volume is
selected using a set of patches, sampled randomly from
the training slices. Then those patches are categorized by
the Sobel edge detector. Edge information is concatenated
into a single vector and collected together. Thus a visual
vocabulary is formed that is used to represent each training
slice by a histogram of visual words, suitable to train the
pLSA. Graph-Based Visual Saliency (GBVS) concatenates
the discriminatory pixels with a concept of nearness in a
straight manner to obtain the saliency values, by modeling the
image as a fully-connected graph and storing information at
edges. The steps for calculating the saliency maps are feature
extraction, activation maps, and combination. Initially, some
related features are mined, then a connected graph is created
for each feature, and scaled images, by storing the discrim-
inatory and nearness information at the edge. The activation
maps are determined by creating a Markov Chain in the
graph and equilibrium distribution is calculated as the major
eigenvector of the transition matrix. The map is standardized
by focusing the mass obtained in activation step by using
the same Markovian method. Then, average saliency maps
per feature are determined and combined, to form the master
saliency map.

A classification method to classify AD vs CN subjects
using sulcal features is discussed in the literature [127]. The
sulcal meshes are determined as a set of 3D vertices, and
then classified two differing faces of the mesh, using a k-
means clustering-based method. Lastly, a medial surface is
calculated, which consists of some new vertices, between two
faces. The algorithm extracted local surface features from the
medial surface. The procedure is characterized by 3 boxes,
compressed by a set of input cerebral sulcal meshes, and
the output extraction of local surface features. For extracting
sulci from input images, authors have used the BrainVISA
4.4.0 Morphologist 2013 toolbox. While extracting the sulci,
a triangular mesh of the inner cortical surface of each brain
hemisphere is produced, and then a graph of the cortical fold
is constructed. The toolbox finally recognized, labeled, and
extracted all cortical sulci automatically. By surface extrac-
tion, and extraction of sulci, sulcal features are calculated
and mined from 24 sulci. A total of 10080 numbers of
sulci are mined from 210 subjects from both left and the
right hemisphere in each subject. For each sulcus, the depth,
length, mean curvature, Gaussian curvature, and surface area
features are computed.

A mechanism for classification of MCI and AD, from
CN using directed graph measures of resting-state fMRI, is
discussed in the literature [128]. A total of 264 Region of
Interests (RoIs) of atlases are determined for parcellating the
brain. The areas are designed by applying meta-analytic and
functional connectivity plotting with the resting-state-fMRI
data. For generating a demonstrative signal for each Region
of Interests (RoI), the time series of the voxels are aver-
aged. The authors also used the Automated Anatomical atlas
(AAL) parcellation. Out of 244 Region of Interests (RoIs),
90 most effective Region of Interests (RoIs) is obtained by
the AAL and averaged the signals of 90 time series for each
subject. The Granger causality analysis is used to determine
connectivity among all Region of Interests (RoIs) for con-
structing the directed brain network. The graph measures,
such as the degree (in-degree and out-degree), betweenness
centrality, flow coefficient, local efficiency, K-coreness cen-
trality, page rank centrality, node strength, clustering coef-
ficient, global efficiency, characteristic path length, range
coefficient, etc., are determined by the Brain Connectivity
Toolbox (BCT). Based on the discriminative properties, the
Fisher algorithm is used to sort all features. After that, half
of the best features with the highest discriminative properties
are sorted by using the wrapper feature selection algorithm.

An AD Classification method Based on the individual
hierarchical networks, is proposed in the literature [129]. For
defining the Region of Interests (RoIs), a grey matter-based
Automated Anatomical Labeling (AAL) atlas is used which
included 90 Region of Interests (RoIs) from the cerebral
regions, and 26 Region of Interests (RoIs) from the cerebellar
regions which are denoted as S1. To reduce the number of
Region of Interests (RoIs), some of the Region of Interests
(RoIs) from S1, where the first two digits and the last digit are
similar are combined. For example, Cingulum Ant L (4001),
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Cingulum Mid L (4011), and Cingulum Post L (4021) are
combined and treated as a single Region of Interests (RoI).
The newly combined Region of Interests (RoIs) is denoted
as S2, where a total of 54 Region of Interests (RoIs) are
selected. Similarly, some of the Region of Interests (RoIs)
from S1, where the first and the last digit are similar, such as
Cingulum Ant L (4001), Cingulum Mid L (4011), Cingulum
Post L (4021), Hippocampus L (4101), Para Hippocampal L
(4111) and Amygdala L (4201) are combined together and
denoted as S3. A total of 14 Region of Interests (RoIs) are
included in S3. Similarly, in S4, only one RoI is left, i.e,
the whole brain. Based on the cluster of Region of Interests
(RoIs), construction of a hierarchical network is done where
the nodes, namely S1, S2, S3, and S4, and the link among
the Region of Interests (RoIs) are denoted as edges. From
every node of the network, 6 texture features are extracted by
applying the Gray Level Co-occurrence Matrices (GLCM)
technique. The extracted features, namely Energy (ENE),
Contrast (CON), Inverse Difference Moment (IDM), Entropy
(ENT), Difference Variance (DVA), and Difference Entropy
(DEN). After extracting the features, mean texture property
of Region of Interests (RoIs) is determined in 4 directions
(i.e, . 00, 450, 900, and 1350).

Using the whole brain hierarchical network, a novel
classification framework for AD detection is discussed in
the literature [130]. To perform anatomical parcellation of
the brain, an Automated Anatomical Labeling (AAL)-based
method is applied, and 90 cerebral and 26 cerebellar regions
are selected. Among all the selected Region of Interests
(RoIs), some RoIs have some functional dependencies. For
example, Cingulum, Hippocampus, etc. have some common
properties, as they all are part of the limbic system. Based
on the functional dependencies, similar RoIs are grouped
together and assigned in 4 groups, namely; L1, L2, L3, and
L4. L4 contains 90 RoIs, L3 contains 54 RoIs, L2 contains
14 RoIs, and L1 contains only one RoI, i.e, whole brain.

From each of the RoIs, 3D texture features are extracted in
00, 450, 900, and 1350 directions by applying the GLCM-
based approach. For all 4 directions, the mean constraints
of every RoIs are determined by a six-dimensional vector.
The connectivity among all RoIs is determined with help of
the Pearsons’ correlation coefficients. At the end, a Whole
Brain Hierarchical Network (WBHN) is constructed, where
the RoIs represent the nodes and the connectivity among the
RoIs, representing their edges.

An AD classification mechanism by combining multiple
measures is proposed in the literature [131]. Using the Au-
tomated Anatomical Labeling (AAL)-based approach, all the
images are registered. In the cortical regions, operations like
the determination of the Grey Matter Volume (CGMV), Cor-
tical Thickness (CT), Cortical Surface Area (CSA), Cortical
Curvature (CC), Cortical Folding Index (CFI), and Subcorti-
cal Volume (SV) are observed with the help of FreeSurfer
toolbox. Similarly, volumes of subcortical regions are de-
termined with the help of the Fast Analysis of Sequences
Toolbox toolbox. By taking reference from the nonlinear
Montreal Neurological Institute (MNI)-152 template, affine
registration is done in the whole brain region. An AAL-based
approach is applied in the subcortical regions in order to get
correct affine registration. Based on the properties of cortical
and subcortical regions, two networks are created. For cor-
tical regions, a total of 5 different networks are constructed
based on 5 different measurements (i.e, CGMV, CT, CSA,
CC, and CFI). For all the networks, cortical regions are repre-
sented as nodes and CGMV similarities among the nodes are
represented as edges. Similarly, for the subcortical regions, a
single network had constructed based on the measurement of
Great Saphenous Vein (GSV).

Some of the recently published articles on AD classifica-
tion using graph/network based feature extraction approaches
are discussed. The performance of the discussed articles is
presented in table 5.

TABLE 5: Performance comparison of the AD classification techniques using Graph/Network-based feature extraction
approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Tong Tong,
et al. [123]

AD vs. CN:
89.2%,

PMCI vs. SMCI:
69.3%

AD vs. CN:
85.1%,

PMCI vs. SMCI:
66.7%

AD vs. CN:
92.6%,

PMCI vs. SMCI:
71.2%

AD vs. CN:
90.4%,

PMCI vs. SMCI:
62.6%

AD vs. CN:
88.3%,

PMCI vs. SMCI:
71.2%

NA

Tong Tong,
et al. [124]

AD vs. CN:
91.8%,

MCI vs CN:
79.5%

AD vs. CN:
88.9%,

MCI vs CN:
85.1%

AD vs. CN:
94.7%,

MCI vs CN:
67.1%

NA NA

AD vs. CN:
0.98,

MCI vs CN:
0.81

Iman Beheshti,
et al. [125]

AD vs. CN:
84.17%,

MCI vs. CN:
70.38%,

PMCI vs. SMCI:
61.05%,

AD vs. SMCI:
67.59%,

AD vs. PMCI:
62.84%

AD vs. CN:
88.83%,

MCI vs. CN:
78.17%,

PMCI vs. SMCI:
52.65%,

AD vs. SMCI:
79.25%,

AD vs. PMCI:
76.38%

AD vs. CN:
79%,

MCI vs. CN:
60.22%,

PMCI vs. SMCI:
70.52%,

AD vs. SMCI:
45.47%,

AD vs. PMCI:
39.57%

NA NA

AD vs. CN:
0.86,

MCI vs. CN:
0.72,

PMCI vs. SMCI:
0.62,

AD vs. SMCI:
0.70,

AD vs. PMCI:
0.64

Andrea Pulido,
et al. [126]

AD vs. CN:
69.85%,

MCI vs. CN:
87.21%

AD vs. CN:
67.14%,

MCI vs. CN:
85%

AD vs. CN:
72.73%,

MCI vs. CN:
87.77%

NA NA NA
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Maciej Plocharski,
et al. [127]

AD vs. CN:
87.9%

AD vs. CN:
90.0%

AD vs. CN:
86.7% NA NA AD vs. CN:

0.89

Ali Khazaee,
et al. [128]

CN:
93.29%,

MCI:
93.29%,

AD:
93.29%

CN:
88.4%,
MCI:
100%,
AD:

81.8%

CN:
100%,
MCI:

85.5%,
AD:

100%

CN:
100%,
MCI:

88.9%,
AD:

100%

NA NA

Jin Liu,
et al. [129]

AD vs. CN:
95.37%,

MCI vs. CN:
86.56%,

PMCI vs. SMCI:
73.95%,

AD vs. MCI:
90.41%

AD vs. CN:
92.49%,

MCI vs. CN:
90.74%,

PMCI vs. SMCI:
76.13%,

AD vs. MCI:
92.83%

AD vs. CN:
96.08%,

MCI vs. CN:
84.83%,

PMCI vs. SMCI:
72.24%,

AD vs. MCI:
88.82%

NA NA

AD vs. CN:
0.97,

MCI vs. CN:
0.85,

PMCI vs. SMCI:
0.73,

AD vs. MCI:
0.92

Jin Liu,
et al. [130]

AD vs. CN:
94.65%,

MCI vs. CN:
84.79%,

PMCI vs. SMCI:
72.08%,

AD vs. MCI:
88.63%

AD vs. CN:
95.03%,

MCI vs. CN:
88.91%,

PMCI vs. SMCI:
75.11%,

AD vs. MCI:
91.55%

AD vs. CN:
91.76%,

MCI vs. CN:
80.34%,

PMCI vs. SMCI:
71.05%,

AD vs. MCI:
86.25%

NA NA

AD vs. CN:
0.95,

MCI vs. CN:
0.83,

PMCI vs. SMCI:
0.72,

AD vs. MCI:
0.91

Jin Liu,
et al. [131]

AD vs. CN:
95.24%,

MCI vs. CN:
86.35%,

PMCI vs. SMCI:
74.28%,

AD vs. MCI:
90.85%

AD vs. CN:
94.26%,

MCI vs. CN:
89.49%,

PMCI vs. SMCI:
71.51%,

AD vs. MCI:
91.77%

AD vs. CN:
95.74%,

MCI vs. CN:
85.68%,

PMCI vs. SMCI:
76.46%,

AD vs. MCI:
89.56%

NA NA

AD vs. CN:
0.97,

MCI vs. CN:
0.91,

PMCI vs. SMCI:
0.79,

AD vs. MCI:
0.94

From table 5, it can be noticed that amongst all the dis-
cussed AD classification methods by graph/network based
feature extraction approaches, the maximum accuracy is
achieved by Jin Liu, et al. [129], which is 95.37%, whereas,
the maximum performance rate is achieved by Ali Khazaee,
et al. [128], which is approximately 93.79%.

E. EIGENVECTOR-BASED FEATURE EXTRACTION

The eigenvalue or eigenvector is a transformation of the
covariance matrix, that helps to reveal the primary directions
of dissimilarity among all the images in a dataset of differ-
ent subjects [132]. The application of eigenvector includes,
image classification, object identification, etc [132]. Some
of the advantages of the eigenvector value-based feature
extraction approach are a) features that are not correlated can
be extracted, b) determination of most suitable linear calcu-
lation, c) finding out the discrepancy in the mined features,
etc [133]. The eigenvector value-based feature extraction
approach has some demerits, such as a) Self-regulating vari-
ables become less explainable, b) It is difficult to extract the
features when an image has a complex shape, etc [134]. One
of the commonly used eigenvectors based feature extraction
methods is the Laplace Beltrami. In Laplace Beltrami, the
discriminative pixels after comparing with a set of images of
the same subject groups are selected, and a covariance matrix
helps to track the discriminative direction [135].

Principal Component Analysis (PCA) is another popular
eigenvector-based technique that helps to reduce the di-
mensionality by eliminating non-co-related features without
losing much information of the images and then extract the
most feasible features [136]. PCA determines the interior
structure of data, based on the variances in the information.

The major advantage of PCA is that it is very less sensitive to
noise. Moreover, to implement PCA, very little information is
required, and hence it’s computationally faster [137]. Using
the concept of PCA and LDA, M.M. López, et al. proposed
a novel AD classification method in the literature [138].
The experiments are done using the SPECT data, where
The FBP along with the Butterworth noise filter is applied
to reconstruct the images. By implementing a mask based
approach, voxels from the most affected brain parts such as,
posterior cingulate gyri, precunei, temporo-parietal, etc. are
extracted which are reconstructed into the vector forms. PCA
based approach is used the extract the relevant feature vectors
using the polynomial kernels and RBF for non-linear vector
forms. For distinguishing different roles of the variations,
LDA based projection is used. Finally, the authors have used
the SVM classifier and achieved a convincing result.

PCA has some disadvantages, such as, components pro-
duced by PCA are the linear mixture of actual features, which
are not as legible and understandable as the original features.
Moreover, during the dimension reduction, some important
features may also get eliminated [139].

Partial Least Squares (PLS) is a well known feature extrac-
tion approach, that works almost similar to PCA. The main
difference between PCA and PLS is that PCA is unsupervised
while PLS is supervised [77]. Based on the PLS method,
one of the first novels approaches for AD classification is
proposed in the literature [140]. The SPM toolbox is used
for spatial normalization of all the input SPECT images,
and then a binary mask is designed by allowing the voxels
with an average intensity of more than 50% of the highest
value. To select the most relevant features, the PLS based on
the regression model is applied. For final classification, the
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Random Forest (RF) based classifier is applied. The proposed
method achieved a better classification result with sensitivity
= 100%, specificity = 92.7% and accuracy = 96.9%.

Some of the recently published AD classification liter-
ature, where, eigenvector based feature extraction is per-
formed, are discussed below.

A Laplace Beltrami eigen value based classification frame-
work to classify AD vs CN subjects is proposed in the
research paper [141]. The segmentation of Corpus Callosum
(CC) is performed using the Reaction Diffusion (RD) level
set method. Segmentation is compared with the manually
segmented ground truth images and validated by an expert
radiologist. The most important discriminative features are
extracted using Laplace Beltrami (LB) eigenvalue spectrum.
The inherent information of segmented CC is associated
with the spectrum of the Laplace operator to find out the
shape variations. The segmented images are measured as the
closed bounded domain Ω ⊂ Rd with slice wise smooth
borders, and its corresponding Laplace operator. From all the
extracted features, a set of most discriminative features are
selected by using the Information Gain (IG) based ranking
method.

For early diagnosis of AD, a classification framework
based on partial least squares, principal component analy-
sis, and support vector machine, is discussed in the liter-
ature [142]. Feature extraction is done based on Principal
Component Analysis (PCA) method. Authors have used the
Partial Least Squares (PLS) to exploit co-variances amongst
different sets of predictors and predicted variables. It is
detected using a linear regression tool by projecting predicted
variables and the predictor’s variables to a new space. After
perceiving ’n’ data samples from each block of variables,
PLS is used to decompose the n × N matrix of zero mean
variables X, and the n×M matrix of zero mean variables Y,
into the regression models form.

For designing a computer aided Alzheimer’s diagnosis sys-
tem, a novel classification mechanism is proposed in the liter-
ature [143]. For extracting the features having the maximum
variances, Principal Component Analysis (PCA) method is
used. PCA is mainly acted as a zero-mean data-set, which is
based on a linear transformation. The resultant vectors form
a new group of de-correlated variables. The eigenvalue of
vectors represents the variances amongst the variables. In this
work, PCA is applied to the mean image vectors to extract
all uncorrelated eigenvectors. The Independent Component
Analysis (ICA) is used to determine the transformation of
the peak level voxels, by taking reference from original mean
image sources. The latent variables, which are produced by
the ICA, are used to form a subspace of input images. The
class variances are boosted after projecting image vectors on
the subspace. The FastICA algorithm is applied to achieve
the ICA transformation.

Based on Partial Least Squares and Support Vector Ma-

chine, a classification framework to classify AD vs CN
subjects is discussed in the literature [144]. For reducing
computational time with no loss of information, each voxel
is down-sampled by a factor of two. Voxels, with an intensity
value of more than 50% of the topmost intensity value, are
selected and created using a binary mask. This binary mask
is then applied to all the input images to determine the
decrements of input spaces. Voxels, which are nominated by
the mask, are reorganized in the form of a vector. The Partial
Least Squares (PLS) method is applied to get a score and
loading matrices. A weight matrix is also gained to determine
the score vectors for the voxels, where the PLS method is
not applicable. Thus, it can be easily observed, which voxels
are taken into account for further processing and which are
not. The Out of Box (OOB) is an error checking-based
mechanism, used for noise removal. Leave-One-Out (LOO)
method is used for validating the algorithm.

A Gaussian Mixture Models (GMM) based, SPECT im-
age classification, for diagnosis of AD is proposed in the
literature [145]. For density approximation, the authors have
used the GMMs. In GMMs, trials are strained according to
a Probability Distribution Function (PDF) which is demon-
strated by a summation of k Gaussians. For selecting the
maximum likelihood features, the Expectation Maximization
(EM) algorithm is used. EM is an iterative optimization
technique, that works in maximum likelihood approximation,
even if part of some data is missing or incomplete. In order
to extract the most effective features for classification, the
authors have used the GMM based approach to select the Re-
gion of Interests (RoIs). While extracting the discriminative
features, the authors considered the fact that the perfusion
decoration of brain image for an AD subject is more variable
than the CN perfusion. For dimensionality reduction of the
selected features, a PCA based technique is used.

An Association rule-based feature selection method with
the collaboration of Principal Component Analysis (PCA),
for Alzheimer’s disease diagnosis, is proposed in the litera-
ture [146]. The images are normalized and then a 3D mask
is created by averaging all the images, where a threshold
intensity aT is determined by the 50% of maximum inten-
sity value. Voxels, which are not covered by the mask, are
discarded for further processing. Finally, the voxels whose
intensity value is more than aT are considered as activated.
Apriori algorithm is applied to identify relevant associations
between the concurrently activated brain areas from CN
subjects. The allegations for Apriori rules are established in
terms of antecedents and consequents, amongst earlier deter-
mined 3D activated blocks. Moreover, ARs are extracted as
per the protocols of the leave-one-out (loo) cross-validation
strategy.

Some of the AD classification methods using eigenvector-
based feature extraction approaches are discussed. The per-
formance of the discussed methods is compared in table 6.
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TABLE 6: Performance comparison of the AD classification techniques using Eigenvector-based feature extraction approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Anandh Kilpattu
Ramaniharan,

et al. [141]

AD vs. CN:
93.37%

AD vs. CN:
93.37%

AD vs. CN:
93.37% NA NA NA

L. Khedher,
et al. [142]

AD vs. CN:
88.49%,

MCI vs. CN:
81.89%,

AD vs. MCI:
85.41%

AD vs. CN:
90.39%,

MCI vs. CN:
82.16%,

AD vs. MCI:
85.95%

AD vs. CN:
86.17%,

MCI vs. CN:
81.62%,

AD vs. MCI:
84.86%

NA NA NA

I.A. Illán,
et al. [143]

AD vs. CN:
88.24%,

MCI vs. CN:
70.21%

AD vs. CN:
87.80%,

MCI vs. CN:
40.91%

AD vs. CN:
88.64%,

MCI vs. CN:
83.51%

NA NA NA

F. Segovia,
et al. [144]

AD vs. CN:
91.75%

AD vs. CN:
92.68%

AD vs. CN:
91.07% NA NA NA

J.M. Górriz,
et al. [145]

AD vs. CN:
84.17%

AD vs. CN:
89.29%

AD vs. CN:
90.24% NA NA NA

R. Chaves,
et al. [146]

MCI vs. CN:
90.72%

MCI vs. CN:
89.29%

MCI vs. CN:
92.68% NA NA NA

From table 6, among all the compared AD classification
approaches, it can be observed that the highest performance
is achieved by Anandh Kilpattu Ramaniharan, et al.[141],
with an accuracy rate of 93.37%, the sensitivity of 93.37%,
and the specificity of 93.37%.

Apart from all the discussed eigenvector-based feature
extraction techniques for AD classification, Factor Analysis
(FA) also plays a major role in selecting the relevant features.
The FA is a widely used statistical technique used for describ-
ing the inconsistency among experiential variables in terms
of lesser overlooked variables known as the factors [147]. In
a literature [147], D. Salas-Gonzalez, et al. described a factor
analysis based feature selection for AD classification. For all
the input PET images, initially, the voxels for classification
are selected by using a t-test based approach. All the selected
voxels are then modeled using the FA to reduce the dimen-
sionality. Three various techniques are used for classifying
the subjects are; 2 multivariate Gaussian mixture models and
SVM with a linear kernel. According to the performance
analysis, SVM with linear kernel produced the maximum
classification accuracy.

F. HARMONIC FUNCTION BASED FEATURE
EXTRACTION
For extracting the most discriminative features from images,
Harmonic Analysis provides pixel-wise smooth curves in the
frequency domain denoted by amplitude and the phase [148].
From frequency curves, the most discriminative features are
extracted from functional associations among the spectral
bands. The harmonic descriptor is a collection of information
that helps to define a given shape [149]. One advantage of
harmonic descriptors is that it is invariant to the luminous-
ness. Moreover, because of the polynomial nature, harmonic
descriptors can determine the smooth variations in the image
signal [150]. Some of the literature where Harmonic function
based feature extraction is performed for AD classification
are discussed below.

A classification framework to classify AD vs CN, MCI vs
CN, and AD vs MCI subjects on structural MR images is

proposed in the literature [151]. The circular harmonic func-
tion descriptors on the hippocampus and posterior cingulate
cortex are used. The Automated Anatomical Labeling (AAL)
based atlas is used to select 2 Region of Interests (RoIs),
namely, the hippocampus, and the posterior cingulate cortex.
For segmenting the Region of Interests (RoIs), the Statistical
Parametric Mapping (SPM)8 toolbox is used. The authors
have used circular harmonic function to select the contrasting
patterns, and their coefficients form the descriptors of brain
pattern. Moreover, a dense sampling approach is used for
computing signal decomposition on the circular harmonic
function. From each slice, 2D descriptors are extracted from
the segmented RoIs. The signal differences inside the RoIs
are represented as a set of local circular harmonic function
coefficients. The features are then leveraged for differenti-
ating normal and abnormal images. The shape of both the
RoIs are different, hence a Balanced Weighted Voting (BVW)
based approach is applied separately to cluster the extracted
features, and built the visual vocabulary (codebook). More-
over, the RoI’s shape varies from one projection (sagittal,
axial, and coronal) to another. The clustering process is per-
formed three times for different projections and produced a
separate codebook for each projection and RoI. For reducing
the resultant image signature dimension, authors have used
the Principal Components Analysis (PCA) based approach.

A multidimensional classification approach to classify AD
vs CN, and MCI vs CN subjects, based on the hippocampal
shape, is proposed in the literature [152]. The authors have
performed an automatic hippocampus and amygdala segmen-
tation technique, based on a region growing approach. The
approach comprises prior information about the hippocam-
pus and the amygdala location, derived from a probabilistic
atlas. With the help of Spherical Harmonics-Point Distri-
bution Model (SPHARM-PDM) software, the hippocampus
is labeled as a series of spherical harmonics. SPHARM
provides a mathematical method for representing the surfaces
with spherical topology. The method can be observed as a
3D analog of Fourier series expansion. The authors have
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determined 2 correspondences between the objects, namely
i) SPHARM coefficients, used as features in SVM classi-
fier, ii) SPHARM-PDM landmarks, applied for visualizing
the localization of shape differences between groups. By
SPHARM decomposition with the degree of 20, subjects
are characterized by a feature vector of size 2646. The fea-
ture vector is determined by concatenating three coordinates
of all coefficients, results in (20 + 1)2 vector coefficients.

Furthermore, there are two hippocampus and three spatial
coordinates, thus a total of 2×3× (20+1)2 = 2646 features
are generated. For identifying, and selecting only the most
discriminative features, a univariate feature selection method
combined with a bagging strategy is used.

AD classification using harmonic function based feature
extraction approaches are discussed. The performance of the
discussed articles is shown in table 7.

TABLE 7: Performance comparison of the AD classification techniques using Harmonic function based feature extraction
approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Olfa Ben Ahmed,
et al. [151]

AD vs. CN: 83.7%,
MCI vs. CN: 66.7%,
AD vs. MCI: 76.5%

AD vs. CN: 78.8%,
MCI vs. CN: 62%,

AD vs. MCI: 78.9%

AD vs. CN: 85.7%,
MCI vs. CN: 68.3%,
AD vs. MCI: 52.8%

NA NA
AD vs. CN: 0.82,
MCI vs. CN: 0.65,
AD vs. MCI: 0.66

Emilie Gerardin,
et al. [152]

AD vs. CN: 94%,
MCI vs. CN: 83%

AD vs. CN: 96%,
MCI vs. CN: 83%

AD vs. CN: 92%,
MCI vs. CN: 84% NA NA NA

From table 7, it can be observed that among all the dis-
cussed AD classification methods using harmonic function-
based feature extraction approaches, the highest performance
is achieved by Emilie Gerardin, et al. [152], with an average
accuracy of 88.5%, the sensitivity of 89.5%, and the speci-
ficity of 88%.

G. SCALE-INVARIANT FEATURE TRANSFORMS BASED
FEATURE EXTRACTION
Scale Invariant Feature Transform (SIFT) is one of the most
popular techniques, for feature extraction and matching of
the prominent properties at various scales, amongst the set
of input images, [153]. In SIFT, firstly the key features from
objects are mined from some reference images and kept in
a database. Then, the object in an input image is determined
by associating a new image with the image from the database
by using Euclidean distance-based feature vectors matching
approach [154]. Among all the matching, subgroups of fea-
tures, which are more suitable on the object, in terms of its
location, scale, orientation, etc., are determined to find out
the best matches. Lastly, the probability of the subgroups
is calculated, which specifies the occurrence of an object,
correctness, and the quantity of possible wrong matches
[154]. One of the major advantages of SIFT is that it can
produce a sufficient quantity of features, that can compactly
cover the whole image [155]. Moreover, features extracted by
SIFT are local, hence no segmentation is required. One of the

disadvantages of SIFT is that, sometimes it produces lots of
non-feasible features, hence, the process is computationally
time consuming [156].

A classification framework to classify AD vs CN subjects,
using the scale-invariant feature transforms in MR images, is
proposed in the research article [157]. For detecting salient
features from the images, a scale invariant approach is ap-
plied using the scale-space representation. The operation is
performed using a Gaussian kernel, at different variances,
and then convolved with the original image. The Difference-
of-Gaussian (DOG) is calculated by differencing adjacent
images in the scale-space. The detected prominent points
in an image are represented as a feature vector, that is
used for local shape description, such as location, scale, and
orientation. Samples are used for creating the orientation his-
tograms, over 4×4 sample regions. The final feature descrip-
tor for each salient feature has 128 dimensions while using 8
directions for each histogram. For the unique representation
of the salient points of all images, all the SIFT descriptors
are grouped into a fixed number of clusters (K clusters) and
extracted the common salient points from training images.
The K- means clustering technique is used to minimize the
Within-Cluster Sum of Squares (WCSS).

Some of the AD classification approaches, using SIFT
based feature extraction, are discussed in this section. The
performance of the discussed articles is presented in table 8.

TABLE 8: Performance comparison of the AD classification techniques using Scale-Invariant Feature Transforms based feature
extraction approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Mohammad Reza
Daliri,

et al. [157]
AD vs. CN: 72% NA NA NA NA NA
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From table 8, it can be observed that the average perfor-
mance of the method is approximately 72% only, which is
less compatible with respect to other methods.

H. ARTIFICIAL NEURAL NETWORK (ANN) BASED
FEATURE EXTRACTION
ANN is a sequence of methodologies, that helps to determine
the fundamental associations in a group of data, by following
a similar procedure of the human brain [158]. Because of
the influential matching determination, ANN is a commonly
used feature extraction or dimensionality reduction tool. The
major advantage of ANN in feature extraction is that it has
the capability to learn by itself, and provides results that are
not restricted to the initial information provided in [159]. In
a neural network, information is stored in the networks rather
than stored in a database, hereafter, the data-loss doesn’t dis-
tress its operation. One of the major disadvantages of ANN
is the mysterious behavior of the network. After producing a
solution, ANN never gives a hint of how and why the result is,
which may reduce the confidence in the network [160]. Some
literature, where ANN-based feature extraction is performed
for AD classification, is discussed below.

A classification method, to classify AD vs CN, and MCI
vs CN subjects, is discussed in the paper [161]. For intra-
slice features extraction, authors have proposed a 2D-CNN
model for learning the features, invariant to the simple alter-
ations and linear changes. The 2D-CNN model is designed
for each group of slices, and slices from the same group
are used for training the model. The model is composed
of 5 convolutional layers, namely 2 max pooling layers, 2
full connection layers, and 1 SoftMax classification layer.

For inter-slice features extraction from each group of slices,
the authors have proposed a stacked Recurrent Neural Net-
works (RNNs). In order to achieve more inter-slice features,
the Bidirectional Gated Recurrent Unit (BGRU) is applied,
which has a forward GRU and a backward GRU. In the
classification step, the features generated from the BGRU
network layer, followed by 2 fully connected layers, and 1
SoftMax layer, are jointly optimized. The individual CNNs
as well as the BGRU combination models (CNN-GRU) are
trained separately for axial, sagittal, and coronal axis.

A Convolutional Neural Network-based, MR image analy-
sis, for AD classification is proposed in the literature [162]. In
this study, the hippocampus is considered as a Region of In-
terest (RoI). An automated patch-based separation technique
with geometric coordinates of the International Consortium
for Brain Mapping (ICBM) template, is applied for extracting
the RoI. The Local Entropy Minimization with a bi-cubic
Spline (LEMS) model is used for noise removal and intensity
homogeneity correction. The 1st layer of the network is the
Convolution layer, which is used for extracting properties
from the input images. The features are mined by preserving
association amongst the pixels of learning features, using
trivial squares of the input data. The main task of max pooling
is to consider only major components from the rectified
feature map, for reducing the unnecessary parameters. For
considering major components, the algorithm also used the
concept of average pooling.

A short description along with some of the research articles
on AD classification using ANN based feature extraction
approaches is discussed. The performance of the research
articles is presented in table 9.

TABLE 9: Performance comparison of the AD classification techniques using Artificial Neural Network (ANN) based feature
extraction approaches

Authors Accuracy Sensitivity Specificity Positive Predictive
Value (PPV)

Negative Predictive
Value (NPV)

Area Under
Curve (AUC)

Manhua Liu,
et al. [161]

AD vs. CN:
91.2%,

MCI vs. CN:
95.3%

AD vs. CN:
91.4%,

MCI vs. CN:
78.9%

AD vs. CN:
91.0%,

MCI vs. CN:
80.0%

NA NA

AD vs. CN:
0.95,

MCI vs. CN:
0.84

Boo-Kyeong
Choi,

et al. [162]

AD vs. CN:
92.3%,

MCI vs. CN:
85.5%,

AD vs. MCI:
78.1%

AD vs. CN:
93.3%,

MCI vs. CN:
88.4%,

AD vs. MCI:
77.0%

AD vs. CN:
91.1%,

MCI vs. CN:
82.8%,

AD vs. MCI:
79.3%

AD vs. CN:
91.4%,

MCI vs. CN:
93.9%,

AD vs. MCI:
80.2%

AD vs. CN:
93.2%,

MCI vs. CN:
88.1%,

AD vs. MCI:
76.0%

NA

From table 9, between two relevant research articles on
AD classification using ANN based feature extraction ap-
proaches, the maximum performance is achieved by Manhua
Liu, et al. [161] with an average accuracy of 93%, the
sensitivity of 85.15%, and specificity of 85.5%.

III. RESULTS AND DISCUSSION, AND COMPARISON ON
DIFFERENT AD CLASSIFICATION METHODS
In this study, a total of 50 recently published articles, on AD
classification, using different feature extraction approaches,
are reviewed, and compared with their performances. It can

be observed from this study that, feature extraction plays a
major role in the classification of AD using brain images. A
detailed comparison based on the performances of different
classification methods is presented from table 2 to table
9. To make the performance comparison easier, we have
analyzed the average classification performance by averaging
the results of all the performance parameters (i.e, accuracy,
sensitivity, specificity, positive predictive value, negative pre-
dictive value, and the area under the curve) for all subject
groups. The graphical representation of the performance
comparison is shown in figure 3, and figure 4.
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FIGURE 3: Average performance comparison of 50 AD classification approaches (Part 1)

FIGURE 4: Average performance comparison of 50 AD classification approaches (Part 2)

From table 2 to table 9, as well as from the graphical
representation, it can be observed that overall maximum per-
formance is achieved by Lilia Mesrob, et al. [96]. While clas-
sifying AD vs. CN subjects, the highest accuracy (99.60%)
can be observed in the same literature by Lilia Mesrob, et al.
[96]. In this approach of AD classification, the authors have
parcellated the MRIs into anatomical Region of Interests

(RoIs), with the help of pre-labeled templates. Next, from
each of the RoIs, Diffusion Tensor Imaging (DTI) measures,
as well as the absorption of grey matter, are mined. All the
subjects (AD/CN) are acquired as per the guidelines provided
by the National Institute of Neurological and Communication
Disorders and Stroke/AD and Related Disorders Association
(NINCDS-ADRDA). For all the subjects, T1-MRI is consid-
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ered for the study, using the Spoiled Gradient echo Sequence
(SPGS) and Diffusion Tensor Imaging (DTI) scans (in 23
directions). From the Diffusion Tensor Imaging (DTI) inputs,
tensors are determined and then, an Apparent Diffusion Co-
efficient (ADC), as well as the Fractional Anisotropy (FA)
maps, are mined as shown in figure 5. All the structural inputs
are segmented into three parts (grey matter, white matter,
cerebrospinal fluid) as shown in figure 6. Using the Montreal

Neurological Institute (MNI) toolbox, a common minimum
volume for all the inputs is calculated, and using that mask 73
regions in the brain are parcellated as shown in figure 7. Next,
the average of the Apparent Diffusion Coefficient (ADC)
is determined for every RoIs and the multimodal features
are determined from the proportion of Apparent Diffusion
Coefficient (ADC) to grey matter absorption in each voxel.
Thus, the most discriminative features are extracted.

FIGURE 5: Sample Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) images[96]

FIGURE 6: Sample structural MRI segmented in grey matter, white matter and cerebrospinal fluid[96]

FIGURE 7: The common volume mask and brain parcellation in 73 RoIs[96]
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Though the performance claimed by Mesrob, et al. [96] is
convincing, but the experiment is performed by taking only
32 subjects, also the authors have excluded many important
cortical regions from the study which may impact in overall
classification performances [163].

Zhe Xiao et al. [80] have claimed that, while classifying
AD vs. MCI, the method achieved 100% of sensitivity, MCI
vs. CN with 100% specificity, MCI vs. CN with 100% of
PPV, and AD vs. MCI with 100% of NPV. Tooba Altaf, et al.
[81] have claimed that the classification mechanism achieved
a 100% of sensitivity while classifying AD vs. CN. One of
the common issues in these two articles [80] [81] is that
they have used GLCM based feature extraction technique,
which is computationally expensive due to the presents of
many zero elements which may not be necessary for further
processing [78]. Yubraj Gupta, et al. [102] have claimed that,
while classifying AD vs. MCI subjects, the method achieved
a 100% of sensitivity. Also, the method classified AD vs.
CN, and MCI vs. CN, with 100% specificity. One of the
major problems with the method [102] is that, for atrophy
measurement in brain cells, they have used a free-surfer tool-
box, which introduces some unnecessary biases [164]. Ali

Khazaee, et al. [128] have claimed that they achieved 100%
of sensitivity while classifying MCI, and 100% specificity as
well as 100% PPV, while classifying AD vs. CN. One of the
major issues in the study [128] is that the authors have used
an atlas-based Region of Interests (RoIs) extraction approach,
where no boundary information is present, which may affect
the overall performance in classification [165]. In similar
research, Olfa Ben Ahmed et al. [93], while classifying
AD vs. CN, have claimed that the proposed method can
achieve a 100% of classification specificity. One of the main
issues in the approach [93] is that the authors have extracted
the hippocampus using an atlas based method, where no
boundary information is present [165]. While classifying AD
vs. CN subjects, the highest Area Under Curve (99.93%) is
achieved by Iman Beheshti, et al [98]. One major limitation
of the approach is that the authors have used a PCA-based
feature selection technique, which cannot explore the spatial
information [166].

For all the discussed literature, we have analyzed the
detailed observations. The detailed observations are summa-
rized in table 10.

TABLE 10: Summarization of all the discussed AD classification approaches

Authors Year Publication Dataset Classifier Observations

Prashanthi
Vemuri,
et al. [103]

2008 NeuroImage:
Clinical

Mayo Clinic
Alzheimer’s
Disease
Research
Center
(ADRC)

SVM

1. The selection of RoI is done based on a manual
template-based approach. Manual selection of RoI
required expertized knowledge. Moreover, it is
time consuming and the final RoI may contain
some unwanted pixels as well [167]

E. Gerardin,
et al. [152] 2009 NeuroImage

Japanese-
ADNI
(JADNI)

SVM

1. The authors have used the hippocampus as
the RoI and used a region growing approach
for segmentation. Because of the complex
structure, region growing cannot segment the
hippocampus accurately [168].
2. For the experiment, the authors have taken 23 AD
patients, 23 MCI patients, and 25 CN patients, which is
very less in number.

Andrea
Chincarini,
et al. [107]

2011 NeuroImage:
Clinical ADNI SVM

1. The authors have extracted only 9 VoIs/RoIs for
the study. However, no clear justification has been given
why and which RoIs/VoIs are considered for extraction.

I. A.
Illa´n,
et al. [143]

2011 Information
Sciences ADNI SVM

1. The authors have used PCA and a FastICA based
approach for extracting the features, but PCA sometime
fails to explore the spatial information [166], and FastICA
often fails to extract the local independent features [169].

J. M.
Go´rriz,
et al. [145]

2011 Applied Soft
Computing

Virgen de
las Nieves
hospital in
Granada
(Spain)

SVM

1. The authors have used the GMM model for density
estimation which is based on a false assumption that
each pixel is independent of its neighbors [170].
2. For feature reduction, authors have used the PCA
method which ignores the spatial information [166]

M. Reza
Daliri,
et al. [157]

2011
Journal of
Medical
Systems

OASIS SVM

1. The authors have compared their methodology
only with one previous related work, which is very
less in number.
2. The proposed method will be computationally
expensive as SIFT takes more time if the dataset is
large [171].
3. The authors have not performed any noise filtering
technique, and used Histogram based approach for
feature extraction, which is noise sensitive [172].

L. Mesrob,
et al. [96] 2012

Advances in
Molecular
Imaging

Research
and
Resource
Memory
Centre,
France

SVM

1. Only 15 AD subjects and 17 CN subjects are used in
this study which is very small in number.
2. The proposed approach excluded approximately 17
cortical RoIs. Cortical regions play an important role in
finding the discriminated areas [163].
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F. J.
Mart´ınez
Murcia,
et al. [105]

2012
Expert Systems
with
Applications

Irgen de
las
Nieves
hospital,
in Granada
(Spain)

SVM

1. The authors have used the FBP for input image
reconstructions which is sensitive towards star effect,
and sometimes falsely it produces the streak-like artifacts
in the image [173].
2. The authors have manually set the parameter that
pixels having the intensity value lower than 70 will be
discarded. However, the pixel values may differ image
to image, hence an automatic threshold value selection
might increase the accuracy in pixel selections.
3. The authors have used the MWW U-test for feature
rankings. The basic assumption of the MWW U -test is
that the sets of input data have the similar
distributions [174], which may not be true for all the cases.

R. Chaves,
et al. [146] 2012

Expert Systems
with
Applications

ADNI SVM
1. Voxel selection is done using Apriori algorithm
which sometimes selects some unnecessary voxels
and hence the algorithm is time consuming [175][176].

A. Pulido,
et al. [126] 2013

The International
Society for
Optical
Engineering

OASIS SVM

1. The authors have completely ignored the
pre-processing step. Pre-processing steps like
skull stripping, denoising, intensity enhancement,
etc. may help to improve the classification
accuracy [177].

F. Segovia,
et al. [105] 2013 Expert Systems

with Applications

Virgen
de las
Nieves
hospital in
Granada
(Spain)

SVM

1. After performing the OOB operation, the authors
have used only 10 components from each subject for
further classification without a proper justification or
comparison why they have chosen only 10 components
and whether increasing/decreasing the components will
affect the classification accuracy or not.
2. The authors have not provided any information
about the number of subjects used in the experiment.
However, they have mentioned that 95 SPECT images
are acquired, which is too less in numbers.

G. W. Jiji,
et al. [82] 2014

Computer
Methods in
Biomechanics and
Biomedical
Engineering: Imaging
&
Visualization

Radiology
Research
Hippocampus
Segmentation
Database

SVM

1. For this study,
the authors have acquired only 15
subjects, which is very less for the experiment.
2. The authors have used a level set-based approach
for the hippocampus segmentation, which is the
one and only RoI for the study. However, one of the
disadvantages of the level set based segmentation
approach is that here the edge-stopping function
is never exactly zero at the edges, and so the
curve may eventually pass through object
boundaries [178].

OB. Ahmed,
et al. [93] 2014 Multimedia Tools

and Applications

ADNI
and
Bordeaux
dataset

SVM,
and
Bayesian
classifier

1. The authors have used considered the hippocampus
as a VoI, and used an atlas-based approach for extracting
the VoI, and hence proper extraction is required for
better performance. The main disadvantage
of atlas-based approaches is the lack of boundary
information [165], which may
lead to an inappropriate segmentation of the VoI.

Feng Liu,
et al. [99] 2014 NeuroImage:

Clinical ADNI SVM

1. The brain is partitioned into 93 regions for
feature extractions. The authors have not provided
any information about the selection criteria of the 93
regions. Selection of proper RoIs plays an
important role and a machine learning based
approach may select the RoIs more
accurately [134]

M. Liu,
et al. [100] 2014 Human Brain

Mapping ADNI

SVM,
and
Vector basd
clasifier

1. The authors have used the t-test based approach
for extracting the important patches, which is
sensitive towards Type I error [179].

A. ORTIZ,
et al. [106] 2014

KES Innovation
in Medicine and
Healthcare

ADNI

Sparse
Representation
Classifiers
(SRC)

1. The authors have manually set the parameter that
pixels having the activation value below 50% will be discarded.
However, the pixel values may differ image to image,
hence an automatic threshold value selection may increase
the accuracy in pixel selections.
2. For feature ranking, the authors have used a
t-test approach, which is sensitive towards Type I error [179].

Qi Zhou,
et al. [108] 2014

IEEE Transactions
on Biomedical
Engineering

Wien Center
for
Alzheimer’s
Disease and
Memory
Disorders

SVM

1. The authors have extracted only 52 VoIs/RoIs for
the study. However, no clear justification has been given
why and which RoIs/VoIs are considered for extraction.
2. For feature ranking, the authors have used a
t-test approach, which is sensitive towards Type I error [179].
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T. Tong,
et al. [123] 2014 Medical Image

Analysis ADNI SVM

1. The intensities of patches are used as features
without performing denoising operation, which may
lead to the alteration to intensity inhomogeneity, or
other forms of noise.
3. The trained classifier used by the authors is a
bag-level classifier which can only predict the label
of unseen images. Moreover, the approach can’t assign
a probabilistic label for each voxel. To
improve the classification accuracy, instance level
classifiers may be used to assign a disease score
for every voxel [180].

M. Liu,
et al. [94] 2015 Human Brain

Mapping ADNI SVM

1. The authors have proposed a multi atlas-based
image registration approach, where multiple atlases
are used, and hence this approach may
computationally expensive [181].
2. The proposed method ignored the longitudinal
discriminative information. Longitudinal information
can play a major role in classification of AD [182].

I. Beheshti,
et al. [101] 2015

Computers in
Biology and
Medicine

ADNI SVM

1. The authors have used DARTEL registration
technique where some diffeomorphic formations
for which velocities varies over time are impossible
to get [183].
2. The authors have used the PLS feature extractor
approaches. One of the disadvantages of using the
PLS is that, it overestimates and extracts some
unnecessary features [184].

M. Liu,
et al. [110] 2015

IEEE Transactions
on Biomedical
Engineering

ADNI SVM

1. The authors have used the OVA approach for feature
selection. OVA is computationally expensive [185].
2. Authors have used the naïve multi-task sparse
feature selection method with a l2,1 norm based regularizer,
where relationships among subjects are not considered at all.
3. The authors have extracted regional features in
multiple template spaces, where the partitions of RoIs in
different templates may be different from each other.
However, it is difficult to directly compare subjects in two
template spaces because of anatomical structure differences
among the templates.

Daniel
Schmitter,
et al. [111]

2015 NeuroImage:
Clinical ADNI SVM

1. For this study, brain morphometry is measured by
several software which required expertized knowledge.
An automatic brain morphometry measurement technique
can help in better classification accuracy.

Jin Liu,
et al. [130] 2015

IEEE/ACM
Transactions
on
Computational
Biology and
Bioinformatics

ADNI SVM

1. The authors have used AAL method for s
electing the RoIs that have some disadvantages,
such as: Poor boundary information which
may lead to a false selection of a region [186].
2. In this study, Cerebellar regions is totally
ignored which may contain some important
features for classification.

L. Khedher,
et al. [142] 2015 Neurocomputing ADNI SVM

1. The authors have used the PCA, and the PLS feature
extractor approaches, but PCA cannot explore the spatial
information from an input image [166], and PLS overestimates
and extracts some unnecessary features [184].

OB. Ahmed,
et al. [151] 2015

Computerized
Medical
Imaging and
Graphics

ADNI SVM

1. The authors have used Automated Anatomical
Labeling (AAL) for selecting the RoIs which has a
poor boundary information, hence sometimes it may
lead to a false selection of a region [186].

I. Beheshti,
et al. [92] 2016

computer
methods and
programs in
biomedicine

ADNI SVM

1. The authors have used DARTEL registration
technique which uses the concept of the fixed velocity
field, hence some diffeomorphic formations for which
velocities varies over time are impossible
to get [183].
2. The authors have used 7 feature ranking techniques
to rank the best features which may leads the process to
become complex and take more time to execute.
Instead of that the authors could have used a
single ranking-based feature selection approach such as
the deformation-based analysis [187].

C. Zu,
et al. [95] 2016 Brain Imaging

and Behavior ADNI SVM

1. The method proposed by the authors requires equal
number of features from all the modalities, but some
modalities in ADNI, such as Cerebrospinal Fluid and
genetic data, have dissimilar feature numbers which
may have important pathological information.
2. The proposed method ignores the longitudinal data
which may have some important information for
classification.

T. Ye,
et al. [97] 2016 Brain Imaging

and Behavior ADNI SVM

1. The authors have selected 93 RoIs using atlas
wrapping. Selection of proper RoIs plays an important
role and an automatic approach can select the RoIs
more accurately [134].
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I. Beheshti,
et al. [98] 2016

Magnetic
Resonance
Imaging

ADNI SVM

1. For feature selection, the authors have used the
PCA method which cannot explore the spatial
information from an input image accurately [166],
and for feature ranking the t-test method which is
sensitive towards Type I error [179].

Shui-Hua
Wang,
et al. [118]

2016 Multimed
Tools Appl OASIS

Multilayer
Perceptron
(MLP)

1. The authors have used BBO for network training, where
no provision to select the best members from each generation to
improve the classification accuracy [188].
2. For single slice feature selection, the authors
have used the ICV in only one direction (axial). Since the
image is in 3D, the authors could have been used the ICV
for all the 3 directions axial, sagittal and coronal for better
performance.

T. Tong,
et al. [124] 2016 Pattern

Recognition ADNI Random
Forest

1. The authors have focused only in the cross-
sectional study. Longitudinal data information may
help to increase the performance accuracy [189].

Maciej
Plocharski,
et al. [127]

2016

Computer
Methods and
Programs in
Biomedicine

ADNI SVM

1. The authors have ignored the pre-processing steps
like skull stripping, denoising, intensity enhancement,
etc. which may help to improve the
classification accuracy [177].

A. Khazaee,
et al. [128] 2016 Behavioural

Brain Research ADNI SVM

1. The authors have used 264 RoIS from each subject
for further classification without a proper justification
or comparison for considering those particular RoIs.
2. The authors have used an atlas-based approach for
extracting the RoIs which has the lack of boundary
information [165], that may lead to an inappropriate
segmentation of the RoIs.

Anandh
Kilpattu
Raman-
iharan,
et al. [141]

2016 Expert Systems
with Applications OASIS

KNN,
SVM,
Naïve Bayes

1. For the 3D images, among 176 slices, the authors
have selected manually slice number 90 for further
processing. Proper selection of slice is important
and required advance expert knowledge [190].
2. The authors have acquired the data of only 60
subjects (30 for AD, 30 for CN), which is very less in
number.

Zhe Xiao,
et al. [80] 2017

Computational
and
Mathematical
Methods in
Medicine

ADNI

Suport
Vector
Machine
(SVM)

1. The authors have used GLCM for texture feature
extraction, but one of the drawbacks of GLCM is
that it is a sparse matrix with many elements
as zero which are unnecessary for texture
features calculation hence it is computationally
expensive [78] [79].
2. The authors have not used any noise removal
techniques and then used SVM-REF feature
selection method which is:
i) Noise sensitive [191] [192].
ii) While selecting the best features, it can’t avoid
the highly correlated discriminative features
effectively [191].
iii) Can’t effectively deal with group-based feature
selection [191].

I. Beheshti,
et al. [91] 2017

Computers in
Biology and
Medicine

ADNI SVM

1. Spatial information plays an important role in
cluster and classification analysis of an image. For
feature reduction, authors have used the PCA method.
One of the disadvantages of PCA is that, it
cannot explore the spatial information from an
input image [166].
2. For feature ranking, the authors have used a
t-test approach, which is sensitive towards Type I error,
i.e. if the variances or the group sizes are paired
negatively then it may lead to incorrect results [179].

Tong Tong,
et al. [109] 2017

IEEE Transactions
on Biomedical
Engineering

ADNI SVM

1. The authors have not used any noise filtering
approach and then used the EN approach for feature selection
which has several demerits such as: it is noise sensitive,
sometimes it selects some
unnecessary features, etc [193].

Saruar
Alam,
et al. [119]

2017
Journal of
Healthcare
Engineering

ADNI,
and
OASIS

Twin
SVM

1. For feature reduction, authors have used the PCA
method which cannot explore the spatial information
from an input image [166].
2. For converting the 3D images to 2D, authors have
analysed the information of the slices manually.
An automatic slice selection technique may
help to select more appropriate slices.

D. Jha,
et al. [121] 2017

Journal of
Healthcare
Engineering

OASIS

Feed
Forward
Neural
Network
(FFNN)

1. The authors have converted the 3D images to 2D,
and have taken 32 slices manually for each subject for
further processing which required expertise knowledge.
2. For feature reduction, authors have used the PCA
method that cannot explore the spatial information [166].
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I. Beheshti,
et al. [125] 2017

Journal of
Alzheimer’s
Disease

Japanese-
ADNI
(JADNI)

SVM

1. The authors have proposed to construct the brain
network but avoid to extract the complex network
measures from individual male and female subjects,
which may lead for an incorrect network
construction, as male and female subjects
have different network structures [194].

Jin Liu,
et al. [129] 2017

IEEE
Transactions
on Nano
Bioscience

ADNI SVM

1. The authors have used F-Score to select the
classification features which may not always
select the best features as it fails to expose the
mutual information among features.
2. The authors have used Automated Anatomical
Labeling (AAL) for selecting the RoIs which have
the Poor boundary information so it may lead to a
false selection of a region [186].

Jin Liu,
et al. [131] 2017

IEEE/ACM
Transactions
on
Computational
Biology and
Bioinformatics

ADNI SVM

2. The authors have used AAL for selecting the RoIs
where no provision is there to define the number of
voxels in a region [186].
3. The authors have used F-Score to select the
classification features that fail to expose the mutual
information among features.

Tooba Altaf,
et al. [81] 2018

Biomedical Signal
Processing and
Control

ADNI

SVM,
ensemble,
KNN,
and
decision tree

1. The authors have used the GLCM, SIFT, LBP,
HOG, and BOW based feature extraction
techniques. The proposed method maybe
computationally expensive as SIFT takes more
time if the dataset is large [171], GLCM contains
many zero elements [78] [79], and LBP extracts more
irrelevant features as the number of neighbours
increased [195].

Geetha C,
et al. [120] 2018 Biomedical

Research

Harvard
Medical
School,
OASIS,
and
ADNI

Fuzzy
Neural
Network
(FNN)

1. The authors have not provided information of the
number of subjects taken in this study, but revealed
that a total of 160 MR images are acquired for this study,
which is very less in number.

M. Liu,
et al. [161] 2018

Frontiers
in
Neuroinformatics

ADNI

CNN-GRU
(CNN-
Gated
Recurrent
Units)

1. The authors have used GRU based inter-slice
feature selection as well as in the final classification
technique. However, GRU is computationally
expensive as the model has problems with its slow
convergence rate and low learning efficiency [196]

K.Vaith-
inathana,
et al. [77]

2019
Journal of
Neuroscience
Methods

ADNI
Random forest,
SVM, and
KNN

1. The authors have used 3 feature selection
approaches namely, Fisher score, Elastic net
regularization, and the SVM Recursive Feature
Elimination (SVM-RFE) technique. The proposed
classification technique may be computationally
expensive as all the 3-feature selection algorithms
have their own disadvantages, such as:
- The fisher score fails at creating low-dimensional
classifiers with decent predictive performance and
low variable acquisition costs [197].
- The SVM-RFE is noise sensitive [191] [192], and can’t
effectively deal with group-based feature selection [191].

Y. Gupta,
et al. [102] 2019

Journal of
Healthcare
Engineering

National
Research
Center for
Dementia
(NRCD)

SVM,
KNN,
Naïve Bayes,
and
SoftMax
classifier

1. For cortical thickness atrophy measurement, the
authors have used the FreeSurfer toolbox. One of the
disadvantages of FreeSurfer while measuring the
cortical thickness is that it introduces biases that
could require statistical adjustments [164].

Yubraj Gupta,
et al. [104] 2019 PLOSONE NRCD

SVM,
Random
Forest,
and KNN

1. For feature reduction, authors have used the PCA
method. One of the disadvantages of PCA is that,
it cannot explore the spatial information from an
input image [166]

U. R.
Acharya,
et al. [117]

2019
Journal of
Medical
Systems

University
of Malaya
Medical
Centre &
the Harvard
Brain Atlas.

KNN

1. For feature selection, the authors have used a
t-test approach, which is sensitive towards Type I error [179].
2. The authors have used KNN method which has some
challenges such as, to determine the optimum k-value [198].
KNN follows a distance-based learning, where it is
not clear that which type of distance can give a better
performance [199].

Boo-Kyeong
Choi,
et al. [162]

2020
Current
Medical
Imaging

ADNI CNN

1. The authors have considered only hippocampus
as the RoI for classification and performed a manual
segmentation using 3D Slicer toolbox.
Manual segmentation required expertized knowledge [200],
and hence, a machine learning based automatic
segmentation of hippocampus might have been
helped in getting better classification results.

From table 10, it can be observed that, although all the
research articles perform well in their own way, still there lies
few scopes for further improvements. From the observations,

it can be noticed that, among all the popular feature ex-
traction/selection approaches, Principal Component Analysis
(PCA) and GLCM have been used in several literature [80]
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[81] [91] [98] [104] [119] [121] [142] [143] [145]. Although
these two techniques are more popular, they have some limi-
tations which may affect on the final classification outcomes.
One limitation of GLCM is that, it is a sparse matrix with
many elements as zero, which are unnecessary for texture
features calculation, hence, it is computationally expensive
[78] [79]. Similarly, one of the limitations of PCA is that, it
cannot explore the spatial information from an input image
[166].

A. CURRENT TRENDS IN THE FIELD OF AD
CLASSIFICATION USING BRAIN IMAGES
In this paper, we have discussed about the different fea-
ture extraction based AD classification techniques and brief
comparisons amongst the techniques are presented in several
tables. However, in recent years, multi-modal techniques
have been used widely in AD classification [201]. One of the
major advantages of using the multi-modal approaches is that
these methods are competent in wrapping multimodal neuro-
imaging features together which requires fewer labeled data
as well [202]. Some of the recently published articles on
multi-modal techniques for AD classification are discussed
below.

For MCI Diagnosis, a multiview feature learning with
multiatlas based functional connectivity networks model is
proposed in the literature [203]. The authors first imple-
mented a 3-step transformation-based technique on Auto-
mated Anatomical Labeling (AAL) template for generating
a personalized atlas. For the transformation of resting-state
fMRI (rs-fMRI) data into the MNI template space, a dynam-
ical registration approach is used. The authors have used the
deformation-based field to differentiate the dynamic mapping
and then applied the Affinity-Propagation (AP) clustering
mechanism to produce a group of personalized atlas instances
for extracting the regional mean-time series and constructing
the numerous Functional Connectivity Networks (FCNs) for
all the subjects. For feature extraction, the graph-theory-
based technique is used. For feature selection, Sparse Group
Lasso (SGL) based approach is used. The authors have pro-
posed a multi-task learning mechanism to optimize the multi-
view characteristics and to train the SVM for a proper NC vs
MCI classification and achieved a convincing result.

A multimodal AD classification approach is proposed in
the literature [204]. The authors proposed a hyper graph-
based multi-task attribute assortment model. The hyper
graph-based regularization for the proposed method is de-
signed for unambiguous illustration of the association in
all the modalities, such as MRI and PET. The proposed
multimodal classification model is followed by two major
steps, namely hyper graph creation, and the hyper graph-
based multi-task feature learning. A separate hyper graph
for all the modalities is constructed by using the concept of
multiple hyper-edges which imitate the associations among
all the subjects. The l2,1 normalization method is applied
for selecting the features jointly from the same brain area at
the same moment. Finally, the authors used a multi-kernel

SVM for combining the selected characteristics to perform
the classification.

For the classification of MCI disease, strength and sim-
ilarity guided group-level brain functional network based
approach is proposed in the literature [205]. For preserv-
ing accurate analytical group dissimilarity, the authors have
proposed to explore the functional connectivity (FC) prop-
erties into a group sparse representation (GSR) based net-
work model. For reducing inter-subject inconsistency, a
population-based prior-constrained graphical Lasso is de-
signed for which the sparsity formation is imposed across
every subject. The inter regional couple-wise FC is com-
puted by determining the temporal synchronization of blood-
oxygen-level-dependent (BOLD) signals using Pearson’s
correlation (PC) approach for all the individuals. The PC-
based FC information is then used for guiding the group-
level brain network for all the subject groups. Additional to
the PC-based network, which is referred to as low-order FC
(LOFC), the authors have also proposed to find out high-
order FC (HOFC) by estimating the LOFC correlation. This
will be further helpful for the GSR-based network model
which is capable of incorporate LOFC and HOFC together
into the same GSR-based network model, namely Strength-
and Similarity-Guided GSR (SSGSR).

For early dementia diagnosis, a multi-modal latent space is
proposed in the literature [206]. The authors have proposed
a new AD classification mechanism by using the concept
of multi-modal latent space and ensemble SVM classifier.
For exploiting the association among all the modalities, the
authors anticipated the ROIs-based features into a latent
space. Different modalities of neuroimages are acquired such
as MRI and PET data, and then all the features are pro-
jected to a regular latent space. The latent representations
are mapped into several label spaces to learn numerous
diversified classifiers, and an ensemble approach is used to
deal with the heterogeneity of AD progression. Latent space
learning as well as the classifier training is then incorporated
into an integrated framework to make all the components
work together.

By considering multi-model images, a brain connectivity
based model for the prediction of AD is proposed in the
literature [207]. The authors developed a brain connectivity
model based on different modalities of images such as the
MRI and PET to determine the morphological as well as
the metabolic relations for all the subjects. The brain areas
with remarkable variances are marked for each modality and
trained to categorize the subjects by training the model from
a large dataset consisting of CN and AD subjects. Brain areas
having vigorous structural as well as metabolic relations with
target regions are identified and then a multi-task sparse-
based regression framework is used for determining the
connectivity while treating the connectivity mining of all the
image modalities in the target dataset as a single assignment.

A summary of the discussed multi-modal techniques is
presented in table 11.
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TABLE 11: Summarization of some recent studies on multi-modal brain network-based studies in AD classification

Authors Year Publication Dataset Methods

Zhang, et al. [203] 2020 IEEE TRANSACTIONS
ON CYBERNETICS ADNI

Multiview
feature learning method with
multi atlas-based Functional
connectivity networks

Wei Shao, et al. [204] 2020 Computerized
Medical Imaging and Graphics ADNI

Hypergraph based
multi-task feature selection
method

Yu Zhang, et al. [205] 2019 Pattern Recognition ADNI

Individual functional connectivity (FC)
information and the
Group Sparse Representation (GSR) -based
network

Tao Zhou, et al. [206] 2020 Medical Image Analysis ADNI
Multi-modality
latent space inducing ensemble SVM
classifier-based method.

Weihao Zheng, et al. [207] 2019 Frontiers in Human Neuroscience ADNI
Principal component-based
analysis on in both
structural and metabolic information

Apart from multi-modal techniques, deep learning based
AD classification approaches is also using widely. Some of
the major advantages of using deep learning based approach
are; 1) it can extract the hidden features from the data,
2) it can produce convincing results, even if the data are
unstructured, 3) it allows parallel processing, etc [208]. Some
of the recently published articles on the deep learning based
AD classification are discussed below.

Using rs-fMRI and Residual Neural Networks, a deep
learning based AD classification approach is proposed in the
literature [209]. Upon the pre-processed images, the authors
have performed the training operation based on 3 ResNet-
18 networks, namely the 1-Channel ResNet (1CR), Off-the-
Shelf (OTS), and the Fine-Tuning (FT) for classifying the
various stages of AD. All the input images are resized to
224 × 224 pixels in order to match with the pre-trained
network’s input size. Initially, the learning rate for the model
is set to 0.001, and then in each iteration (up to 25,000 iter-
ations), the rate is decremented by 10%. The Gamma value,
momentum, and the weight decay factor for the model are
initialized to 0.1, 0.9, and 0.0005 respectively. The authors
have introduced a Stochastic-gradient-descent (SGD) based
solver having a batch size of 32 images. The experimental
results indicated that the OTS based network model produced
the most convincing results.

A multi-model CNN model for joint learning hippocampus
segmentation and AD classification is proposed in the liter-
ature [210]. To get quick convergence, a deep-CNN model
is proposed for learning the residual functions at each of
the convolution stages. Two residual blocks are constructed,
where each block comprising of the 3-D convolutional layers
(CLs), batch normalization (BN), Parametric Rectified Lin-
ear Unit (PReLU) activation, as well as the dropout layers.
In the first residual block, a residual-function is trained
by a short correlation, whereas the second residual block
comprising of 2 CLs. The kernel dimension for the model
is initialized as 3 × 3 × 3 for each of the convolutions.
All the trained filters are then convolved with the input
images and a non-linear PReLU activation, where separate

feature maps are produced for all the filters. For the proposed
mechanism, multi-task deep CNN carries the information of
the multi-level characteristics, and a deep 3D for DenseNet is
introduced to learn the characteristics from the hippocampus.

Using the rs-fMRI, a novel 3D-Deep Learning based AD
diagnosis framework is discussed in the literature [211].
The linear-regression is used along with support-vector-
regression, bagging-based ensemble regression model, and
the tree regression model by using the concept of the group-
independent-component (gIC) analysis mechanism to predict
the Mini Mental State Examination (MMSE) scores for all
the subjects. The rs-fMRI data are used to determine the
functional 3D self-regulating module spatial maps which are
then used as the characteristics to classify the subjects as well
as in the regression process. For the identification of the most
useful gICs and to discard noisy ICs, the automatic clustering
toolbox (FSLNets) is used. For extracting the subject-specific
IC time-courses as well as the IC analysis spatial maps,
the concept of the 2 stages dual regression is used. The
authors have applied the 10-fold cross validation algorithm
to validate the performance. To classify the subject groups,
subjects-specific ICA maps are used in a 3D CNN.

Based on the concept of the Volumetric Convolutional
Neural Network (VCNN) and the Transfer Learning (TL), a
novel AD classification method is discussed in the literature
[212]. Initially, the concept of the traditional and inception
module-based convolutional auto-encoder method is used
for pre-training of the MRI data for all the subjects, and
then the concept of the fine-tuning-based algorithm is used
for building the classifier. The proposed auto-encoder model
consists of the convolution layers, dropout layers, the ReLU,
as well as the pooling layers. For reducing the dependency,
the GoogLeNet inception module is used. To determine the
approximate spatial influences, the class saliency visualiza-
tion (CSV) method is used. Since, it is more difficult to
classify pMCI and sMCI, hence, to train the model more
accurately, the authors used the transfer learning algorithm,
for the visual presentations of the AD vs. CN classification.

For AD classification, a novel deep learning (DL) and
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extreme learning based method is proposed in the litera-
ture [213]. For functional brain-network categorization, 2
DL models are considered along with the extreme learning
machine (ELM) boosted structure for the learning of deep
regional-connectivity features as well as the deep neighbor-
ing positional characteristics. While constructing the brain

network, the concept of the Pearson correlation coefficient
is applied. The deep learning model comprises the convolu-
tional layer, ReLU activation function, pooling layer, fully
connected layer, and the decision layer.

The summary of the discussed deep learning-based AD
classification approaches is presented in table 12.

TABLE 12: Summarization of some recent studies on deep learning-based AD classification

Authors Year Publication Dataset Methods

Farheen Ramzan, et al. [209] 2020 Journal of Medical
Systems ADNI Using Resting-State fMRI and Residual

Neural Networks

Manhua Liu, et al. [210] 2020 NeuroImage ADNI
Multi-task deep CNN and 3D Densely
Connected Convolutional
Networks (3D DenseNet based method.

Nguyen Thanh Duc, et al. [211] 2020 Neuroinformatics

Chosun University
National Dementia Research
Center (Gwangju,

South Korea)

Functional 3D independent component
spatial maps, and
3D CNN-based method.

Kanghan Oh, et al. [212] 2019 scientific reports ADNI
Volumetric convolutional neural
network (CNN)
model based method.

Xin Bi, et al. [213] 2020 Cognitive Computation ADNI
Convolutional and recurrent learning
along with the Extreme learning
machine (ELM) based method.

IV. CONCLUSION AND FUTURE SCOPE OF WORK

Alzheimer’s disease is one of the major death causing neuro-
logical disorders in the world. The number of AD patients
is increasing significantly all over the world. The manual
diagnosis system of AD by the neurologist is time consum-
ing, and may not provide accurate results all the time. The
research of AD classification using brain images has been
showing promising outcomes, which is less time consuming
too. Many researchers have been trying to develop a classi-
fication mechanism using brain images with fewer research
issues. Feature extraction is one of the major steps for AD
classification using brain images. In this paper, we have
discussed and summarized the performance of several AD
classification methods using brain images, based on different
feature extraction approaches. Firstly, details about 8 com-
monly used feature extraction approaches, along with their
pros and cons have been discussed, then their classification
performances are presented and compared. It is observed
from the performance comparison is that the average perfor-
mance of AD classification using Wavelet transform-based
feature extraction approaches (89.84%) is better amongst all
the 8 feature extraction approaches, followed by the Voxel
Morphometry (VM) based feature extraction approaches
(88.26%), Eigenvector-Based feature extraction approaches
(87.63%), Neural Network (NN) based feature extraction
approaches (87.21%), Graph/Network-based feature extrac-
tion approaches (83.35%), Texture-based feature extraction
approaches (81.38%), Harmonic function based feature ex-
traction approaches (80.45%), and the Scale-Invariant Fea-
ture Transforms based feature extraction approaches (72%).
Overall the classification approach discussed in the article
cites mesrob2012dti provides the maximum performance rate

(99.60%). It can also be observed from the study that, feature
extraction plays a major role in AD classification, hence a
proper feature extraction technique is necessary in order to
achieve a better classification result.

It is observed that the AD classification method proposed
in the article [96] provides the maximum performance rate
among all the discussed articles. But one of the issues with
the classification framework is that the authors have acquired
a very less number of samples (15 AD and 17 CN subjects)
from the "Research and Resource Memory Centre of the
Pitié-Salpêtrière hospital (Pitié- Salpétriêre Hospital, Paris,
France". As a scope of future work, a large number of data
samples from other data sources such as ADNI. OASIS,
etc. can be acquired and compared the performance again.
Moreover, the proposed approach excluded approximately
17 cortical Region of Interests (RoIs). Cortical regions play
an important role in finding discriminated areas. A machine
learning based technique can be designed which can help to
select the most appropriate cortical regions. The selection of
appropriate cortical regions may help to get more accurate
results.

From this study, it is also observed that the Wavelet
transform-based feature extraction approaches help the clas-
sifiers to achieve better performances than any other fea-
ture extraction approaches discussed. Among all Wavelet
transform-based feature extraction approaches discussed, the
classification method discussed in the article [119] provides
the maximum performance results. The authors used a Prin-
cipal Component Analysis (PCA) based approach for feature
selection. One of the disadvantages of PCA is that it cannot
explore the spatial information from an input image. In the
future, some mechanisms for selecting spatial information
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can be added to get more accurate classification results.
Moreover, for converting the 3D images to 2D, authors have
analyzed and selected the information of the slices manually,
which requires high expertise knowledge. An automatic slice
selection technique may be designed in the future to select
more appropriate slices.

Moreover, in the future, more recent articles on AD
classification, based on some more feature extraction
approaches can be compared which may help the researchers
to choose a proper feature extraction technique for AD
classification.

Challenging issues in the study of brain images for AD
classification: Though researchers have been achieving
promising results for AD classification using brain images,
still several challenging issues lie in this field of study. One
of the major issues is to get sufficient data for the study.
For acquiring data, most of the researchers depend only on
two online data-sets namely OASIS, and ADNI. Though
these data-sets provide a large number of data, but if we do
the gender-wise and age-wise distribution, which may play
an important role while classifying AD from other subject
groups, the data may not be sufficient to train a machine
learning based model accurately.

One more major issue is to determine the proper bio-
markers in AD. Sometimes, similar kind of changes in brain
structure may occur due to some other neurological disorders,
and consideration of those data in training or testing sets can
produce a wrong result showing 100% accuracy in the model.
So, finding the exact bio-markers in brain studies which is
only related to AD is a challenging task.

As we discussed, feature extraction is one of the most
important steps in AD classification. The human brain is very
complex in structure, and it contains a lot of information.
One of the major challenges in extracting features from
brain images is scalability. Since brain images contain lots
of features, it is challenging to design a feature extraction
technique that can handle it feasibly.
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