996 research outputs found

    Syn3DWound: A Synthetic Dataset for 3D Wound Bed Analysis

    Full text link
    Wound management poses a significant challenge, particularly for bedridden patients and the elderly. Accurate diagnostic and healing monitoring can significantly benefit from modern image analysis, providing accurate and precise measurements of wounds. Despite several existing techniques, the shortage of expansive and diverse training datasets remains a significant obstacle to constructing machine learning-based frameworks. This paper introduces Syn3DWound, an open-source dataset of high-fidelity simulated wounds with 2D and 3D annotations. We propose baseline methods and a benchmarking framework for automated 3D morphometry analysis and 2D/3D wound segmentation.Comment: In the IEEE International Symposium on Biomedical Imaging (ISBI) 202

    Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images

    Get PDF
    (1) Background: Hyperspectral imaging has emerged as a promising margin assessment technique for breast-conserving surgery. However, to be implicated intraoperatively, it should be both fast and capable of yielding high-quality images to provide accurate guidance and decision-making throughout the surgery. As there exists a trade-off between image quality and data acquisition time, higher resolution images come at the cost of longer acquisition times and vice versa. (2) Methods: Therefore, in this study, we introduce a deep learning spatial–spectral reconstruction framework to obtain a high-resolution hyperspectral image from a low-resolution hyperspectral image combined with a high-resolution RGB image as input. (3) Results: Using the framework, we demonstrate the ability to perform a fast data acquisition during surgery while maintaining a high image quality, even in complex scenarios where challenges arise, such as blur due to motion artifacts, dead pixels on the camera sensor, noise from the sensor’s reduced sensitivity at spectral extremities, and specular reflections caused by smooth surface areas of the tissue. (4) Conclusion: This gives the opportunity to facilitate an accurate margin assessment through intraoperative hyperspectral imaging.</p

    Efficient wound assessment system with an RGB-D camera

    Get PDF
    Continuous monitoring of changes in wound size, wound area, and volume, is key to predict whether wounds will heal on time. Wound measurement methods can be subdivided into non- contact and contact methods. Contact methods are prone to errors given the human intervention and it increases the chance of discomfort during measurement. Alternative methods, such as image- based non-contact methods, eliminate any discomfort and have good reliability for measuring a wound. However, existing image-based non-contact methods are expensive. This is because these methods build a 3D model of the wound using expensive devices in order to allow the clinician to obtain the necessary wound measurements. To alleviate the cost of these systems, the proposed system described in this report measures wounds using low-cost depth cameras such as the Microsoft Kinect. This report describes methods that take in an RGB image from the Microsoft Kinect, computes the necessary parts of a 3D wound model, and finally reports wound measurements. The proposed system requires the user to draw the contour of the wound on the image. Then, the system automatically extracts all the necessary information from the RGB and depth images to create a minimal 3D model of the wound. Subsequently, the system processes the 3D model in order to facilitate the estimation of the wound area and volume. Finally, the system reports the measurements to the user. This report presents experiments demonstrating that the proposed system achieves acceptable measurements despite the fact that it uses a low-cost and noisy imaging sensor

    Coherent narrow-band light source for miniature endoscopes.

    Get PDF
    In this work, we report the successful implementation of a coherent narrow-band light source for miniature endoscopy applications. An RGB laser module that provides much higher luminosity than traditional incoherent white light sources is used for illumination, taking advantages of the laser light's high spatial coherence for efficient light coupling. Notably, the narrow spectral band of the laser light sources also enables spectrally resolved imaging, to distinguish certain biological tissues or components. A monochrome CMOS camera is employed to synchronize with the time lapsed RGB laser module illumination for color image acquisition and reconstruction, which provides better spatial resolution than a color CMOS camera of comparable pixel number, in addition to spectral resolving

    Imparting 3D representations to artificial intelligence for a full assessment of pressure injuries.

    Get PDF
    During recent decades, researches have shown great interest to machine learning techniques in order to extract meaningful information from the large amount of data being collected each day. Especially in the medical field, images play a significant role in the detection of several health issues. Hence, medical image analysis remarkably participates in the diagnosis process and it is considered a suitable environment to interact with the technology of intelligent systems. Deep Learning (DL) has recently captured the interest of researchers as it has proven to be efficient in detecting underlying features in the data and outperformed the classical machine learning methods. The main objective of this dissertation is to prove the efficiency of Deep Learning techniques in tackling one of the important health issues we are facing in our society, through medical imaging. Pressure injuries are a dermatology related health issue associated with increased morbidity and health care costs. Managing pressure injuries appropriately is increasingly important for all the professionals in wound care. Using 2D photographs and 3D meshes of these wounds, collected from collaborating hospitals, our mission is to create intelligent systems for a full non-intrusive assessment of these wounds. Five main tasks have been achieved in this study: a literature review of wound imaging methods using machine learning techniques, the classification and segmentation of the tissue types inside the pressure injury, the segmentation of these wounds and the design of an end-to-end system which measures all the necessary quantitative information from 3D meshes for an efficient assessment of PIs, and the integration of the assessment imaging techniques in a web-based application

    Surgical spectral imaging

    Get PDF
    Recent technological developments have resulted in the availability of miniaturised spectral imaging sensors capable of operating in the multi- (MSI) and hyperspectral imaging (HSI) regimes. Simultaneous advances in image-processing techniques and artificial intelligence (AI), especially in machine learning and deep learning, have made these data-rich modalities highly attractive as a means of extracting biological information non-destructively. Surgery in particular is poised to benefit from this, as spectrally-resolved tissue optical properties can offer enhanced contrast as well as diagnostic and guidance information during interventions. This is particularly relevant for procedures where inherent contrast is low under standard white light visualisation. This review summarises recent work in surgical spectral imaging (SSI) techniques, taken from Pubmed, Google Scholar and arXiv searches spanning the period 2013–2019. New hardware, optimised for use in both open and minimally-invasive surgery (MIS), is described, and recent commercial activity is summarised. Computational approaches to extract spectral information from conventional colour images are reviewed, as tip-mounted cameras become more commonplace in MIS. Model-based and machine learning methods of data analysis are discussed in addition to simulation, phantom and clinical validation experiments. A wide variety of surgical pilot studies are reported but it is apparent that further work is needed to quantify the clinical value of MSI/HSI. The current trend toward data-driven analysis emphasises the importance of widely-available, standardised spectral imaging datasets, which will aid understanding of variability across organs and patients, and drive clinical translation
    • …
    corecore