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24 

Abstract 25 

Background. Hyperspectral imaging (HSI) is a relatively new method used in image-26 

guided and precision surgery, which has shown promising results for characterization 27 

of tissues and assessment of physiologic tissue parameters. Previous methods used 28 

for analysis of preconditioning concepts in patients and animal models have shown 29 

several limitations of application. The aim of this study was to evaluate HSI for the 30 

measurement of ischemic conditioning effects during esophagectomy. 31 

Methods. Intraoperative hyperspectral images of the gastric tube through the mini-32 

thoracotomy were recorded from n=22 patients, 14 of whom underwent laparoscopic 33 

gastrolysis and ischemic conditioning of the stomach with two-step transthoracic 34 

esophagectomy and gastric pull-up with intrathoracic anastomosis after 3 - 7 days. 35 

The tip of the gastric tube (later esophago-gastric anastomosis) was measured with 36 

HSI. Analysis software provides a RGB image and 4 false color images representing 37 

physiologic parameters of the recorded tissue area intraoperatively. These 38 
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parameters contain tissue oxygenation (StO2), perfusion- (NIR Perfusion Index), 1 

organ hemoglobin- (OHI) and tissue water index (TWI).   2 

Results. Intraoperative HSI of the gastric conduit was possible in all patients and did 3 

not prolong the regular operative procedure due to its quick applicability. In particular, 4 

the tissue oxygenation of the gastric conduit was significantly higher in patients who 5 

underwent ischemic conditioning (StO2Precond. = 78%; StO2NoPrecond. = 66%; p = 0.03). 6 

Conclusions. HSI is suitable for contact-free, non-invasive and intraoperative 7 

evaluation of physiological tissue parameters within gastric conduits. Therefore HSI is 8 

a valuable method for evaluating ischemic conditioning effects and may contribute to 9 

reduce anastomotic complications. Additional studies are needed to establish normal 10 

values and thresholds of the presented parameters for the gastric conduit 11 

anastomotic site. 12 

 13 

Keywords 14 

Hyperspectral imaging – gastric conduit – esophagectomy – ischemic conditioning – 15 

physiologic tissue parameters 16 

 17 

Introduction 18 

Esophago-gastric anastomosis following esophageal resection and gastric pull-up is 19 

one of the most complex anastomoses of the gastrointestinal tract with a high 20 

potential of insufficiency and consecutive complications, as mediastinitis, pleural 21 

empyema, esohago-tracheal (-bronchial) fistula and septic arrosion bleeding (1). This 22 

high risk procedure of esophagectomy has been reported in the literature to be 23 

associated with a significant morbidity (>40%) and mortality (5-12%) (2,3). During the 24 

process of gastric tube formation in the context of esophagectomy, the major blood 25 

vessels of the stomach, such as the left gastric artery and vein, the left gastroepiploic 26 

artery and vein, as well as the short gastric vessels are divided, with immediate 27 

ischemic reaction of the stomach wall. Viability of the gastric conduit then, however, 28 

is mostly dependent on the right gastroepiploic arcade. It has been well analyzed by 29 

optical fiber spectroscopy (OFS) that oxygen saturation (SaO2) and blood flow are 30 

significantly reduced during this stepwise devascularization of the stomach and that 31 

the extent of resulting gastric tube ischemia is associated with clinical outcomes, e.g. 32 

anastomotic leaks (4). The stimulus by relative ischemia following division of major 33 

vessels, thus, leads to microvascular improvement by neovascularization (5), 34 
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especially in the later area of the anastomotic site at the tip of the gastric conduit. The 1 

concept of preconditioning, including a two-time procedure with an interval of several 2 

days to 2-3 weeks between vessel ligation, gastrolysis and gastric tube transposition 3 

into the thorax with anastomosis, is well known as ischemic conditioning (delay 4 

phenomenon) of the stomach. This method was first described by Urschel in a rat 5 

model (6) and further clinically elaborated and laparoscopically applied by Nguyen et 6 

al. in a small series of n=9 patients (7), and in the first large retrospective cohort 7 

(n=83 patients) by Hölscher et al. (8) and later comparatively by Schröder et al. 8 

(n=419; 238 with ischemic conditioning) of the same clinic (9). During the time period 9 

between the first and second intervention and the subsequent delayed transposition 10 

and esophagogastric anastomosis, the gastric fundus has time to re-establish an 11 

abundant blood supply (10). In general, this partial gastric devascularization can 12 

technically be performed by open, laparoscopic or robotic surgery. In addition, 13 

preoperative radiologic-interventional arterial embolization has been shown to be 14 

equally successful (11–16).  15 

 16 

Although previous methods used for measuring the effects have shown several 17 

limitations and are rather time-consuming, the results of this preconditioning concept 18 

have been convincing ever since, demonstrating reduction of anastomotic 19 

complications following esophagectomy and gastric pull-up in patients and animal 20 

models, due to improved perfusion as well as reduced inflammation and fibrosis at 21 

the anastomotic site of the gastric sleeve (8,9,17,18). These parameters are known 22 

to be the most important factors for regular healing, apart from tension-free and 23 

technically perfect performance of the anastomosis. Animal studies have provided 24 

evidence that perfusion was 3 times better at re-intervention after ischemic 25 

conditioning, going along with increased vasodilation and angiogenesis, less 26 

anastomotic collagen deposition, less ischemic injury, and less muscularis atrophy 27 

(19). In clinical studies, especially the severity of anastomotic leakage could be 28 

reduced significantly (9,20–22). However, a prospective randomized trial (LOGIC trial 29 

= laparoscopic gastric ischemic conditioning prior to minimally invasive 30 

esophagectomy) by Veeramootoo et al. failed to show improvement of perfusion at 31 

the conduit tip (2). In this study, perfusion of the fundus and the greater curvature of 32 

the stomach was recorded by laser Doppler fluximetry, which was validated to assess 33 

gastric perfusion by others (23,24). A perfusion coefficient measured as ratio at stage 34 
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of MIE (minimally invasive esophagectomy) over baseline was used for statistical 1 

analysis (2). Others, as the group of Hölscher and Schröder, performed mucosal 2 

oxygen saturation (MOS, sulfur dioxide in %) measurements quantitatively from the 3 

endoluminal side in well-defined areas of the antrum, corpus and fundus, using a 4 

tissue spectrometer located at the tip of a microprobe (8,9,25). In an attempt to 5 

search for further reliable methods to assess gastric conduit perfusion, Pham et al. 6 

applied optical fiber spectroscopy (OFS) to measure oxygen saturation (SaO2) and 7 

blood volume fraction (BVF) in the distal gastric conduit at baseline and after gastric 8 

devascularization, conduit formation, and transposition, with correlation of these 9 

readings with clinical outcomes (4). Functional capillary density in ischemic 10 

conditioning was assessed by Mittermair et al. in rats in order to investigate time 11 

dependent changes of gastric microcirculation by means of intravital fluorescence 12 

microscopy (26). Recently, indocyanine green (ICG) fluorescence has been 13 

described for evaluating blood supply of the reconstructed tube during 14 

esophagectomy (27–29). However, apart from the fact that ICG is an invasive 15 

procedure with a considerable rate of cardiovascular complications, comparative 16 

studies, regarding the value of ICG in ischemic conditioning of the gastric conduit, are 17 

still lacking.  18 

 19 

The aim of this study was to evaluate the feasibility of hyperspectral imaging (HSI) for 20 

the measurement of ischemic conditioning effects during esophagectomy. 21 

 22 

Patients and methods 23 

Only patients who underwent hybrid (abdominal part: minimally-invasive; thoracic 24 

part: mini-thoracotomy) or open esophagectomy (n=1 with simultaneous liver 25 

resection, see below) could be included, because the used HSI-camera is too large 26 

for laparoscopic surgery. Intraoperative hyperspectral images of the gastric tube 27 

through the mini-thoracotomy were recorded from n=22 patients (20 males, 2 female) 28 

with a median age of 64 (36 - 82) years. Involved were 12 adeno-, 9 squamous-cell 29 

carcinomas of the esophagus and 1 reconstruction with gastric pull-up after 30 

esophagectomy due to perforation (no carcinoma of the esophagus). In the group of 31 

patients undergoing ischemic preconditioning, laparoscopic gastrolysis and ischemic 32 

conditioning of the stomach was performed 3-7 days before the operation in n=14 of 33 

the 22 patients. In detail, during laparoscopic gastrolysis, first, the lesser omentum 34 
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close to the lower edge of the liver, then the greater omentum (including the left 1 

gastroepiploic artery and vein) is divided, preserving the gastroepiploic arcade. The 2 

left gastric artery and vein are clipped and cut centrally, harvesting the lymph nodes 3 

of the celiac trunc, and finally, the short gastric vessels are divided up to the left crus. 4 

If possible, the right gastric artery and vein are preserved. Kocher’s maneuver of the 5 

duodenum is carried out and the distal esophagus with the periesophageal lymph 6 

nodes is mobilized intrathoracically as far as possible. Patients were sent to the 7 

peripheral ward afterwards and could eat a soft diet. The second step of the 8 

operation after ischemic conditioning of the stomach consisted of transthoracic 9 

esophagectomy via a mini-thoracotomy (in the sense of a hybrid-procedure) with 10 

completion of the two-field lymphadenectomy, gastric tube formation by resection of 11 

the lesser curvature and adjacent nodes with a linear stapler (from proximal to distal), 12 

and intrathoracic end-to-side esophagogastric anastomosis (circular stapler, EEA 25 13 

mm) at the level of the azygos vein. 14 

The decision on whether to perform ischemic conditioning or not was due to the time 15 

interval of surgery: After January 1st 2018, we completely changed our concept 16 

towards two-step esophagectomies with ischemic gastric preconditioning in general. 17 

Conclusively, patients measured before this point in 2017 underwent the single-step 18 

esophagectomy without preconditioning. In one patient, simultaneous liver 19 

metastatectomy was performed (segment IV) during open gastrolysis and ischemic 20 

conditioning of the stomach. All patients underwent intrathoracic anastomosis, except 21 

for the gastric tube pull-up reconstruction following esophagectomy, where we 22 

performed a cervical esophago-gastric anastomosis. Clinical data of patients are 23 

summarized in Table 1. 24 

Immediately before construction of the esophago-gastric anastomosis (stapled end-to 25 

side, EEA 25 mm circular stapler system) the hyperspectral images were acquired 26 

with the TIVITATM Tissue system (Diaspective Vision GmbH, Am Salzhaff, Germany). 27 

This HSI-camera has a push broom scanner providing images with a high spectral 28 

resolution (5 nm) in the visible and near infrared range (500-1000 nm). The Number 29 

of Effective Pixels is 640 × 480 (x-, y-axis). All measurements were taken at a 30 

distance of 30 cm between the object and the camera lens with a focal length of 25 31 

mm. This setup results in a field of view (FOV) of 6.4 × 4.8 cm2 and a spatial 32 

resolution of 0.1 mm/pixel. Illumination is done by 8 halogen spots (20 W each) which 33 

are directly integrated in the camera housing. For accurate measurements, the 34 
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ceiling lights in the operating room were switched off during image recording 1 

(approximately 10 seconds). After a computation time of 8 seconds, the analysis 2 

software provides a RGB image and 4 false color images that represent physiologic 3 

parameters of the recorded tissue area intraoperatively. These parameters contain 4 

tissue oxygenation (StO2), perfusion- (NIR Perfusion Index), organ hemoglobin- 5 

(OHI) and tissue water index (TWI). The relative blood oxygenation in the 6 

microcirculation of superficial tissue layers (approximately 1 mm) is represented by 7 

StO2 [%], while the NIR Perfusion Index [0-100] represents tissue layers in 4-6 mm 8 

penetration depth. The indices OHI [0-100] and TWI [0-100] display the distribution of 9 

hemoglobin and water in the observed tissue area, respectively. A detailed 10 

description and validation of the parameters can be found in the work of Holmer et 11 

al.(30). 12 

The location of the later anastomosis was depicted by a forceps during the 13 

measurement Fig. 1. The area within the diameter of 25 mm around the marked 14 

position is called region of interest (ROI). For each parameter image the index 15 

average was calculated from the values inside the ROI. 16 

Data were collected prospective and analyzed retrospective with LabVIEW. Statistics 17 

of physiological parameter indices are presented in mean, median, quartiles and p-18 

value. The f-test was performed to check for equal variances and unpaired two-tailed 19 

Student's t-test was used to determine statistical significance. The statistical analyses 20 

were performed with Microsoft Excel 2013. 21 

 22 

Results 23 

Intraoperative hyperspectral imaging of the tip of the gastric tube (later anastomosis) 24 

was possible through mini-thoracotomy in all our patients undergoing hybrid or open 25 

(n=1 patient with simultaneous liver resection during gastrolysis) esophagectomy. 26 

HSI measurements did not prolong the regular operative procedure due to its quick 27 

applicability (10 seconds per recording and its almost “real-time” possibility of 28 

visualization and interpretation). In particular, HSI enabled to distinguish between 29 

gastric sleeves with and without ischemic conditioning: A significantly lower mean 30 

oxygenation inside the ROI of the gastric conduit was observed in patients without 31 

pretreatment (one-step esophagectomy) (StO2NoPrecond. = 66%) compared to patients 32 

with ischemic preconditioning (StO2Precond. = 78%; p = 0.03). Even though not 33 

significant, differences in organ hemoglobin index (OHINoPrecond. = 42; OHIPrecond. = 46; 34 
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p = 0.51) and tissue water index (TWINoPrecond. = 59; TWIPrecond. = 63; p = 0.50) were 1 

found for both patient groups. Median, lower and upper quartiles of the ROI mean 2 

index for each parameter are summarized in Table 2 and the distribution among the 3 

patients is described in Fig. 2. 4 

The postoperative course was uneventful in all patients with regular healing and 5 

timely oral nutrition following surgery, except for one non-preconditioned patient. This 6 

patient developed a small anastomotic leak of the intrathoracic anastomosis without 7 

mediastinitis or sepsis on postoperative day 7, which could be managed 8 

conservatively using endoscopic vacuum therapy (Endosponge). 9 

 10 

Discussion 11 

Our data clearly show for the first time the feasibility and reliability of hyperspectral 12 

imaging (HSI) measuring the ischemic conditioning effects of the gastric conduit and 13 

the discrimination possibility to non-preconditioning during esophagectomy. Previous 14 

methods used for this analysis in patients and animal models have shown several 15 

limitations of application and usefulness and are time-consuming. 16 

The studies supporting the concept of ischemic conditioning, including an animal 17 

experiment (8,9,17,18), are of non-randomized character. However, the only 18 

prospective-randomized trial (LOGIC trial) (2), did not confirm the benefits claimed for 19 

ischemic conditioning. This study might have been underpowered and the final 20 

endpoint, anastomotic insufficiency, is known to be multifactorial, strongly depending 21 

on the surgeon’s technique. A more sophisticated endpoint would have been 22 

vascularization of the tip of the gastric tube. 23 

HSI is a relatively new method used in image-guided and precision surgery, which 24 

has shown promising results for recognition/characterization of tissues/tumors (31–25 

36), and comprehensive assessment of physiologic tissue parameters, such as 26 

perfusion, oxygenation, and water content (37–40). Hence, it has been applied 27 

predominantly in wound imaging and -management in plastic surgery transplants, 28 

vascular surgery, chronical wounds and burn injuries so far (41–44). In our study 29 

group, we were able for the first time to use the system to assess tissue parameters 30 

of gastrointestinal anastomoses in visceral surgery in vivo (40). HSI, as a contact-31 

free, non-invasive method with no need of contrast medium, provides objective “real 32 

time” perfusion-, oxygenation and hydration evaluation of organs and especially of 33 

anastomotic sites intraoperatively, which can possibly contribute to determining the 34 
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“ideal” region of anastomosis with the intent of improved healing (40). HSI-1 

measurements of the gastric conduit during esophagectomy, especially in the context 2 

of ischemic conditioning, have not been published so far to our knowledge. 3 

The applied HSI-technology in our current study has a relevant advantage over 4 

conventional multispectral camera systems due to its higher spectral and spatial 5 

resolution. Furthermore, our HSI-camera provides a higher penetration depth 6 

compared to the technology of digital cameras (0-1 mm). Thus, deeper tissue layers 7 

can be reached by the HSI-camera.   8 

Optical fiber spectroscopy (OFS) can be used for the assessment of tissue 9 

oxygenation during laparoscopic procedures (4,25). However, OFS covers only a 10 

small spot (3 mm) and therefore multiple measurement points are needed, which 11 

increases the measuring time. The HSI-camera used in this study is able to cover a 12 

large FOV (6.4 × 4.8 cm2) and a wavelength range up to 1000 nm, which enables the 13 

additional analysis of tissue water at 960 nm. Other groups determined changes in 14 

gastric blood flow with laser Doppler flowmetry, but did not find significant differences 15 

between patients with and without ischemic conditioning (2,45). Blood flow cannot be 16 

estimated with HSI, but therefore other perfusion-related parameters, like 17 

oxygenation and hemoglobin distribution, which seem to be more promising for the 18 

analysis of ischemic conditioning effects.  19 

In contrast to the increasingly applied technology of Near-InfraRed (NIR)-20 

fluorescence with ICG, which has especially been used in colorectal surgery to 21 

reduce anastomotic complications, as impressively shown by the PILLAR II 22 

multicenter study (46), the non-invasiveness of our HSI-technology has to be pointed 23 

out. Serious and life-threatening side-effects after intravenous application of ICG, 24 

such as anaphylactic shock, drop in blood pressure, tachycardia, dyspnea, and 25 

urticaria, have been described and the risk of significant adverse and secondary 26 

effects rises in patients with chronic renal failure, up to sudden deaths in very rarely 27 

reported cases. A further disadvantage of ICG is the subjective evaluation of the 28 

fluorescence-intensity by pure envisioning of the surgeon and, thus, reflects its 29 

limitations. A new method, called fluorescence-based enhanced reality (FLER), which 30 

uses fluorescence time-to-peak was described by Diana et al. (47–49) and showed 31 

promising results regarding quantitative ICG-measurement of bowel perfusion in the 32 

animal model.  33 
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In addition, providing comprehensive tissue parameters, such as tissue oxygenation 1 

(StO2), perfusion- (NIR Perfusion Index), organ hemoglobin- (OHI) and tissue water 2 

index (TWI), it might be a valuable tool to select the “ideal” anastomotic site of the 3 

esophagogastric anastomosis, in order to reduce the risk of leakage. This could be 4 

carefully concluded, although casuistic only, by one case of our series, who 5 

developed anastomotic insufficiency of the intrathoracic esophago-gastric 6 

anastomosis. In this patient, the intraoperative measurements were relevantly lower 7 

than the others: StO2 = 41% (Diff. to StO2NoPrecond. = 25%), NIR Perfusion Index = 40 8 

(Diff. to NIRNoPrecond. = 22), OHI = 25 (Diff. to OHINoPrecond. = 17). In Fig. 3 the NIR 9 

Perfusion Index image of this patient is compared to a case without postoperative 10 

anastomotic leak.   11 

The intraoperative measurements are less time-consuming than most other 12 

technologies used for assessment of ischemic conditioning effects (about 18 seconds 13 

per document), non-invasive, and contact-free. Additionally, they can be technically 14 

very easily performed (e.g. by an OR nurse). However, normal and “cut-off” values 15 

for gastrointestinal (tubular) organs, especially for different anastomoses, or the 16 

“optimal” gastric conduit status (with and without ischemic conditioning), are still to be 17 

defined and established, as the technology mainly derives from wound imaging and 18 

management. In the latter, e.g. in plastic and vascular surgery, oxygenation of > 50% 19 

predicts a good healing of a wound, whereas 30-50% represent a “grey area”, and 20 

values of < 30% are associated with worse healing processes in transplants and 21 

chronic wounds (50,51). After establishing and generation of normal values and 22 

borderline zones of the gastric conduit anastomotic site, the method will be very 23 

helpful to determine the best area of perfusion with the optimal constellation of 24 

additional parameters, such as oxygenation and edema, in order to avoid 25 

postoperative leakages. With regard to the TWI, we found higher values in the group 26 

undergoing ischemic preconditioning. This might be due to the fact that patients 27 

received additional fluid therapy following laparoscopic gastrolysis and partial 28 

devascularization, as some of them displayed signs of minor gastroparesis after this 29 

first step of surgery and enteral nutrition was slightly restricted to prevent aspiration 30 

events.   31 

The used HSI-system is intended for use in plastic surgery and wound diagnostics. 32 

For applications in visceral surgery, according to the manufacturer’s website, some 33 

improvements are currently under development or planned for the future. This 34 
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includes focused illumination with LEDs to light up structures deep in the situs and 1 

correct for ambient light during open surgery. This also holds for the automatic 2 

estimation of the object distance to get a focused image. A major advance will be a 3 

compact HSI-camera, which is suitable for laparoscopic procedures and provides 4 

high resolution videos. 5 

The encountered limitations of HSI for measuring the ischemic conditioning effects of 6 

the gastric conduit are the missing gold standard for estimating tissue oxygenation, 7 

which makes it difficult to compare it with other methods. The time currently needed 8 

for hyperspectral data acquisition and parameter calculation is short (18 seconds) but 9 

still not yet fully “real time”, a minor downside compared to ICG-imaging, which shall 10 

be improved in the near future. 11 

 12 

Conclusions 13 

Intraoperative HSI during mini-thoracotomy was used for the evaluation of ischemic 14 

conditioning effects. Mean tissue oxygenation and hemoglobin related indices at the 15 

later anastomosis location were higher in patients with ischemic preconditioning than 16 

without. One patient with noticeable lower values developed anastomotic 17 

insufficiency. This work demonstrates, that HSI is suitable for contact-free, non-18 

invasive and rapid intraoperative evaluation of physiological tissue parameters within 19 

gastric conduits. Therefore HSI is a valuable method for evaluating ischemic 20 

conditioning effects and may contribute to reduce anastomotic complications.   21 
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1 

Table 1  Patient demographics and tumor histology 

Variables 

Ischemic preconditioning 

Yes 

(n=14) 

No 

(n=8) 

Median age [range] in years 63 [36 - 77] 68 [52 - 82] 

Sex, n (males : females) 13 : 1 7 : 1 

Tumor type 

Adenocarcinoma 

Squamous-cell carcinoma 

None 

7 

7 

- 

5 

2 

1 

Tumor localization 

Lower third of the esophagus 

Lower and middle third 

Middle third 

Upper third 

None  

8 

- 

5 

1 

- 

4 

1 

2 

- 

1 

Neoadjuvant therapy 

Chemotherapy 

Chemo radiotherapy 

Radiotherapy 

None 

4 

9 

1 

- 

4 

2 

- 

2 

Table 1  Patient demographics and tumor histology
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Table 1 Statistics of ROI mean index of measured gastric tubes for each parameter 

Parameters 
Median [lower-, upper quartile] 

Ischemic preconditioning 

Yes 
(n=14) 

No 
(n=8) P value 

Tissue oxygenation (StO2) 0.78 [0.71, 0.82] 0.69 [0.55, 0.80] 0.03 

NIR Perfusion Index 0.68 [0.61, 0.72] 0.62 [0.59, 0.70] 0.22 

Organ hemoglobin index (OHI) 0.52 [0.42, 0.57] 0.43 [0.31, 0.49] 0.51 

Tissue water index (TWI) 0.63 [0.53, 0.72] 0.55 [0.51, 0.62] 0.50 

Table 2 Statistics of ROI mean index of measured gastric tubes
for each parameter



Fig. 1 RGB image with marked ROI at later anastomosis location (left) and false color
image of tissue oxygenation (right).

https://www.editorialmanager.com/send/download.aspx?id=452267&guid=b70bc8fe-cef9-4e6c-9790-9b4556219423&scheme=1


Fig. 3 RGB- and NIR Perfusion Index- images of a patient with (A, B) and without
postoperative anastomotic insufficiency (C, D).
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Fig. 2 Distribution of the index average inside the ROI among patients with and without
ischemic preconditioning for a) tissue oxygenation (StO2), b) perfusion- (NIR Perfusion
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