231,962 research outputs found

    Quantum Programming Made Easy

    Get PDF
    We present IQu, namely a quantum programming language that extends Reynold's Idealized Algol, the paradigmatic core of Algol-like languages. IQu combines imperative programming with high-order features, mediated by a simple type theory. IQu mildly merges its quantum features with the classical programming style that we can experiment through Idealized Algol, the aim being to ease a transition towards the quantum programming world. The proposed extension is done along two main directions. First, IQu makes the access to quantum co-processors by means of quantum stores. Second, IQu includes some support for the direct manipulation of quantum circuits, in accordance with recent trends in the development of quantum programming languages. Finally, we show that IQu is quite effective in expressing well-known quantum algorithms.Comment: In Proceedings Linearity-TLLA 2018, arXiv:1904.0615

    Rewriting Constraint Models with Metamodels

    Get PDF
    An important challenge in constraint programming is to rewrite constraint models into executable programs calculat- ing the solutions. This phase of constraint processing may require translations between constraint programming lan- guages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common fea- tures of constraint models including different kinds of con- straints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamodel space and languages using parsing techniques. Tools from the software engineering world can be useful to implement this framework

    Mobile Applications in X-KLAIM

    Get PDF
    Networking has turned computers from isolated data processors into powerful communication and elaboration devices, called global computers; an illustrative example is the Worldā€“Wide Web. Global computers are rapidly evolving towards programmability. The new scenario has called for new programming languages and paradigms centered around the notions of mobility and location awareness. In this paper, we briefly present X-KLAIM, an experimental programming language for global computers, and show a few programming examples

    Cognitive dimensions usability assessment of textual and visual VHDL environments

    Get PDF
    Visual programming languages promise to make programming easier with simpler graphical methods, broadening access to computing by lessening the need for would-be users to become proficient with textual programming languages, with their somewhat arcane grammars and methods removed from the problem space of the user. However, after more than forty years of research in the field, visual methods remain in the margins of use and programming remains the bailiwick of people devoted to the endeavor. VPL designers need to understand the mechanisms of usability that pertain to complex systems like programming language environments. Effective research tools for studying usability, and sufficiently constrained, mature subjects for investigation are scarce. This study applies a usability research tool, with its origins in applied psychology, to a programming language surrogate from the hardware description language class of notations. The substitution is reasonable because of the great similarity between hardware description languages and programming languages. Considering VHDL (the VHSIC Hardware Description Language) is especially worthwhile for several reasons, but primarily because significant numbers of digital designers regularly employ both textual and visual VHDL environments to meet the same real-world design challenges. A comparative analysis of Cognitive Dimensions assessments of textual and visual VHDL environments should further understanding of the usability issues specifically related to visual methods ā€“ in many cases, the same visual methods used in visual programming languages. Furthermore, with this real-world ā€˜field labā€™ better understood, it should be possible to design experiments to pursue the formalization of the CDs framework as a theory

    In Search of Effectful Dependent Types

    Full text link
    Real world programming languages crucially depend on the availability of computational effects to achieve programming convenience and expressive power as well as program efficiency. Logical frameworks rely on predicates, or dependent types, to express detailed logical properties about entities. According to the Curry-Howard correspondence, programming languages and logical frameworks should be very closely related. However, a language that has both good support for real programming and serious proving is still missing from the programming languages zoo. We believe this is due to a fundamental lack of understanding of how dependent types should interact with computational effects. In this thesis, we make a contribution towards such an understanding, with a focus on semantic methods.Comment: PhD thesis, Version submitted to Exam School

    Common Subexpression Elimination in a Lazy Functional Language

    Get PDF
    Common subexpression elimination is a well-known compiler optimisation that saves time by avoiding the repetition of the same computation. To our knowledge it has not yet been applied to lazy functional programming languages, although there are several advantages. First, the referential transparency of these languages makes the identification of common subexpressions very simple. Second, more common subexpressions can be recognised because they can be of arbitrary type whereas standard common subexpression elimination only shares primitive values. However, because lazy functional languages decouple program structure from data space allocation and control flow, analysing its effects and deciding under which conditions the elimination of a common subexpression is beneficial proves to be quite difficult. We developed and implemented the transformation for the language Haskell by extending the Glasgow Haskell compiler and measured its effectiveness on real-world programs
    • ā€¦
    corecore