
Common Subexpression Elimination in a Lazy

Functional Language

Olaf Chitil

Lehrstuhl für Informatik II, Aachen University of Technology, Germany
chitil@informatik.rwth-aachen.de

http://www-i2.informatik.RWTH-Aachen.de/~chitil

Abstract. Common subexpression elimination is a well-known compiler
optimisation that saves time by avoiding the repetition of the same com-
putation. To our knowledge it has not yet been applied to lazy functional
programming languages, although there are several advantages. First, the
referential transparency of these languages makes the identification of com-
mon subexpressions very simple. Second, more common subexpressions can
be recognised because they can be of arbitrary type whereas standard com-
mon subexpression elimination only shares primitive values. However, be-
cause lazy functional languages decouple program structure from data space
allocation and control flow, analysing its effects and deciding under which
conditions the elimination of a common subexpression is beneficial proves to
be quite difficult. We developed and implemented the transformation for the
language Haskell by extending the Glasgow Haskell compiler and measured
its effectiveness on real-world programs.

1 Transformation of Different Language Classes

The purpose of common subexpression elimination (CSE) is to reduce the runtime of
a program through avoiding the repetition of the same computation. The transform-
ation statically identifies a repeated computation by locating multiple occurrences
of the same expression. Repeated computations are eliminated by storing the res-
ult of evaluating the expression in a variable and accessing this variable instead of
reevaluating the expression.

1.1 Imperative Languages

CSE is a well-known standard optimisation which is implemented in most compilers
for imperative languages ([ASU86]). The program to be optimised is represented as a
flow graph whose nodes are basic blocks, that is sequences of 3-address instructions.
An expression on the right hand side of an assignment is a common subexpression
if it has been computed before and there is no assignment to any variable of the
expression in between. For languages with pointers the latter condition is more
complicated. Local elimination of all common subexpressions of a basic block is
straightforward. Global elimination requires a data flow analysis, since an expression
can only be eliminated, if it is already computed on every path leading to its basic
block.

It is important to note that some transformations are not feasible on source code
level, because the required details are still hidden there. For example Pascal only
permits to access an array by an index, e.g. a[i] := a[i]+1. Assuming an array
component requires 4 bytes this is translated into the following 3-address code:

t1 := 4 * i;

t2 := a[t1]

t3 := t2 + 1;

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

t4 := 4 * i;

a[t4] := t3;

The programmer cannot avoid the repeated computation of 4 * i which is elimin-
ated by CSE.

Note that 3-address code only handles primitive data like integers and float-
ing point values and that the temporary variables t1, . . . , t4 are held in processor
registers. The recomputation of complete arrays for example cannot be eliminated.

1.2 Strict Functional Languages

Appel implemented CSE in a compiler for the strict functional language ML ([App92],
Chapter 9). He uses continuation passing style as intermediate language on which all
transformations operate. Whereas 3-address code consists of a sequence of instruc-
tions, continuation passing style code makes control flow explicit by nesting. Hence
an expression is evaluated before another expression, if it syntactically dominates
that expression. Only in case of syntactic domination common subexpressions can
be eliminated. To increase the applicability of the transformation, an additional
hoisting transformation is implemented that hoists a continuation expression above
another. The following simplified example from ([App92], Chapter 9) shows the
transformation of the expression

let f c = c (x+y) in f (x+y) k

It is written in continuation passing style as

FIX([(f, [c], PRIMOP(+, [VAR x, VAR y], [z], [

APP(VAR c, [VAR z])]))],

PRIMOP(+, [VAR x, VAR y], [w], [

APP(VAR f, [VAR w, VAR k])]))

which is transformed by hoisting into

PRIMOP(+, [VAR x, VAR y], [w], [

FIX([(f, [c], PRIMOP(+, [VAR x, VAR y], [z], [

APP(VAR c, [VAR z])]))],

APP(VAR f, [VAR w, VAR k]))])

and by CSE into

PRIMOP(+, [VAR x, VAR y], [w], [

FIX([(f, [c], APP(VAR c, [VAR w]))],

APP(VAR f, [VAR w, VAR k]))])

Common subexpressions are restricted to those built from primitive operations
that operate only on primitive types. We conclude that CSE for continuation passing
style programs is very similar to CSE for imperative programs.

Appel reports that the transformation has no effect on runtime and only a
minor positive effect on program size. However, Appel gives no explanation for this
disappointing result.

1.3 Lazy Functional Languages

To our knowledge, CSE has not yet been implemented in any compiler for lazy func-
tional languages. As seen in the previous subsections, classic CSE is based on an ex-
plicit representation of control flow and data flow. In contrast, functional languages
decouple program structure from both control flow and data space allocation. That

makes it hard, first, to ascertain that repeated expressions are evaluated repeatedly
and, second, to predict the effect of the elimination of a common subexpression on
space usage, a problem that we will discuss shortly.

This suggests that CSE should be applied at a lower level in a compiler for a lazy
functional language. The Glasgow Haskell compiler produces C programs. However,
these C programs contain many indirect function calls via pointers ([Pey92]). We
suppose that this limits the ability of the GNU C-compiler gcc to find common
subexpressions severely. Unfortunately we are not able to verify this claim, because
gcc does not provide an option for suppressing CSE.

On the other hand, there are several advantages of applying CSE directly to
lazy functional programs.

First, lazy functional languages like Haskell are referentially transparent, that is
two identical expressions always denote the same value, independent of the time of
evaluation. Hence the recognition of common subexpressions is easier to implement
than for imperative languages or strict functional languages like Scheme and ML
that have to take account of destructive updates and side effects. Thus even more
common subexpressions may be recognised.

Second, CSE for lazy functional languages automatically recognises common
subexpression of arbitrary type. Therefore it is able to transform

sum [1..1000] + sum [-1000..1] + sum [1..1000]

into

let v = sum [1..1000] in v + sum [-1000..1] + v

CSE for imperative languages and as used by Appel can only eliminate an expres-
sion, if all its subexpressions including itself only handle primitive values.

The disadvantage of eliminating expressions of arbitrary type is that it can lead
to a considerable increase in space requirements (cf. [Pey87], Sections 14.7.2 and
23.4.2). Consider the transformation of the expression

sum [1..1000] + sum [-1000..1] + prod [1..1000]

into

let v = [1..1000] in sum v + sum [-1000..1] + prod v

The first expression creates three times a list of 1000 elements. The space of a list can
immediately be reclaimed after the list is used by sum and prod respectively. Hence
the amount of space required by one list suffices for the evaluation of the whole
expression. In the second expression the space allocated for the list [1..1000] is
not available when evaluating sum [-1000..1], but can only be reclaimed after the
evaluation of prod v has finished (assuming a left to right evaluation). In the case
of such a ”space leak” it could be cheaper to recompute the common expression.
Santos shortly discusses CSE for the lazy functional language Haskell in [San95]
and points out this danger of ”space leaks” He suggests restricting the type of com-
mon subexpression that are eliminated. We will follow up this idea in Section 3.5.
However, if the lifetime of the original expressions overlap, then sharing compound
values is even beneficial for space consumption.

Because we do not want to loose the advantage of simplicity by performing
a complex analysis, we have to find simple syntactic conditions under which the
elimination of a common subexpression is beneficial. To evaluate the usefulness of
CSE for lazy functional languages in practise, we implemented it in the Glasgow
Haskell compiler (GHC) and measured the effects of the transformation on real-
world programs.

In the next section we give a short introduction to GHC and present the simple
lazy language Core on which our transformation operates. In Section 3 the trans-
formation is developed in detail and we discuss, how the problems mentioned above
are (partially) overcome. Section 4 discusses the implementation of the transform-
ation. Afterwards, Section 5 presents measurements of the effects of the transform-
ation on several programs. We conclude in Section 6.

2 The Glasgow Haskell Compiler and Core

We chose to implement CSE by extending GHC for the following reasons. First,
GHC is heavily based on the ”compilation by transformation” approach, that is, it
consists of a front end which translates Haskell into a small lazy functional language
named Core, a number of transformations which optimise Core programs, and a
back end which translates Core into C. As much work as possible is done in the
middle part. Furthermore, GHC has been designed with the goal that other people
can extend it with new optimising transformations ([Par94]). Second, it is one of
the standard compilers for the lazy language Haskell. This permits us to test our
transformation on real-world Haskell programs instead of toy programs in a toy
language.

The compiler itself is written in Haskell. We added our transformation to version
2.04 which implements Haskell 1.4 ([GHC]).

The intermediate language of GHC, Core, is essentially the second-order λ-
calculus augmented with let, case, data constructors, constants and primitive op-
erations. The syntax of the language is given in Figure 1. To avoid always having to
speak of global bindings and (local) let bindings, we refer to both kind of bindings
as let bindings. The syntax does not include algebraic data type definitions, but
data constructors are used in the patterns of case alternatives. Note that function
arguments must be atoms to simplify the operational semantics of Core and thus
many transformations. Core has a fixed operational semantics besides the usual de-
notational semantics to enable reasoning about the usefulness of a transformation.
Hence we shortly describe the main characteristics of this operational semantics.

Type abstraction and application are only needed for the type system. No pro-
gram code is generated for these constructs, because no types are passed at runtime.

The operational model of Core requires a garbage-collected heap. A heap object,
also named closure, contains a data value, a function value, or is a thunk for sus-
pended values. Like a function value, a thunk contains a pointer to its unevaluated
code and an environment. The environment is the list of values of the free variables
of the code. After a thunk has been evaluated it is overwritten by its now-computed
value. Thus lazy evaluation is implemented.

let bindings and only let bindings performs heap allocation. When a let bind-
ing is evaluated, a closure is allocated for the bound expression. If the bound ex-
pression is in WHNF, a data value or function value is allocated, otherwise a thunk
(trivial let bindings, i.e., let x = y in ..., are eliminated before code generation).
Afterwards the body of the let is evaluated.

case expressions and only case expressions trigger evaluation. The evaluation
of a case expression triggers the evaluation of the scrutinised expression to WHNF.
The result is compared with the patterns of the alternatives and execution proceeds
with the appropriate alternative.

A more detailed description of Core and the objectives of its design is given in
[PeySan97].

Program Prog → Bind1; . . . ; Bindn n ≥ 1

Binding Bind → var = Expr Non-recursive
| rec var1 = Expr1;

. . . ;
varn = Exprn;

Recursive n ≥ 1

Expression Expr → Expr Atom Application
| Expr ty Type application
| λvar1 . . . varn->Expr Lambda abstraction
| Λtyvar1 . . . tyvarn->Expr Type abstraction
| case Expr of {Alts} Case expression
| let Bind in Expr Local definition
| con var1 . . . varn Constructor n ≥ 0
| prim var1 . . . varn Primitive op. n ≥ 0
| Atom

Atoms Atom → var Variable
| Literal Unboxed object

Literals Literal → integer | float | . . .

Alternatives Alts → Calt1; . . . ; Caltn; Default n ≥ 0
| Lalt1; . . . ; Laltn; Default n ≥ 0

Constr. alt. Calt → con var1 . . . varn->Expr n ≥ 0

Literal alt. Lalt → Literal->Expr

Default alt. Default → NoDefault

| var->Expr

Fig. 1. Syntax of the Core language

3 Development of the Transformation

We define CSE for Core by giving three term rewriting rules. To argue that these
three rules suffice, we show how other transformations implemented in GHC trans-
form a program into a form suitable for our transformation. Then we discuss the
application conditions of our rules that assure that common subexpression elimin-
ation reduces costs. For lazy functional languages the costs of major interest are
runtime, total heap allocation, maximal heap residency, that is the maximal space
required by life objects on the heap at one time, and size of the program code.
Finally we take up Santos’ idea of restricting the type of eliminated subexpressions
to avoid space leaks.

3.1 Transformation Rules

We decided on a simple implementation that performs no complicated analysis.
Hence we only want to eliminate a common subexpression when this is safe, that
is, it cannot increase costs. Although absolute safety is probably unattainable, the

obvious, general transformation rule

e′[e, e] ; let x = e in e′[x, x]

certainly cannot be used. The two occurrences of the expression e may be very far
apart and the chances that the value of both is needed during the evaluation of
the program is low. Worse, a closure is always allocated for e in the transformed
program, while this may not be the case for the original program. This closure also
has a long lifetime, the maximum of the lifetimes of the two occurrences of e in the
original program. If the whole expression is inside the body of a λ-abstraction, then
this may lead to the allocation of an unbound number of closures. If the added let

binding is global, then the closure will never be deallocated at all (see Section 4.3).
Hence, similar to Appel (cf. Section 1.2), we only look for common subexpres-

sions when a named expression syntactically dominates another equal expression,
that is, we use the transformation rule

let x = e in e′[e] ; let x = e in e′[x] (1)

The language Core can also express another type of named, syntactically dom-
inating expression: case 6 * 7 of {x -> fib 6 * 7}

Programmers do not write such code, but if an expression e′ is strict in x then
the expression let x = e in e′ is transformed into case e of {x -> e′} ([San95],
Section 3.6). Hence we add the transformation rule

case e of { . . . ;x -> e′[e]; . . . } ; case e of { . . . ;x -> e′[x]; . . . } (2)

Later we learned that this strictness transformation is only applied after all other
transformations (to avoid having to handle similar kinds of named expressions dur-
ing inlining). However, GHC has a special strictness transformation that is executed
earlier. If the type of e has only a single data constructor C, then let x = e in e′

is transformed into case e of {Cx1 . . . xn -> e′[Cx1 . . . xn/x]}. Therefore we add
the rule

case e of { . . . ; Cx1 . . . xn -> e′[e]; . . . }

; case e of { . . . ; Cx1 . . . xn -> e′[Cx1 . . . xn]; . . . } (3)

This rule is important for handling unboxed data types, which have exactly one
data constructor (see Section 4.3).

The restriction to syntactically dominating expressions renders the transforma-
tion more similar to CSE in imperative languages. Standard CSE eliminates not all
common subexpressions but only those that are already computed before on every
execution path.

Whereas it is still not guaranteed (but more probable) that the eliminated ex-
pression is computed twice in the original program, the transformation is safe in
that the new program allocates no additional closures.

3.2 Flattening of let and case expressions

The restriction of considering only syntactically dominating expressions is not as
severe as it seems. First of all, a core program contains much more nested let

expressions than a normal functional program, because Core requires the arguments
of functions to be atoms. Consider the Haskell expression

sum [1..1000] + sum [-1000..1] + sum [1..1000]

In Core it looks as follows:1

1 The examples are simplified. In particular, the overloaded numbers of Haskell require
the use of dictionaries.

let s =

let s1 = let l1 = [1..1000] in sum l1 in

let s2 = let l2 = [-1000..1] in sum l2 in

s1 + s2

in

let p = let l3 = [1..1000] in prod l3 in

s + p

Our transformation rules cannot be applied to this program. However, GHC
includes several transformations that flatten nested let and case expressions and
thus bring a program into a form more suitable for our transformation:

– float let from let. ([San95], Section 3.4.2)

let x = (let y = ey in ex) in e ; let y = ey in (let x = ex in e)

This transformation is only applied, if ey is in WHNF or ey is strict in y.
– float case from let. ([San95], Section 3.5.3)

let x = case e of

alt1 -> e1

. . .
altn -> en

in e′

;

case e of

alt1 -> let x = e1

in e
. . .
altn -> let x = en

in e
in e′

This transformation requires e′ to be strict in x.
– float let from case. ([San95], Section 3.4.3)

case (let x = e in e′) of . . . ; let x = e in (case e′ of . . .)

– float case from case. ([San95], Section 3.5.2)

case

case e of

alt1 -> e1

. . .
altn -> en

of

alt′
1
-> e′

1

. . .
alt′

n
-> e′

m

;

case e of

alt1 ->

case e1 of

alt′
1
-> e′

1

. . .
alt′

n
-> e′

m

. . .

altn ->

case en of

alt′
1
-> e′

1

. . .
alt′

n
-> e′

m

Join points are used to avoid code duplication (see Section 4.3)

Strictness analysis infers that our example expression is strict in all subexpres-
sions and thus all let bindings of numbers are transformed into case expressions.
A subsequent application of the transformations listed above leads to the following
program:

let l1 = [1..1000] in

case (sum l1) of

I# s1 -> let l2 = [-1000..1] in

case (sum l2) of

I# s2 -> case (s1 +# s2) of

I# s -> let l3 = [1..1000] in

case (sum l3) of

I# p -> case (s +# p) of

q -> I# q

The data constructor I# is part of the unboxed representation of integers (see Sec-
tion 4.3). CSE can easily remove the second occurrence of sum [1..1000] by ap-
plying rule 1 and 3.

Furthermore, GHC performs a full laziness transformation that, similar to the
hoisting transformation implemented by Appel, may introduce new application pos-
sibilities for CSE.

3.3 Swapping of independent let and case expressions

A disadvantage of the restriction to textually dominating expressions is that our
transformation rules may not be applicable because of the accidental order of inde-
pendent let or case expressions. The program

let y = 42 in (let x = 42 + 1 in f x y)

is transformed whereas

let x = 42 + 1 in (let y = 42 in f x y)

is not transformed. Unfortunately the independence of several let expressions can-
not be made explicit in the Core language; similarly for case expressions.

It is possible to extend our implementation of CSE, that we present in Section 4,
to eliminate common subexpressions even in such cases. We did not yet do so,
because we do not expect this case to occur very often.

3.4 Application Conditions of the Transformation rules

The observant reader will notice that our first transformation rule is just the inverse
of another well-known transformation: inlining. Inlining replaces occurrences of a
let-bound variable by its defining expression to remove function-call overhead and
to expose the defining expression to local context information and thus to increase
the possibility of other transformations being applied.

Transformations that are inverses of each other occur quite often in GHC, it
applies for example a let floating inward and a let floating outward transforma-
tion ([San95], Sections 5.1 and 3.4). For determining the conditions for applying
CSE we just have to reverse the known arguments for inlining ([San95], Section 6;
[PeySan97], Section 4).

We have to distinguish two kinds of common subexpressions. If the expression
concerned is a WHNF, that is, a variable, a literal, a constructor application, or
a λ-abstraction, then CSE cannot save execution time, because the expression is
already evaluated. Replacing the expression by a variable may even increase runtime,
because an additional indirection is introduced ([San95], Section 3.2.3). Eliminating
a common non-WHNF saves execution time, if the value of both expressions is
needed.

In addition to decreasing runtime, CSE can also decreases program size. It should
however be noted that eliminating small expressions like constructor applications
has probably no effect on program size.

A special case is a common subexpression that is the right hand side of a let

binding. Replacing this expression by a variable always leads to a complete removal
of the let binding (see section 4) and is thus reduces runtime and code size.

Hence common subexpression elimination also subsumes the constructor reuse
transformation applied by GHC ([San95], Section 3.2.3).

3.5 Avoidance of Space Leaks

Here we discuss the effect of CSE on space usage. Whereas the transformation
always decreases total heap usage (not however that constructor applications often
do not require the allocation of a closure at all), it may considerably influence heap
residency.

Eliminating common subexpressions that are in WHNF does not increase heap
residency, but we have seen that except for right hand sides of let bindings their
elimination is not advantageous.

Santos suggests to eliminate only expressions of certain types ([San95], Sections
8.5.11 and 8.6.2), similar to his approach to the full laziness transformation. If
the values of the expressions only takes a small, fixed amount of space, then the
increased lifetime of the values on the heap should hardly matter.

Santos suggests to consider only types that are not recursive and do not contain
recursive types as subcomponents. This restriction is however not sufficient. A par-
tially evaluated expression of a structured type may require an unbound amount
of heap space, because it may contain an arbitrary number of (linked) thunks. The
following example illustrates this.

f 0 = (0, 0)

f (n+1) = case (f n) of (x, y) -> (x+1, y+1)

let z = f 1000 in

case z of

(x, y) -> case x+1 of

x’ -> e[z]

When e[z] is evaluated, y is represented by 1001 thunks denoting the unevaluated
expression 0 + 1 + 1 + . . . + 1.

A partially evaluated expression is certain to require only a small, fixed amount
of space, if it is not a function, whose environment may refer to arbitrary large data
structures, and its WHNF is already its normal form. Examples are Bool, Char,
Int, and Float. We call such types safe.

Still, an unevaluated expression, that is a thunk, may require an arbitrary
amount of heap space, because its environment may refer to arbitrary large data
structures.

Therefore a space leak can only safely be avoided by restricting the transform-
ation to case expressions, that is, to rules 2 and 3, and to safe types. Nonetheless
the transformation is more general than standard CSE, because the subexpressions
of the eliminated expression may be of arbitrary type.

4 Implementation of the Transformation

The restriction of the transformation to the elimination of subexpressions which are
let- or case-bound in the same scope permits a single recursive traversal of the
Core program.

4.1 Recognition of Common Subexpressions

For each expression we first transform its subexpressions and then test, if the whole
transformed expression occurred before. This order is sensible in order to gain a
cumulative effect, e.g. we get

let x = 3 in let y = 2+3 in 2+3+4

; let x = 3 in let y = 2+x in y+4

while doing lookup first and then recursive transformation leads to

; let x = 3 in let y = 2+x in 2+x+4

By eliminating the expression on the right hand side of a let binding the trans-
formation may produce trivial let bindings of the form let x = y in e. The trans-
formation eliminates such trivial let bindings by the additional rule:

let x = y in e ; e[y/x] (4)

This helps in finding more common subexpressions.
Note that we cannot reduce expressions of the form case x of { y -> e } to

e[y/x], because in the first expression x is evaluated to WHNF whereas in the second
it is not. This may change the termination behaviour.

When implementing the restriction to WHNFs and safe types we have to be
careful to not to loose many good transformations, since e.g.

let v = [1..1000] in sum v + (sum [-1000..1] + sum [1..1000])

; let v = [1..1000] in let z = sum v in z + (sum [-1000..1] + z)

depends on [1..1000] being recognised as a common subexpression as well.
For this purpose the functions that transforms a subexpression does not only

return the transformed subexpression but also a version of the subexpression in
which all common subexpressions are eliminated. The latter version is memorised
when passing let or case bindings during recursive decent and it is the basis for
comparison of expressions.

Altogether this assures that the transformation is idempotent, that is after being
applied once a second application has no effect.

4.2 Cost of the Transformation

The single recursive traversal of the core program takes linear time in the size
of the program and lookup in the table happens in logarithmic time in its size.
The comparison of two expressions modulo α-conversion by recursive decent can be
regarded similarly. However, since in practise a comparison is nearly always decided
after examination of the top of the two expressions, it can realistically be considered
as constant. Hence our transformation takes roughly O(n log n) time, with n being
the size of the Core program. Compared to the rest of the compiler the time spend
on the transformation is not noticeable in practise.

The current implementation of the transformation makes a complete copy of
the Core program. This could be avoided for unchanged subexpressions to reduce
garbage collection.

4.3 Considerations specific to the Glasgow Haskell Compiler

Unboxed Values. Implementations of non-strict languages like Haskell process so
called boxed values, that is pointers into the heap that either point to a delayed
computation or the actual value. In order to improve efficiency Core is also able to
handle actual values directly, which are named unboxed values and are distinguished
by their types. These unboxed values have been added carefully, so that — although
they introduce explicit strictness into the otherwise non-strict language — they do
not invalidate any program transformation, provided the produced code observes
the following two restrictions: no polymorphic function is applied to an expression of
unboxed type and every expression of unboxed type which appears as the argument
of an application or as the right-hand side of a binding is in head normal form, that

is, a literal, an application of an unboxed constructor, or a variable (see [PeyLau91]
for details).

Fortunately, the transformation handles unboxed data types correctly: the types
of arguments of (polymorphic) functions are not changed and the transformation
never turns an expression which is in head normal form into one that is not.

We can also add simple unboxed data types like Bool#, Char#, Int#, Float# and
Double# to the list of save types. However, since the right-hand side of a binding
that is of unboxed type has to be in head normal form, the transformation will only
be applied to the scrutinee of a case expression.

Uses Type System. Based on ideas from linear logic the type system of Core has
been extended in version 2.01 by so called uses, which record when a value is used
(accessed) at most once. This knowledge permits to avoid update of closures which
are not accessed again, enables update in place of data structures whose old value is
no longer needed, and may guide program optimisations, especially save situations
for inlining can be determined. Uses are attached to types. The use 1 of a type
indicates that its values are used at most once, while the use ω indicates that the
values of the type may be used any number of times. A program transformation
has to produce Core programs that respect the use type system (see [MTW95] for
details).

The usage information is hardly useful for CSE. Only if a let or case bound
variable has use 1, then common subexpression elimination very probably saves
execution time iff after the transformation a repeated uses type inference yields use
ω for the variable.

Unfortunately our implementation of common subexpression evaluation even
violates the uses type system. Consider the following transformation:

let x = 1+2 in let y = 1+2 in x+y ; let x = 1+2 in x+x

In the left expression the type of the variable x may have use 1, and in the right
expression it should have use ω. There does not seem to be any good solution to this
problem. The transformation may either be restricted to variables of use ω, or the
use of all variables used for subexpression elimination is set to ω, or the program has
to be type checked again after the transformation. Currently this does not matter
since version 2.04 of GHC does not yet make use of the use information for code
generation or any program transformation.

Join Points. When explaining the operational semantics of Core in Section 2 we
said that every let binding allocates a closure. This is not true. The back end of
GHC performs a simple syntactic escape analysis to identify let bound variables
whose evaluation is certain to take place before evaluation of the body of the let

expression has terminated. In that case the let binding is implemented, not by
allocating a closure, but by jumping to some common code whenever the bound
variable is subsequently evaluated ([PeySan97], Section 5.1; [San95], Section 3.5.2).

Thus our analysis of the effects of CSE are called into question. On the one
hand the introduction of a let binding of this kind does not increase total heap
allocation or heap residency. On the other hand the replacement of a subexpression
by a variable may turn a non-escaping let binding into a normal let binding.

Because we do expect the later to happen very rarely and escape information
is only generated in the back end of the compiler, we ignored these effects on the
effectiveness of the transformation.

Top Level Constants. Top level constants, so called constant applicative forms
(CAFs), are never garbage collected by the runtime system of GHC. Hence re-
placing a subexpression of unsafe type by a top level variable almost certainly leads

to a serious space leak. We did not distinguish between global and local bindings in
our implementation but could easily do so.

Exported Top Level Bindings. Every Haskell module exports a set of identifiers.
Trivial bindings of the form let x = y in ... with x being exported by the mod-
ule may occur in Core code. In this case the transformation must not delete the
trivial binding.

If the identifier y is not exported, then it is feasible to delete the binding and
replace every occurrence of y by x in the whole module instead. However, because
this case rarely occurs, we refrained from implementing this extension.

Cost Centres. Finally, programs that are compiled for profiling are annotated with
cost centres. We suppressed them when giving the syntax of Core in Section 2.
Not respecting these annotations, that is, moving subexpressions from the scope of
one cost centre to another, does not change the semantics of the program, but it
invalidates the profiling measurements. Sansom and Peyton Jones suggest to curtail
transformations to never move costs across a cost centre annotation. This means
however, that observing a program (annotating it with cost centres) influences the
behaviour to be observed! Alternatively, a subexpressions that is moved out of the
scope of a cost centre can be annotated with its original cost centre. Nonetheless
this usually moves a small cost to another cost centre and it evidently complicates
every transformation (see [SanPey95] for details).

Our transformation eliminates subexpressions without caring about the scope of
cost centres. It is not even clear how the cost of a common subexpression could be
shared between cost centres. Cost centre annotations also limit the applicability of
the transformation since terms which differ only by their annotation are regarded
as different.

5 Measurement of the Effects of the Transformation

We measured a version of the transformation that uses all four reduction rules,
but eliminates a WHNF only if it is the right hand side of a let binding and it is
replaced by a variable. Eliminated expressions are not restricted to safe types.

We observed in Section 3 that the applicability of CSE is increased by various
let and case floating transformations and by strictness analysis. Hence we ap-
ply CSE after all transformations that are normally turned on by the -O2 option.
Because transformation rule 3 opens new possibilities for optimisations, we repeat
GHC’s simplifier pass afterwards. As standard for comparison we use the same se-
quence of optimisations without CSE. The standard prelude was also compiled with
the respective optimisations.

The objects of our comparison are the example of Section 3.2, the Haskell stand-
ard library hslib which contains the prelude, and nine programs from the Glasgow
nofib test suite, version 1.4 [Par93]. The latter are real applications, that is, applic-
ations that were not designed as benchmarks but to solve particular problems, for
instance text compression (compress) and Monte Carlo photon transport (gamteb).

Table 1 gives the number of recognised and eliminated common subexpressions
as reported by our transformation. The second row gives the number of lines of each
program. The recognised subexpressions are divided into WHNFs and non-WHNFs.
Only those WHNFs that appear as right hand sides of let bindings are eliminated.
Of the number of all recognised non-WHNFs the number of pure type applications
is given in an additional row. The number of eliminated common subexpressions is
the sum of the number of all non-WHNFs and those WHNFs that are right hand
sides of let bindings. Finally the number of let bindings that are eliminated by

rule 4 is given. The numbers behind a slash denote the number of common subex-
pressions that were recognised by the two case rules 2 and 3. All other common
subexpressions were recognised by rule 1.

recognised common subexpr. eliminated
WHNFs non-WHNFs

program lines let rhs others all type appl. subexpr. let bindings

example 2 0 0 1 / 1 0 4 4
hslib 10738 95 320 57 / 19 11 171 139
compress 320 0 0 0 0 0 0
fulsom 1357 16 133 12 8 28 19
gamteb 718 8 3 0/7 0 15 3
grep 356 7 91 17 7 24 22
lift 2033 4 23 31 28 35 30
pic 544 1 18 5 0 6 5
prolog 539 1 16 5 0 6 6
reptile 1522 10 21 70 54 86 32
rsa 74 0 0 4 0 4 4

Table 1. Recognised and eliminated common subexpressions

Table 2 shows the measured effects of the CSE on costs, that is runtime, the total
amount of heap allocated, maximal heap residency, and code size. For the time we
took the geometric means of five runs. All measurements are given as differences in
per cent between the numbers for the program compiled with CSE and those for
the program compiled without. Horizontal lines mark costs that were not measured
(hslib) or could not be measured because the runtime was too short.

program time total heap alloc. max. heap residency code size

example -26 % -33.4% +0.001 % -0.3 %
hslib – – – -3.4 %
fulsom +0.3 % -0 % -0.01 % +3.9 %
gamteb +1.4 % +0.02 % -0.3 % +3.6 %
grep – -3.1 % – +1.9 %
lift 0 % -0.09 % -0.03 % +1.6 %
pic +0.5 % +0.4 % -0.01 % +4.1 %
prolog 0 % -0.3 % +6% +0.4 %
reptile -1.7% -0.2 % -0.02 % +1.7 %
rsa -1.7% -0.24 % -2.5 % +1.4 %

Table 2. Effect on costs

The number of eliminated subexpressions is distributed very unevenly between
the programs and has only a very weak relationship with the size of a program.
However, all programs have disappointingly few common subexpressions with re-
spect to their size. This limited applicability of CSE becomes even more apparent,
when we subtract the number of recognised common subexpressions that are pure
type applications from the number of eliminated subexpressions. All type informa-

tion is dropped by GHC during code generation and hence the elimination of type
applications has no influence on the generated code. Table 1 also shows that the
case transformation rules 2 and 3 were hardly applied. Therefore we did not make
measurements of a variation of the transformation that avoids ”space leaks” as dis-
cussed in Section 3.5 by eliminating only expressions of save type by rules 2 and 3.
It would hardly eliminate any common subexpression.

Table 2 proves that our example program from Section 3.2 profits considerably
from the transformation. Both runtime and total heap allocation are reduced by
the expected one third. However, the effect on the real-world programs of the nofib
suite is not that advantageous. On the one hand, the runtime of reptile and rsa

is reduced. In particular, rsa proves that only few eliminated subexpressions can
have an effect. Even heap residency is reduced. Grep shows a reduction of total
heap allocation. On the other hand, the transformation seems to have introduced a
”space leak” into prolog. Furthermore, the runtime of gamteb increased. The latter
proves that our transformation is not safe as intended and requires further analysis.
The slight increase of total heap allocation of some programs can be explained
by the effect of the transformation on the size of heap closures. The transformation
cannot increase the number of closures allocated on the heap but may both increase
and decrease the number of free variables of subexpressions and thus increase and
decrease the size of heap closures. The slight increase of code size indicates that the
mapping of Core expressions into code is not straightforward.

6 Conclusion

In this paper we have developed a version of CSE for a lazy functional language,
implemented it by adding it to GHC, and measured its effects on real-world pro-
grams.

We claim that CSE cannot be expected to be of equal importance for lazy func-
tional languages as for imperative languages. A programmer avoids repeated com-
putations. The purpose of CSE for imperative languages is to eliminate repeated
computations that are introduced by the compiler. The classical example is array
indexing. However, first, arrays are seldom used in functional programs and, second,
they are implemented by calling C-functions which are not reachable by transform-
ations working on Core level. Our measurements suggest that GHC introduces few
repeated computations. We suppose that the lack of common subexpressions is also
the reason for Appel’s disappointing results of CSE. A programming style that uses
many abstract data types may lead to an increase of common subexpressions. Sim-
ilar to the example of array indexing the limited interface of an abstract data type
would prevent a programmer from avoiding duplicated computations himself.

Because of the limited number of common subexpressions we do not believe that
it is worth to develop a transformation that employs complex analysis techniques
that ascertain that repeated expressions are actually evaluated repeatedly and that
avoid space leaks while retaining the shareability of complex data structures.

The current implementation of CSE is not yet fit to be used in practise. It pro-
duces a modest improvement of runtime and space behaviour of some programs,
but it also has a negative effect in a few cases. To avoid ”space leaks” a pragmatic
compromise between safety and usability of the transformation could be to restrict
eliminated subexpressions to safe types but to still use transformation rule 1. The
applicability of the transformation rules could be increased by permitting the trans-
formation of independent let and case expressions as discussed in Section 3.3 and
by implementing cross-module CSE, that is enable the replacement of expressions
by variables defined in imported modules. The conditions for the application of the
transformation rules could make more use of the context of common subexpres-

sions than only handling the right hand sides of let bindings specially. Finally the
transformation could be used for reducing code size by eliminating large common
WHNFs that were introduced by inlining but did not enable other transformations.

The development of CSE in Section 3 demonstrates the importance of close inter-
action of transformations. Several existing optimisations increase the opportunities
for applying CSE. Because the effect of CSE depends highly on the operational
semantics of Core it is unfortunately difficult to transfer the discussion of Section 3
to another implementation of a lazy functional programming language. In fact,
Section 4.3 proves that a detailed knowledge of GHC specific properties like the
underlying abstract machine (the STG-machine), unboxed data types, the use type
system, cost centres, etc. is required for a real implementation.

Finally we note that despite its long history CSE for imperative languages is still
an active research area. The authors of [SKR90, KRS94] show that it is an instance
of a more general transformation: code motion. Code motion moves every expression
as far to the beginning of the program as possible to minimise the number of com-
putations in the program. Thus it subsumes CSE, partial redundancy elimination,
and loop invariant code motion. The latter is known as full laziness transformation
in the context of functional languages. The authors define the notion of safeness:
the transformation should not introduce the computation of a new value on any
path. They also avoid any unnecessary code motion to minimise the lifetime of the
temporary variables. The authors define an optimality criterion and give a complex
algorithm that is safe and both computationally and lifetime optimal. The large
number of expression floating transformations in GHC motivate the development
of a similar general theory of code motion for imperative languages.

Acknowledgement

The author thanks all members of the program transformation group at Aachen for
numerous discussions and Simon Peyton Jones for answering many questions about
GHC.

References

[ASU86] A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques and Tools ;
Addison-Wesley, 1986.

[App92] Andrew W Appel: Compiling with Continuations ; Cambridge University Press,
1992.

[GHC] The Glasgow Haskell compiler ; http://www.dcs.gla.ac.uk/fp/software/

ghc/.

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen: Optimal Code Motion:
Theory and Practice ACM Transactions on Programming Languages and Sys-
tems, Vol. 16, No. 4, 1994, 1117–1155.

[MTW95] Christian Mossin, David N. Turner, and Philip Wadler: Once upon a type ;
Technical Report TR-1995-8, University of Glasgow, 1995. Extended version of
Once upon a type in 7’th International Conference on Functional Programming
Languages and Computer Architecture, June 1995.

[Par93] Will Partain: The nofib benchmark suite of Haskell programs ; part of the nofib
distribution; http://www.dcs.gla.ac.uk/fp/software/ghc/.

[Par94] Will Partain: How to add an optimisation pass to the Glasgow Haskell compiler
(two months before version 0.23) ; part of the GHC 0.29 distribution, October
1994.

[Pey87] Simon L Peyton Jones: The Implementation of Functional Programming Lan-
guages Prentice-Hall, 1987.

[PeyLau91] Simon L Peyton Jones and John Launchbury: Unboxed values as first class
citizens in a non-strict functional language ; Conf. on Functional Programming
Languages and Computer Architecture, 1991, pp 636–666.

[Pey92] Simon L Peyton Jones: Implementing lazy functional languages on stock hard-
ware: the Spineless Tagless G-machine ; J. Functional Programming, 2 (2):127–
202, 1992.

[PeySan97] Simon L Peyton Jones and André L M Santos: A transformation-based optim-
iser for Haskell ; submitted to Science of Computer Programming, 1997.

[SanPey95] Patrick M Sansom and Simon L Peyton Jones: Time and space profiling for
non-strict, higher-order functional languages ; 22nd ACM Symposium on Prin-
ciples of Programming Languages, January 1995.

[San95] André L M Santos: Compilation by transformation in non-strict functional
languages ; PhD Thesis, University of Glasgow, July 1995.

[SKR90] Bernhard Steffen, Jens Knoop, Oliver Rüthing: The Value Flow Graph: A pro-
gram Representation for Optimal Program Transformations ; ESOP’90, LNCS
432, 1990, 389–405.

