
T. Ehrhard, M. Fernández, V. de Paiva, L. Tortora de Falco (Eds.):
Linearity-TLLA 2018
EPTCS 292, 2019, pp. 133–147, doi:10.4204/EPTCS.292.8

c© Paolini, Roversi & Zorzi
This work is licensed under the
Creative Commons Attribution License.

Quantum Programming Made Easy

Luca Paolini
Dipartimento di Informatica

Università di Torino
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We present IQu, namely a quantum programming language that extends Reynold’s Idealized Algol,
the paradigmatic core of Algol-like languages. IQu combines imperative programming with high-
order features, mediated by a simple type theory. IQu mildly merges its quantum features with the
classical programming style that we can experiment through Idealized Algol, the aim being to ease
a transition towards the quantum programming world. The proposed extension is done along two
main directions. First, IQu makes the access to quantum co-processors by means of quantum stores.
Second, IQu includes some support for the direct manipulation of quantum circuits, in accordance
with recent trends in the development of quantum programming languages. Finally, we show that
IQu is quite effective in expressing well-known quantum algorithms.

1 Introduction

Linearity is an essential ingredient for quantum computing, since quantum data have to undergo re-
strictions such as non-cloning and non-erasing properties. This is evident from the care that quantum
programming language design puts on the management of quantum bits, especially in presence of higher-
order features.

Selinger’s QPL [29] is a milestone for quantum programming theory. It follows the mainstream ap-
proach “quantum data & classical control ” based on the architecture QRAM [10]. In QPL a classical
program generates “directives” for an ideal quantum device. QPL is the first statically typed program-
ming language that enforces the well-formedness of a program at compile time, by avoiding run-time
checks. The non-duplication of quantum data is enforced by the syntax of the language. The lack of
higher-order functions is the main limitation of QPL.

The introduction of QPL opened the way to the design of several quantum programming languages.
Some of them came be found in [7, 6, 17, 36, 30, 31, 11]. Pagani et al. [17] and Zorzi [36] mainly
focus on the computational models behind the language. Other papers, like [30], focus on pioneering
prototypes of effective quantum programming languages. The languages in [30, 17, 36, 12] deal with
higher-order functions and follow the direction suggested by Selinger in [29]: Linear Logic exponential
modalities are used to devise typing systems which accomodate quantum data management in a classical
programming setting.

A very pragmatic proposal is Quipper [33]. Its distinguishing feature is its management of quantum
circuits as classical data. It allows to duplicate, erase, operate and meta-operate circuits. The prototypical
example of meta-operations are identified in [10]: reversing quantum circuits, conditioning of quantum
operations and converting classical algorithms in reversible ones. Some formalizations of the core of
Quipper, called ProtoQuipper and ProtoQuipper-M, have been defined in [27, 28] and are base
based on Linear-Logic typing systems.

Moving the focus from the quantum-data perspective to the classical-control one, we find recent
quantum programming languages as qPCF [22] and QWire [23]. QWire has been conceived as an ex-
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tension of a classical language that provides an elegant and manageable language for defining quantum
circuits; Haskell and Coq have been considered as possible hosts (in fact, QWire is a “quantum plu-
gin” for a host classical language). It provides a suitable support for quantum circuits (extended with
measurement gates) through a boxing interface that rests on a Linear-Logic based typing system. If
some normalization assumption holds, then the interface keeps the typing rules for elements that live
in the quantum world apart from the typing system of the hosting language. In contrast, qPCF [22] is
a stand-alone quantum programming language. It extends PCF with a type for quantum circuits and
its operational semantics is supplied by means of a QRAM-compliant device with suitably relaxed de-
coherence assumptions. qPCF has two main distinctive type features: it uses dependent types and, it
avoids types for quantum states, by relegating their relevance to quantum co-processor calls. More pre-
cisely, qPCF prevents the access to intermediate quantum states by tightening up the interaction process
with the black-box quantum device: whole bunches of quantum directives are supplied to the device that
ends their evaluation with a measurement of the whole state. For the sake of completeness, we recall that
dependent type extensions of QWire are considered in [23, 26].

In this paper, we introduce IQu (read “Haiku” as the japanese poetic form) a new quantum program-
ming language that extends Idealized Algol by conservatively inheriting its positive qualities. Reynolds’s
Idealized Algol is a paradigmatic language that elegantly combines the fundamental features of procedu-
ral languages, i.e. local stores and assignments, with a fully-fledged higher-order procedure mechanism
which, in its turn, conservatively includes PCF. Idealized Algol’s expressiveness and simple type theory
have attracted the attention of many researchers [15].

IQu extends Idealized Algol by introducing two new types. The first one types quantum circuits,
the second one types quantum variables. Considered that quantum circuits are classical data, their type
allows to operate on them without any special care, as they were a kind of numerals (roughly, they are
special strings). Instead, manipulating quantum states requires much care, for which we adapt Idealized
Algol’s original de-reference mechanism to access the content of classical variables. In Idealized Algol, a
classical variable is a name for a classical value stored in a register. We cannot duplicate that register, but
we can access its content via suitable methods and, if interested to that, we can duplicate that content.
Following this approach, we introduce the type of “quantum variables” that prevent to read quantum
states, but allow to measure them. The unique irreversible update of quantum stare allowed by IQu js the
measurement, while all other transformations are required to be unitary ones.

Essentially, IQu can be seen as a higher-order extension of QPL [29] where we prevent the quantum
state duplication not by means of a Linear Logic-based typing system, but putting them inside suitable
variables, whose content cannot be duplicated. However, the duplication can be applied to the name of
the variables to safely refer to their content in different spots of a program. IQu manipulates the quantum
variables as much as possible as imperative variables.

According to the recent trend in the development of quantum programming languages, we introduce
some facilities to duplicate and operate on quantum circuits. This approach stems from how quantum
algorithms are usually described and built, from the far-sighted informal ideas proposed in [10] and,
constitutes one of the distinctive features of Quipper, QWire and qPCF. However, IQu is different from
ProtoQuipper-like approaches and QWire, since the linear management of quantum state does not rest
on types based on Linear Logic.

In IQu we do not use dependent types for describing quantum circuits. This is to keep it as simple as
possible. Therefore, formally, IQu does not extend qPCF. However, such an extension is possible, thus
we state that IQu extends qPCF with classical and quantum stores.

Concluding, IQu is an original stand-alone higher-order type-safe quantum programming language.



Paolini, Roversi & Zorzi 135

The philosophy behind its design is to keep programming simple and rooted in the traditional classical
programming approach in accordance with the Idealized Algol design. The proposed extension should
help the transition from the classical programming to the quantum one. Moreover the language smoothly
adapts to the common descriptions of quantum algorithms coherently with what Knill advocates in [10].
Outline. Section 2 introduces the row syntax of IQu and its typing system with some basic properties.
Section 3 provides the details about its operational evaluation and its type safety. Section 4 concretely
uses IQu to implement some well-known algorithms. The last section is about conclusions and future
work.

2 IQu: Idealized QUantum language

IQu is a prototypical and minimal typed language that combines quantum commands and states with
higher-order functional features by using registers. It is an extension Idealized Algol (see [15, 16]),
namely a PCF that includes assignments and side-effects.

The grammar of IQu ground types is β ::= Nat | cVar | qVar | cmd | cırc.

• Nat is the type of numerical expressions which evaluate to natural numbers;

• cVar is the type of imperative variables that store natural numbers;

• qVar is the type of quantum registers that store quantum states, in accordance with the QRAM
model (so states are assumed free of decoherence issues);

• cırc is the type of quantum-circuit expressions, i.e. expressions evaluating to strings that describe
unitary transformations;

• cmd is the type of commands, i.e. the type of operations on variables (producing side-effects).

The types of IQu are the language that σ ,τ,θ ::= β | θ → θ generates.
The terms of IQu belong to the row syntax:

M,N,P,Q ....= x | n | pred | succ | if | λx.M | MN | Yσ

| skip | M;N | whileP do Q | M := N | readM |cnewN x in M

| Uk | :: | ‖ | reverse | csize | rsize | MC N |measNM |qnewN x in M .

• The first line includes in IQu, a boolean-free call-by-name PCF, namely the sub-language of IQu
which contains variables, numerals, predecessor, successor, conditional, abstraction, application
and recursion;

• The second line includes in IQu, the imperative part of Idealized Algol [16, 25] which contains
the commands do-nothing, composition, iteration, assignment, store reader (read) and store binder
(cnew);

• The third line includes in IQu, the syntax of quantum circuits, basic operations on both quantum
circuits and quantum registers.
Quantum Circuits. We expect that evaluating a circuit expression yields (evaluated) circuits
which are strings generated by the grammar C ....= Uk | C::C | C ‖ C and which include, quantum gates
(Uk denotes a gate in the set U (k) of gates operating on k wires), sequential and parallel composi-
tions. A non null arity, i.e. the number of its inputs and of its output, labels every gate. For every
gate symbol, the quantum co-processor [14] implements a unitary transformation to interpret it.
W.l.o.g., we assume that a universal base of quantum transformations is available. The design of
circuit’s syntax is aimed to be basic and to predispose the use of dependent types in IQu.
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B∪{x : σ} ` x : σ
(tv)

B ` n : Nat
(tn)

B ` succ : Nat→ Nat
(ts)

B ` pred : Nat→ Nat
(t p)

B∪{x : σ} ` N : τ

B ` λxσ .N : σ → τ
(tab)

B ` P : σ → τ B ` Q : σ

B ` PQ : τ
(tap)

B ` Yσ : (σ → σ)→ σ
(tY )

B ` if : Nat→ β → β → β
(ti)

B ` skip : cmd
(tk)

B ` P : cmd B ` Q : β

B ` P;Q : β
(tc)

B ` P : Nat B ` Q : cmd
B ` whileP do Q : cmd

(tw) B ` M : cVar B ` N : Nat
B ` M := N : cmd

(tA) B ` M : cVar
B ` readM : Nat

(tR)

B ` N : Nat B∪{x : cVar} ` M : β

B `cnewN x in M : β
(tcnw)

U ∈U (k)
B ` Uk : cırc

(tc1)

B :̀:: cırc→ cırc→ cırc
(tc2)

B `‖: cırc→ cırc→ cırc
(tc3)

B ` reverse : cırc→ cırc
(tmc)

B ` M : cırc
B ` csize(M) : Nat

(tsc)
B ` M : qVar

B ` rsize(M) : Nat
(tsr)

B ` M : qVar B ` N : cırc

B ` MC N : cmd
(tC)

B ` M : qVar B ` N : Nat

B `measNM : Nat
(tM)

B ` N : Nat B∪{x : qVar} ` M : β

B `qnewN x in M : β
(tqnw)

Table 1: Typing Rules.

Quantum Circuit Operations. We limit our interest to prototypical quantum circuits operations.
reverse is the standard quantum meta-operation for reversing (see [10, 23]). csize returns the
arity of a circuit.
Quantum Operations. rsize returns the arity of a quantum register. xC N evaluates the applica-
tion of the circuit N to the quantum state stored in x, then it stores the resulting state in x. Roughly,
measNx measures N qubits of a quantum state which x stores (and, update such state, in accordance
with the quantum measurement rules).

2.1 Typing system

A base is a finite list x1 : σ1, . . . ,xn : σn that we manage as a set such that xi 6= x j for every i 6= j. If
B = x1 : σ1, . . . ,xn : σn, then dom(B) = {x1, . . . ,xn} and ran(B) = {σ1, . . . ,σn}. The extension of B with
x : σ is denoted B∪{x : σ} where, w.l.o.g., we assume such that x 6∈ dom(B).

Definition 1. A term is well-typed whenever it is the conclusion of a finite derivation built with the rules
in Table 1.

The rules (tv), (tn), (ts), (t p), (tab), (tap), (tm) and (ti) come, quite directly, from PCF. We just
remark that (ti) extends the conditional in order to operate not only on numerals, but also on other ground
types (circuits, commands, classical and quantum variables).

The rules (tk), (tc), (tw), (tA), (tR) and (tcnw) are the typical imperative extensions that Idealized
Algol contains. The rules (tk) and (tw) types the standard imperative commands exactly as in Ideal-
ized Algol. The rule (tc) serves to consistently concatenate commands and to attach commands to
expressions typed with other ground types. It is worth to remark that, this second use allows to include
side-effects in the evaluation of expressions. The rule (tA) gives a type to the assignment of a classical
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variable. The rule (tR) gives a type to the result of reading a classical variable. As in Idealized Algol,
the rule (tcnw) allows to declare local variables. If x : cVar, then cnewN x in M makes a new instance of a
classical register available. It is a binder that binds the variable name x and whose scope is M. The initial
value of x depends on N.

The rules (tc1), (tc2), (tc3) give a type to basic gates and to compositions of quantum circuits. The
rule (tmc) gives a type to a meta-operations on quantum circuits. The rules (tsc) and (tsv) give a type to
the operations that return arity values. The rule (tC) gives a type to the application of a quantum circuit
to a quantum state. The rule (tM) gives a type to the measurement of a quantum state stored in a quantum
variable. In accordance with (tcnw), the rule (tqnw) allows to declare local variables. If x : qVar, then
qnewN x in M gives a new instance of quantum store. The variable name x is a binder whose scope is
M. Moreover, w.l.o.g., our assumptions are that the initial value of the quantum variable always is the
classical state zero and that N provides the numbers of qubits of the associated register.

The type system enjoys some basic properties. First, if B ` M : τ , then FV(M) ⊆ dom(B). Second,
if B ` M : τ , then B′ ` M : τ where B′ is the restriction of B to FV (M); Third, if B ` M : τ and dom(B)∩
dom(B′) = /0, then B∪B′ ` M : τ , which is the weakening of the base. Generation lemmas hold too,
however, our focus will mainly be on the dynamics of the typing system than on its logical properties.

Proposition 1 (Substitution). Let B,x : σ ` M : τ .
If B′ ` N : σ and dom(B)∩dom(B′) = /0, then B∪B′ ` M[N/x] : τ .

Proof. Standard, by reasoning inductively on the given typing derivation.

Standard Lemmas of typed subject expansions can be straightforwardly proved too.

Example 1. Let N : Nat be a term whose unique free variable is r : qVar. Also, let Not denote the
not-gate (a.k.a. Pauli-X gate) and let Id denote the identity gate, both with arity 1. Let M denote the
term (rC ((Not ‖ Id) ‖ Not));N. Then, M has type Nat by using (tc) (just after an application of (tC)).
Moreover, by means of (tqnew), we can conclude `qnew3 r in M : Nat. Anticipating the semantics, this
means that the variable r in the sub-term N is associated to a quantum register of 3 qubits initialized to
|101〉.
3 Evaluation Semantics
The evaluation of IQu focuses on programs, i.e. closed terms whose type is ground. Like Idealized Algol,
the operational semantics of IQu uses an auxiliary function to record values associated to variables whose
type is cVar or qVar. In addition, variables of type qVar must record the number of available qubits.

Definition 2 (Stores). A store s is the disjoint union of two partial functions, both defined on a finite
domain. The first one has cVar as domain and numerals as co-domain. The second function has qVar
as domain and pairs (quantum states, numerals) as co-domain, where the second component counts the
qubits of the first component. If x : cVar, then s(x) denotes the numeral stored in x. If x : qVar, then s(x)
denotes the state stored in x and s](x) the number of qubits of the state s(x). The domain of definition of
s is denoted dom(s), i.e. it is a set of variable names.

We denote s�x the store that behaves like s everywhere, except on x where it is undefined. Let s be a
store and let x : cVar; then s[x← k] denotes a store that behaves like s everywhere except than on x to

which it associates k. Let s be a store and let x : qVar; then s[x
k←− |φ〉] denotes a store that behaves like

s everywhere except than on x on which we have that s(x) = |φ〉 and s](x) = k.

We conventionally assume that C ranges over the strings that describe evaluated circuit expressions,
i.e. parallel and series composition of names for gates (cf. Theorem 2). Moreover, V ranges over numer-
als, strings that describe circuits, names of registers and the command skip.
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s,n⇓⇓⇓1 s,n
(en)

s,M⇓⇓⇓α s′,n
s,s(M)⇓⇓⇓α s′,n+1

(es)
s,M⇓⇓⇓α s′,n+1

s,p(M)⇓⇓⇓α s′,n
(ep)

s,M[N/x]P1 · · ·Pm ⇓⇓⇓α s′,V
s,(λx.M)NP1 · · ·Pm ⇓⇓⇓α s′,V

(eβ )
s,M(YM)P1 · · ·Pm ⇓⇓⇓α s′,V

s,YMP1 · · ·Pm ⇓⇓⇓α s′,V
(eY)

s,M⇓⇓⇓α s′,0 s′,L⇓⇓⇓α ′ s
′′,V

s,if M L R ⇓⇓⇓α·α ′ s
′′,V

(eifl)
s,M⇓⇓⇓α s′,n+1 s′,R⇓⇓⇓α ′ s

′′,V

s,if M L R ⇓⇓⇓α·α ′ s
′′,V

(eifr)

s,skip⇓⇓⇓1 s,skip
(esk)

s,M⇓⇓⇓α s′,skip s′,N⇓⇓⇓α ′ s
′′,V

s,M;N⇓⇓⇓α·α ′ s
′′,V

(e;)
s,x⇓⇓⇓1 s,x

(eVar)

s,M⇓⇓⇓α s′,n+1 s′,N⇓⇓⇓α ′ s
′′,skip s′′,whileM do N⇓⇓⇓α ′′ s

′′′,skip

s,whileM do N⇓⇓⇓α·α ′·α ′′ s
′′′,skip

(ew1)

s,M⇓⇓⇓α s′,0
s,whileM do N⇓⇓⇓α s′,skip

(ew0)
s,N⇓⇓⇓α s′,n s′,M⇓⇓⇓α′ s

′′,x
s,M := N⇓⇓⇓α·α ′ s

′′[x← n],skip
(ecA)

s,M⇓⇓⇓α s′,x
s, readM⇓⇓⇓α s′,s′(x)

ecR
s,N⇓⇓⇓α s′,n s′[x← n],M⇓⇓⇓α ′ s

′′,V

s,cnewN x in M⇓⇓⇓α·α ′ s
′′�x,V

ecN

s,M0 ⇓⇓⇓α s′,C0 s′,M1 ⇓⇓⇓α ′ s
′′,C1 wr(C0), wr(C1) are defined, and wr(C0) = wr(C1)

s,M0::M1 ⇓⇓⇓α·α ′ s
′′,C0::C1

(eu2)

s,Uk ⇓⇓⇓1 s,Uk
(eu1)

s,M0 ⇓⇓⇓α s′,C0 s′,M1 ⇓⇓⇓α ′ s
′′,C1

s,M0 ‖ M1 ⇓⇓⇓α·α ′ s
′′,C0 ‖ C1

(eu3)
s,M⇓⇓⇓α s′,U (‡U) = U′

s,reverseM⇓⇓⇓α s′,U′
(er1)

s,M⇓⇓⇓α s′,C0::C1 s′,reverseC0 ⇓⇓⇓α ′ s
′′,C′0 s′′,reverseC1 ⇓⇓⇓α ′′ s

′′′,C′1
s,reverseM⇓⇓⇓α·α ′·α ′′ s

′′′,C′1::C′0
(er2)

s,M⇓⇓⇓α s′,C0 ‖ C1 s′,reverseC0 ⇓⇓⇓α ′ s
′′,C′0 s′′,reverseC1 ⇓⇓⇓α ′′ s

′′′,C′1
s,reverseM⇓⇓⇓α·α ′·α ′′ s

′′′,C′0 ‖ C′1
(er3)

s,M⇓⇓⇓α s′,C
s,csizeM⇓⇓⇓α s,wr(C)

(ecsz)
s,rsizex⇓⇓⇓1 s,s](x)

(ersz)

s,N⇓⇓⇓α s′,C s′,M⇓⇓⇓α ′ s
′′,x wr(C) = s](x) = n

s,MC N⇓⇓⇓α·α ′ s
′′[x

s′′](x)←−−− cEvaln
(
C
)(

s′(x)
)
],skip

(eqA0) s,N⇓⇓⇓α s′,C s′,M⇓⇓⇓α ′ s
′′,x wr(C) 6= s](x)

s,MC N⇓⇓⇓α·α ′ s
′′,skip

(eqA1)

s,N⇓⇓⇓α s′,k s](x) = n

s′,M⇓⇓⇓α ′ s
′′,x (m, |φ〉,α ′′) ∈ pMeasn(s′′(r),k)

s,measNM⇓⇓⇓α·α ′·α ′′ s
′′[x← |φ〉],m (eqM)

s,N⇓⇓⇓α s′,n s′∪{x n←− 0},M⇓⇓⇓α ′ s
′′,V

s,qnewN x in M⇓⇓⇓α·α ′ s
′′�x,V

(eqN)

Table 2: Operational Semantics.
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Definition 3 (Operational Evaluation). Let x1 : cVar . . . ,xn : cVar,z1 : qVar . . . ,zm : qVar ` M : β where
n,m≥ 0 and β ∈ {Nat,cırc,cmd,cVar,qVar}. If s is a store such that {x1, . . . ,xn} ⊆ cVar∩dom(s) and
{z1, . . . ,xn} ⊆ qVar∩dom(s), then the evaluation semantics of IQu proves formal statements s,M⇓⇓⇓α s′,V
that we obtain as conclusion of a (finite) derivation D built with the rules in Table 2. As expected,
α ∈ (0,1] is the probability to obtain D .

The rules (en), (es), (ep), (eβ ), (eY), (eifl), (eifr) at the top of Table 2 are standard, that are used
in the evaluation of PCF (e.g., see [19]). They are enriched by a store that can be eventually used in the
evaluation of their sub-terms (involving side-effects).

The rules (esk), (e;), (eVar), (ew1), (ew0), (ecA), (ecR), (ecN) in the middle of Table 2 formalize the
standard evaluation of first order references and of usual imperative instructions that we find in Idealized
Algol. The evaluation (ecA) begins by evaluating the expression whose result must be stored. The right-
hand expression is expected to yield an classical variable. The rule (ecA) is the only one that changes the
content of classical variable. W.l.o.g., we assume that x 6∈ dom(s) holds for the rule (ecN). Otherwise,
we had to replace s′′�x,V with s′′[x← s(x)],V in its conclusion. Finally, we observe that only the rule that
changes the classical variables in the domain of the store is (ecN).

Example 2. • Let P be the well-typed term B∪{x : cVar} ` if(read x)M0M1 : β such that B∪{x :
cVar} ` Mi : β (i = 0,1). Let us evaluate P by using the store s: if s(x) = 0 then we have to evaluate
M0 (and we ignore M1), otherwise we evaluate M1.

• In the above term, let M0 = z0, M1 = z1, and β = cVar. Starting with the store s[x← 0], there is a
unique derivation describing the evaluation of (if read(x)z0z1) := 5. This derivation concludes
s[x← 0],(if read(x)z0z1) := 5⇓⇓⇓1 s[x← 0,z0← 5],skip.

Extending Idealized Algol The remaining rules formalizes our original extension of IQu. Rules about
circuit evaluations are inspired by similar operator of qPCF (see [22]).

It is worth to remark that some of these rules rest on some auxiliary definitions (cf. Definitions 4,
5 and 6). Definition 4 has been formalized only for simplicity reasons: we isolated the function wr that
counts the number of wires of an evaluated quantum circuit (since it is used in many rules of Table 2).
Definitions 5 and 6 formalize the quantum co-processor as an external black-box.

The rules (eu1), (eu2), (eu3) are used to bring the evaluation of a circuit on subexpressions, in order
to reach (possible) side-effects (assignments and measurements) embedded in it. The rule (eu2) exploits
the function wr here below. The rule (eu2) applies only when the wr yields the same value on the two
circuit components. On the other hand, ‖ is not subject to arity restriction (cf. rule (eu3)).

Definition 4. wr is a partial function from circuits to numerals. It is defined by cases as follows:

• wr(Uk) = k;

• if wr(M0), wr(M1) are defined and wr(M0) = wr(M1) then wr(M0::M1) = wr(M0);

• if wr(M0), wr(M1) are defined then wr(M0 ‖ M1) = wr(M0)+wr(M1).

The function is undefined in all other cases.

It is easy to check that evaluated circuits (viz. circuits resulting from the evaluation of circuit ex-
pression) are strings of the grammar C ....= Uk | C::C | C ‖ C for which wr(C) is defined. Note that: (i) if
C is C0::C1, then wr(C0) = wr(C1), cf. rule (eu2); and, (ii) if M is a circuit expression such that wr(M) is
undefined then its evaluation diverges.

We remark that the evaluation of circuits evolves rightward once the possible side-effects in sub-
terms are concerned. We mean that (eu2) and (eu3) update the store s′ by first evaluating the side-effects
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in expression of the left-hand circuit and, then, by evaluating the side-effects in the expression of the
right-hand circuit.

Recent quantum programming languages [8, 22, 23, 27, 28] include the possibility to manipulate
quantum circuits and, in particular, of reversing circuits as originally advocated by [10]. reverse is
expected to produce the adjoint circuit of its input: it is implemented by rewiring gates in reverse order
(by means of rules (er1), (er2) and (er3)) and, then, by replacing each gate by its adjoint. Its definition
rests on the choice of a total endo-function (mapping each gate of arity k to a gate of arity k) that we
denote with the symbol ‡. As usual, we assume that IQu is endowed with a universal set of gates and that
‡ gives back an adjoint gate for each gate. If those latter assumptions do not hold, then ‡ can be chosen
as the identity (so that, reverse does not reverse anymore the corresponding quantum transformations,
but just rewires in reverse order).

The rule (ecsz) yields the arity of the quantum (evaluated) circuit. The rule (ersz) yields the number
of qubits that the quantum register it involves stores.

Quantum State Updates and Quantum Measurements

We refer to [14] as a standard and comprehensive reference about quantum computation. Here we just
recall what we need to introduce the interaction with quantum co-processors. The information of n ∈ N
qubits is usually formalized by means of a normalized vector in H n which is a Hilbert space of dimen-
sion N = 2n with orthonormal basis: N︷ ︸︸ ︷

|0 . . .0︸ ︷︷ ︸
n

〉, . . . , |1 . . .1︸ ︷︷ ︸
n

〉 .

The binary representation x[ of any value x in the interval [0, . . . ,N− 1] identifies a vector in H n. The
binary representation is handy to represent every state |ψ〉 of the Hilbert space as a linear combination:

|ψ〉= c0|0[〉+ . . .+ cN−1|(N−1)[〉

with c0, . . . ,cN−1 ∈C. Quantum transformations and measurement can transform quantum states [34, 35,
13]. We recall that a measurement reduces a quantum state partially, or totally, to a classical state. More
precisely, given a state |φ〉 ∈H n, we can measure a subset of qubits in |φ〉 (i.e. a partial measurement).
The result of the measurement is a residual state vector with a given probability (cf. Definition 6).

Our co-processor is a black-box, so we can formalize the interaction of IQu with the quantum co-
processor in an abstract way. We update the quantum state associated to a variable that can be updated
by means of a function (see the next definition) that maps a circuit in the corresponding unitary transfor-
mation.

Definition 5. Let Circn be the set of evaluated circuits with type cırc, with arity n such that N = 2n. Let
H n be a Hilbert space of finite dimension N. Let {|ϕi〉} be an orthonormal basis on H n and let H n→
H n be the set of unitary operators on H n. The map from evaluated circuits to their corresponding
unitary transformations is cEvaln : Circn→ (H n→H n), which we define as follows:

• cEvaln(Un) ....= U where U : H n→H n is the unitary transformation associated to the gate U;

• cEvaln(C0::C1) ....= cEvaln(C1)◦ cEvaln(C0);

• cEvaln(C0 ‖ C1) ....= cEvaln0(C0)⊗ cEvaln1(C1) where wr(Ci) = ni and n = n0 +n1.

The rules (eqA0) and (eqA1) in Table 2 evaluate two expressions. If these evaluations converge then,
the first one returns a circuit C and the second one returns a quantum variable x . If wr(C) = s](x) then
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the evaluation proceeds by rule (eqA0) that uses the function of Definition 5 to update the corresponding
quantum state; otherwise, the rule (eqA1) forgot the circuit transformations, in order to ensure the type-
safety.

IQu allows for partial measurements of an arbitrary subset with k qubits of a n-qubits state.

Definition 6. For all k,n∈N, let n�k= k%(n+1) and n �k= n−(k%(n+1)), thus n�k + n �k= n where %
denotes the modulo arithmetic operation. If x< 2 j then, we use [ j(x) to denote the binary representations
of x deployed on j bits (i.e. binary digits). Moreover, let S( j) = {[ j(x)|0≤ x < 2 j} and i · j to denote the
juxtaposition of i and j. Following [9], we formalize pMeasn : H n×N−→℘

(
N×H n×R

)
as follows:

pMeasn(|φ〉,k) =





(
m\, |ψm〉, pm

)
∣∣∣∣∣∣∣∣

|φ〉= ∑i∈S(n�k) ∑ j∈S(n�k) ci· j|i〉⊗ | j〉 and,

m ∈ S(n�k) s.t. |ψm〉= ∑ j∈S(n�k)
cm· j√

pm
|m〉⊗ | j〉

where pm = ∑ j∈S(n�k) |ci· j|2





where x\ is the natural number encoded in the sequence of bits x. The first argument of pMeasn is a
quantum state |φ〉 of H n. The second argument is the number of qubits we want to measure, modulo
n+1. The result of pMeasn(|φ〉,k) is a set of triples. The first component of the triple is a partial measure
executed on |φ〉: its value m ∈N is the measurement of its first k%(n+1) qubits. The second component
is the collapsing state (still in H n) and it is obtained from |φ〉 by collapsing its measured sub-state to m.
The third component is the probability of measuring the value m.

We remark that pMeasn(|φ〉,0) measures 0 qbit and pMeasn(|φ〉,n) measures all n qbits.

Example 3. Let us consider the state |φ〉 = 1√
2
|0010〉+ 1√

4
|1011〉+ 1√

4
|0010〉 with 4-qubits in it. Let

us measure its two first quantum bits. We remark that pMeasn(|φ〉,k) = pMeasn(|φ〉,n+ k), so that
pMeas4(|φ〉,2) = pMeas4(|φ〉,6). The partial observation of the two first qbits pMeas4(|φ〉,2) has two

possible outcomes. The first triple is (m0,
√

2
3 |0010〉+

√
1
3 |0001〉, 3

4) where m[
0 = 00. The second one is

(m1, |1011〉, 1
4) where m[

1 = 10.

The rule (eqM) first evaluates two expressions in order to obtain a numeral k and the quantum vari-
able x subject of the measurement. The numeral k (modulo the number of qubits stored in x) identifies
the number of qubits we want to measure. Then, it measures the quantum state that the store associates to
by using the abstract function of Definition 6 which describes the expected behavior of the co-processor
and that works in accordance with quantum computations laws. It is worth to note that the only non-
deterministic rule of IQu evaluation is (eqM); that is, the probability-label in the conclusion of programs
that never perform quantum measurement is 1. We here do not focus on any analysis about the proba-
bilistic behavior of IQu. We simply remark that IQu is an extension of the probabilistic Idealized Algol
in [5] and of the quantum language in [18]. The probabilistic operational equivalence notions can be
easily adapted to IQu.

W.l.o.g., we assume that x 6∈ dom(s) in (eqN). Otherwise s′′�x,V in its conclusion, should be replaced
with s′′[x

n←− s(x)],V in its conclusion. Both (ecN) and (eqN) are the only rules that change the domain
of the store. A programmer can ask for a new quantum co-processor for manipulating a quantum state
by means of (eqN) at run-time. We notice that no limit exists on the number of quantum registers that a
program in IQu manipulates.

Example 4 (Bell state circuit). We show how IQu can encode a circuit description and evaluation.
The Bell states (or EPR states or EPR pairs) are the simplest examples of entanglement of quantum

states [14]. The following circuit applies a Hadamard gate on the top wire followed by a controlled-not:
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It can be used to generate the Bell states by feeding it with a bases state |00〉, |01〉, |10〉, |11〉. For
example, the circuit returns the state β00 =

1√
2
(|00〉+ |11〉) on input |00〉.

Let H1 : cırc be the (unary) Hadamard gate, Id1 : cırc be identity and CNOT2 : cırc be the controlled-
not operator. Let Bell be the closed term (H1 ‖Id1)::CNOT2 that straightforwardly describes the above
circuit. It is easy to check, by typing rules, that ` (H1 ‖ Id)::CNOT2 : cırc.

We can simulate an EPR experiment by using the (closed) term qnew2 r in (rC Bell;meas1r): it
requires that a fresh co-processor (locally, named r) is made available for the computation of its body,
i.e. r C Bell;meas1r. This latter applies the gates in Bell to the state stored in r and then performs a
measurement.
Clearly, `qnew2 r in (rC Bell;meas1r) : Nat and {

(
r, |00〉

)
},rCBell⇓⇓⇓1 {

(
r, 1√

2
(|00〉+ |11〉)

)
},skip.

Moreover, since pMeas2( 1√
2
(|00〉+ |11〉),1) = {(0, |00〉, 1

2),(1, |11〉, 1
2)}, either

{
(
r,

1√
2
(|00〉+|11〉)

)
},meas1r⇓⇓⇓ 1

2
{
(
r, |00〉

)
},0 or {

(
r,

1√
2
(|00〉+|11〉)

)
},meas1r⇓⇓⇓ 1

2
{
(
r, |11〉

)
},1 .

3.1 Type-safety

IQu enjoys of usual properties of programming languages such as Preservation and Progress [24]. These
results follow by adapting, quite straightforwardly, the standard techniques used for PCF and Idealized
Algol.

Theorem 1 (Preservation). Let x1 : cVar . . . ,xn : cVar,z1 : qVar . . . ,zm : qVar ` M : β be a term. Let s be
a store such that {x1, . . . ,xn} ⊆ cVar∩dom(s) and {z1, . . . ,xn} ⊆ qVar∩dom(s).
If s,M⇓⇓⇓α s′,V then x1 : cVar . . . ,xn : cVar,z1 : qVar . . . ,zm : qVar ` V : β .

Proof. The proof is by induction on the derivation concluding s,M⇓⇓⇓α s′,V. The proof immediately holds
on (en), (es), (ep) while it is true on (eβ ), (eY) by arguments related to the inductive hypothesis and the
subject reduction. The inductive hypothesis straightforwardly applies to (eifl), (eifr), so we can skip to
consider the imperative part of the language. If the last rule is one among (esk), (eVar), (ew1), (ew0),
(ecA), (ecR) the proof is once again immediate. If the last rule is (e;), (ecN) it is simple to apply the
inductive argument. The rules (eu1), (er1), (ecsz), (ersz), (eqA0), (eqA1), (eqM) do not pose any specific
difficulties. Finally, the inductive principle applies also to (eu2), (eu3), (er2), (er3) and (eqN).

Theorem 2 (Progress). Let x1 : cVar . . . ,xn : cVar,z1 : qVar . . . ,zm : qVar ` M : β be a term. Let s be a
store such that {x1, . . . ,xn} ⊆ cVar∩dom(s) and {z1, . . . ,xn} ⊆ qVar∩dom(s).

1. If β = Nat and s,M⇓⇓⇓α s′,V then V is a numeral.

2. If β = cırc and s,M⇓⇓⇓α s′,C then C is a string of the grammar C ....= Uk | C::C | C ‖ C such that wr(C)
is defined, and moreover if C has shape C0::C1 then wr(C0) = wr(C1).

3. If β = cVar and s,M⇓⇓⇓α s′,V then V is the name of a classical variable.

4. If β = qVar and s,M⇓⇓⇓α s′,V then V is the name of a quantum variable.

5. If β = cmd and s,M⇓⇓⇓α s′,V then V is skip.
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As for the previous two algorithms, we assume that access to the function f is restricted to
queries to a device corresponding to the transformation Bf defined similarly to before:

Bf |x⟩ |b⟩ = |x⟩ |b ⊕ f(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}.
It turns out that classically this problem is pretty easy given a small number of queries if we

allow randomness and accept that there may be a small probability of error. Specifically, we can
randomly choose say k inputs x1, . . . , xk ∈ {0, 1}n, evaluate f(xi) for i = 1, . . . , k, and answer
“constant” if f(x1) = · · · = f(xk) and “balanced” otherwise. If the function really was constant
this method will be correct every time, and if the function was balanced, the algorithm will be
wrong (and answer “constant”) with probability 2−(k−1). Taking k = 11, say, we get that the
probability of error is smaller than 1/1000. However, if you demand that the algorithm is correct
every time, then 2n−1 + 1 queries are needed in the worst case.
In the quantum case, 1 query will be sufficient to determine with certainty whether the function

is constant or balanced. Here is the algorithm, which is called the Deutsch-Jozsa Algorithm:

H H

H H

Bf

H

❄

H H

|0⟩

|0⟩

|0⟩

|1⟩

M

M

M

There are n bits resulting from the measurements. If all n measurement results are 0, we
conclude that the function was constant. Otherwise, if at least one of the measurement outcomes
is 1, we conclude that the function was balanced.
Before we analyze the algorithm, it will be helpful to think more about Hadamard transforms.

We have already observed that for a ∈ {0, 1} we have

H |a⟩ =
1√
2

|0⟩ +
1√
2
(−1)a |1⟩ ,

which we can also write as
H |a⟩ =

1√
2

∑

b∈{0,1}
(−1)ab |b⟩ .

4

Table 3: Deutsch-Jozsa circuit (left) and the quantum subroutine of th Simon’s algorithm (right).

Proof. All the proofs are by induction on the evaluation, proceeding by cases the subject of the last rule
applied.

1. The proof is standard for the PCF core of IQu. The proof is immediate for (en), (es), (ep), (ecR),
(ecsz), (ersz), (eqM). The proof for (eβ ), (eY), (eifl), (eifr), (e;), (ecN) and (eqN) follows from
the inductive argument. The other cases are not possible because of the typing rules.

2. The proof is immediate for (eu1), (er1). The proof for (eβ ), (eY), (eifl), (eifr), (e;), (ecN), (eu2),
(eu3), (er2), (er3), (eqN) follows from the inductive argument. The other cases are not possible
because of the typing rules.

3. The proof is immediate for (eVar). The proof for (eβ ), (eY), (eifl), (eifr), (e;), (ecN), (eqN)
follows from the inductive argument. The other cases are not possible because the typing rules.

4. The proof is immediate for (eVar). The proof for (eβ ), (eY), (eifl), (eifr), (e;), (ecN), (eqN)
follows from the inductive argument. The other cases are not possible because of the typing rules.

5. The proof is immediate for (esk), (ew0), (ew1), (ecA), (eqA0), (eqA1), The proof for rules (eβ ),
(eY), (eifl), (eifr), (e;), (ecN), (eqN) follows from the inductive argument. The other cases are
not possible because of the typing rules.

4 Examples
Two further examples of programming in IQu follow. One implements Deutsch-Jozsa. The other one is
(a subroutine of) Simon’s algorithm.

Example 5 (Deutsch-Jozsa Circuit). In this example we show how a IQu term can represent an infinite
family of quantum programs which encode Deutsch-Jozsa algorithm [14]. Deutsch-Jozsa is a general-
ization of Deutsch algorithm that, given a black-box B f implementing a function f : {0,1} → {0,1},
determines whether f is constant or balanced1 by means of a single call to B f , something impossible in
the classical case that requires two calls. Deutsch-Josza solves the parametrized version of the original
problem because it applies to functions f : {0,1}n→{0,1}. The leftmost circuit in Table 3 is a possible
implementation of Deutsch-Josza in IQu. When fed with a classical input state |0 . . .0︸ ︷︷ ︸

n

1〉, the output can

be partially measured. Measuring the first n bits tells if the function f is constant or not. If all n qubits of

1 A function is balanced if exactly half of the inputs goes to 0 and, the other half, goes to 1.
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such a unique measurement are 0, then f is constant. Otherwise, i.e., if at least one of the measurement
outcomes is 1, then f is balanced. See [14] for further details.

Let H 1 : cırc be the Hadamard gate and Id 1 : cırc be the Identity gate. We implement Deutsch-Jozsa
in IQu by sequentially composing M1, x and M3, where x : cırc is expected to be substituted by the
black-box circuit that implements the function f , while both M1 and M3 are defined in the coming lines.
• Let Mpar be a term that applied to a circuit C : cırc and to a numeral n puts n+ 1 copies of C in

parallel. It is defined as Mpar = λucırc.λkNat.Y W1uk : cırc→ Nat→ cırc, where W1 is the term
λwσ .λucırc.λkNat.if k (u) (u ‖ (wupred(k))) whose type is σ→σ with σ = cırc→Nat→ cırc.

• The circuit M1 : cırc is obtained by feeding the term Mpar with two inputs: the (unary) Hadamard
gate H 1 and the input dimension rsize(r) where r is a co-processor register with suitable dimen-
sion. It should be evident that it generates n+1 parallel copies of the gate H 1.

• The circuit M3 : cırc can be defined as (MparH
1 pred(rsize(r))) ‖ Id1 : cırc, i.e. it is obtained by

the parallel composition of the term Mpar fed by the gate H 1 and the dimension pred(rsize(r))
(generating n parallel copies of the gate H 1) and a single copy Id1 of the identity gate.

Fixed an arbitrary n, the generalization of Deutsch-Jozsa is obtained by using the quantum variable
binder qnewn r in P that makes the quantum variable r available in P. In this picture, it is necessary
to recall that the local variable declaration qnewn r in P creates a quantum register which is fully

initialized to 0 (Section 2). Since the expected input state of Deutsch-Jozsa is |
n︷ ︸︸ ︷

0 . . .01〉, we define and
use an initializing circuit Minit = (MparId

1 (pred(rsize(r)))) ‖ Not 1 : cırc that complements the last
qubit, setting it to 1. Let DJ+ be the circuit Minit ::M1 ::x::M3. The (parametric) IQu encoding of Deutsch-
Jozsa can be defined as λxcırc. qnew n+1 r in ((rC DJ+);measn r). The program solves any instance
of Deutsch-Jozsa fixed by the value of its dimension parameter n and by providing an encoding of the
function f to evaluate.

Let MB f be a black-box closed circuit implementing the function f that we want to check and let
DJ? be DJ+[MB f /x] namely the circuit obtained by the substitution of MB f to x in DJ+. By means
of the evaluation rule (EqA0), we have {(r, |0 . . .0︸ ︷︷ ︸

n

〉)},r C DJ? ⇓⇓⇓1 {(r, |φ〉)},skip where |φ〉 is the

computational state after the evaluation of DJ?. To (partially) measure the state |φ〉 we use the rule
(eqM) to conclude {r, |φ〉},measnr ⇓⇓⇓1 {r, |φ ′〉},k, where (k, |φ ′〉,1) ∈ pMeasn(|φ〉,n), i.e. k is the
(deterministic) output of the measurement and 1 is the associated probability.

Example 6 (Simon’s algorithm). In [32], Simon exhibited a quantum algorithm that solves in a poly-
nomial time a problem for which the best known classical algorithm takes exponential time [1]. Simons
quantum algorithm is an important precursor to Shors Algorithm for integer factorization (both algo-
rithms are both examples of the Hidden Subgroup Problem over Abelian groups).

We here focus on the the inherently quantum relevant fragment of Simon’s algorithm [9].
Simon’s problem can be formulated as follows. Let be f : {0,1}n→ X (X finite) a black-box function.

Determine the string s = s1s2 . . .sn such that f (x) = f (y) if and only if x = y or x = y⊕ s. Simon’s
algorithm requires an intermediate, partial measure of the quantum state. The measurement is embedded
in a quantum subroutine that can be eventually iterated at most n times, where n is the input size. See [9]
for further details and a careful complexity analysis.

The rightmost circuit of Table 3 implements the quantum subroutine of Simon’s algorithm and has
an encoding in IQu, due to the support of both partial measurement and persistent store of quantum
measurements.
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Simon’s subroutine sequentially composes M1, x and M3, where x : cırc is expected to be substituted
by the black-box circuit that implements the function f (denoted as B f in Table3). M1 and M3 are defined
by letting M1 = M3 = (Mpar(H

1)rsize(r)) ‖ (Mpar(Id
1)rsize(r)) : cırc where: (i) Mpar is the term

defined in Example 5, (ii) r is a quantum register; and, (iii) H 1 : cmd, Id 1 : cmd are the unary Hadamard
and Identity gates, respectively.

Let MSP
+ be the circuit M1::x::M3 : cırc . Let n be the arity of f we want to check. The program that

implements Simon’s subroutine can be λxcırc. qnew 2∗n r in ((rCMSP
+);measn r), where the abstracted

variable x : cırc will be replaced by a suitable encoding of the black-box function that implements f .
Let MB f : cırc be the encoding of the circuit implementing f and let MSP

? be MSP
+[MB f /x], namely

the circuit obtained by the substitution of MB f for x in MSP
+.

It is easy to check that the following evaluation respects the IQu semantics (rule (EqA0)):

{(r, |0 . . .0︸ ︷︷ ︸
2∗n
〉)},rCMSP

? ⇓⇓⇓1 {(r, |φ〉)},skip ,

where |φ〉 is the state after the evaluation of the circuit MSP
?. We can measure the first n quantum bits

as follows: {(r, |φ〉)},measnr⇓⇓⇓α {(r, |φ ′〉)},k, where (k, |φ ′〉,α) ∈ pMeas2∗n(s′(r),n).
The classical output k can be used as a feedback from the quantum co-processor by the classical

program, in this way it can decide how to proceed in the computation. In particular, it can use the
measurement as guard-condition in a loop that iterates the subroutine. So we can easily re-use the
Simon-circuits above as many times as we want, by arbitrarily reducing the probability error.

5 Conclusions and future work

IQu is a higher-order programming language that manages quantum co-processors. We formalize co-
processors as quantum registers that store quantum states. This approach is radically new w.r.t. the
existing proposals due to the following distinctive features: (i) each quantum variable is associated to a
unique quantum state, we can duplicate such a name at will without invalidate the linear constraints that
the quantum state has to satisfy; (ii) we formalize an elegant hiding mechanism that provides a natural
approach to multiple co-processors internalized in the language; and, (iii) the classical programming
constructs included in IQu can be used naturally by a traditional programmer, because they are unaffected
by the generally quite restrictive requirements about the management of quantum data. This approach
introduces a neat separation between the description of the directives to manipulate states in quantum co-
processors from the names for quantum states. The reason is that directives are circuits that we consider
as classical data that are freely duplicable and erasable. Since the wide expressiveness of Idealized Algol
is preserved in IQu, we think we are proposing a programming tool which represent a further step in the
design of quantum programming languages, coherently with directions that Knill advocates in [10].

Current ongoing work focuses on semantics and typing systems of IQu. First, we plan to add depen-
dent types for circuits and registers, in analogy to [22, 23]. Second, we are studying a mature approach to
the representation of quantum circuits by making explicit the linear management of their wires (namely,
a revised and restricted version of the circuits considered in [23]). Third, we are interested in the for-
malization of a call-by-value version of IQu. The goal is to further ease the embedding of quantum
programming in traditional programming frameworks. Fourth, we are interested in developing a deno-
tational semantics for IQu, maybe a not complete one, but suitable to tackle the equivalence between
programs involving (meaningful) quantum, non-deterministic [2, 3], probabilistic and reversible [20, 21]
aspects [4].
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