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Abstract

Networking has turned computers from isolated data
processors into powerful communication and elaboration
devices, calledglobal computers; an illustrative example is
the World–Wide Web. Global computers are rapidly evolv-
ing towards programmability. The new scenario has called
for new programming languages and paradigms centered
around the notions ofmobility and location awareness. In
this paper, we briefly presentX-K LAIM , an experimental
programming language for global computers, and show a
few programming examples.

1. X-K LAIM Overview

X-K LAIM (eXtended Kernel Language for Agents Inter-
action and Mobility) is an experimental programming lan-
guage that can be used for programming distributed sys-
tems and mobile agents interacting through multiple tuple
spaces [7]. The language design philosophy and the un-
derlying computational model, KLAIM , are presented in
[6]. X-K LAIM implementation in Java [1] is briefly de-
scribed in [3] and presented in detail in [2]. In this section
we summarize the main features of the language; in Sec-
tion 2 we briefly introduce the framework for programming
in X-K LAIM and in Section 3 we show three programming
examples.

X-K LAIM programs are structured around the notions of
localities, tuples, tuple spaces, processesandnets.

Localitiescan be thought of as the symbolic names for
sites(or net addresses). X-KLAIM programs are distributed
across sites, and localities allow programmers to focus on
the distributed structure of their programs while ignoring
the precise physical allocations. A distinguished locality,
self, is assumed. Processes can useself to refer to their
current execution site. Logical localities are mapped to sites
by means ofallocation environments.

Tuplesare sequences of information items, calledfields.
We distinguish between actual fields (e.g. expressions,

string values, localities, processes) and formal fields (i.e.
variables). Syntactically, a formal field is written as “! ide”,
where ide is a variable identifier. For instance, the se-
quence("Shop", Q(x,y,10), !Price) is a tuple
with three fields. The first is a string value, the second is
a process (with three parameters), and the third field is a
formal.

Tuple spacesare multisets of tuples.Pattern–matching
is used to select tuples in a tuple space. Two tu-
ples match if they have the same number of fields and
corresponding fields have matching values or variables.
Variables match any value of the same type, and two
values match only if identical. For instance, the tu-
ple ("Camera", "Shop", 300) matches the tuple
("Camera", "Shop", !Price).

Processesare the active computational units; they can be
executed concurrently both at the same site or at different
sites, and can be exchanged as first class data. X-KLAIM

has primitives for variable declaration, assignment, sequen-
tial, conditional and iterative composition.

There are six basic operations that processes can per-
form over tuple spaces and nodes of nets. The operation
which retrieves information from a tuple space has two vari-
ants. Operationin(t)@l evaluates tuplet and looks for a
matching tuplet1 in the tuple space located atl (l is a
locality and gives the logical address of the tuple space).
Whenever the matching tuplet1 is found, it is removed
from the tuple space. The corresponding values oft1 are
then assigned to the variables in the formal fields oft and
the operation terminates. If no matching tuple is found, the
operation is suspended until one matching tuple is available.
Operationread(t)@l differs from in(t)@l because the
tuplet1 selected by pattern–matching is not removed from
the tuple space. Operationout(t)@l adds the tuple result-
ing from the evaluation oft to the tuple space located at
l.

There are two operations that permit sending pro-
cesses for execution on, possibly remote, nodes: operation
eval(P)@l spawns the process with codeP at the node lo-
cated atl; operationgo@l causes the migration of the exe-
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cuting process to locationl where its execution will be re-
sumed. Finally, operationnewloc(u) creates a “new” node
that can be accessed only by referring to localityu.

The addition of tuples to a tuple space never blocks the
execution of processes, while the retrieval of tuples does.
However, programmers have the possibility of specifying
theallowanceof a blocking operation: a parameter can be
added with the maximum waiting time, expressed in mil-
liseconds. If the operation does not complete within the
specifiedtime-out, alternative activities can be performed.
For instance the allowance of an input operation can be pro-
grammed as follows

if in(t)@l within deltathen Pelse Q endif.

In this way, non blocking operations can be simulated by
specifying a zero time-out.

Netsare finite sets of nodes. Eachnodeconsists of a site,
a set of parallel processes, a tuple space and an allocation
environment. It is required that the allocation environment
of a node always maps the reserved localityself to the site
of the node. Processes at each site can potentially access
any other site of the net. However, site visibility is (locally)
controllable via the allocation environment: a sites is visi-
ble at a node only if there is a locality mapped tos by the
local allocation environment.

2. X-K LAIM implementation

The implementation of the programming language
X-K LAIM consists of two layers:

� a Java package, called KLAVA , which contains all the
classes that implement the X-KLAIM runtime system
and operations;

� the X-KLAIM compiler that translates X-KLAIM pro-
grams into Java programs that use the package KLAVA .

The structure of the framework for our language is depicted
in Figure 1. X-KLAIM distribution is available on line at
http://rap.dsi.unifi.it. KLAVA is briefly de-
scribed in [3] and presented in detail in [2].
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Figure 1. The framework for X-KLAIM

Thus, if X-KLAIM source code is stored in the file called
foo, it can be compiled by means of the command

xklaim foo

that will create the file foo.java. On its turn, this last file
can be compiled and executed by means of the standard jdk
commands:

javac foo.java
java foo <host> <port>

where the host and the port number of the Net server, which
is a class in the package KLAVA, are also specified. This
server keeps track of the physical localities of the nodes
which are part of the net and must be started before any
node.

X-KLAIM can be used to write the highest layer of dis-
tributed applications while KLAVA can be used to customize
certain behaviors, by specializing KLAVA classes.

3. Programming Examples

In this section, by means of a few programming exam-
ples, we show how our language can be used to control code
mobility and to coordinate distributed applications 1.

3.1. An Electronic Marketplace

Our first example shows an autonomous X-KLAIM

agent, called Collector, that travels over the nodes of a
net for performing a search and returning the result. A mo-
tivating scenario can be the following: suppose that some-
one wants to buy a specific product at a market made of
geographically distributed shops. To decide at which shop
to buy, she/he activates a migrating agent which is pro-
grammed to find and return the name of the closest shop
(i.e. the shop within the chosen area, determined by a max-
imal distance parameter) with the lowest price.
Collector takes as parameters the product name, the

maximal distance and the locality where the result of the
search must be returned. The agent is sent for execution
at the node containing the marketplace Directory, where it
asks for the list of the shops in the selected shopping area.
Then, Collector migrates to the first shop in the list.
At each shop, Collector checks the price of the wanted
product, possibly updating the information about the lowest
price and the shop that offers it, and migrates to the next
shop in the list. If there are no more shops to visit, Col-
lector sends the result of the search back to the locality
received as parameter. The code of agent Collector is:

rec Collector[ ProductMake : str, distance : int,
retLoc : loc ]

declare
var shopList : TS ;
var nextShop, CurrentShop, thisShop : loc ;

1In the code fragments, comments start with symbol #.



var again : bool ;
var CurrentPrice, newCost : int

begin
# ask for a list of shops that are not
# such far away than a certain distance
out( "cshop", distance )@self;
in( "cshop", !shopList )@self;
again := true ;
CurrentPrice := 0 ;
CurrentShop := self ;
while ( again ) do

# while there are shops in the list
if in( ! nextShop )@shopList within 0 then

thisShop := nextShop ;
go@nextShop ; # migrate to the next shop
if read( ProductMake, ! newCost )@self

within 10000 then
if ( CurrentPrice = 0 OR

newCost < CurrentPrice ) then
# update the best price
CurrentPrice := newCost;
CurrentShop := thisShop

endif
endif

else
again := false ;
# done: send back the results
out( ProductMake, CurrentShop,

CurrentPrice )@retLoc
endif

enddo
end

Notice that Collector uses a variable of type ‘ tuple
space’ to implement the shops list and uses time-outs both
to retrieve the next shop in the list and to look for the price
of the wanted product (this avoids the agent to wait forever
when the shop list is empty or when the shop does not stock
the wanted product).

If we fail to retrieve the information about the desired
product we could also think of leaving a pendingagent
in that site which keeps on searching for that information,
while the main agent visits the other shops in the list:

if read( ProductMake, ! newCost )@self
within 10000 then

...
else

eval(
read( ProductMake, ! newCost )@self ;
out( newCost, self )@PAsite
+
in( "KILL", self )@PAsite

)@self ;
out( thisShop )@pendingAgents ;

endif

The pending agent tries to read (a tuple with) the wanted
information or a termination signal ("KILL"); The opera-
tor for non-deterministic composition, +, is borrowed from
process algebras [11]: P1 + P2 spawns both processes P1

and P2, but only one of the two will continue its execu-
tion. In our case, non-deterministic composition only makes
sense if both processes start with a blocking operation: the
process that firstly finds a matching tuple will continue.

Later, after having visited all shops in its list, the main
agent can go back to the site of the client and recontact the
pending agents (collected in the list pendingAgents) to

see if these agents were able to find the wanted information;
if they still failed to retrieved such information they can be
terminated:

...
# go back to the site of the client
go@retLoc ;
# and recontact pending agents
while ( again ) do
# while there are pending agents
if in( ! shop )@pendingAgents

within 0 then
if read( ! newCost, shop )@PAsite

within 0 then
if ( CurrentPrice = 0 ... ) then

... # update current price and shop
else

out( "KILL", shop )@PAsite
endif

endif
else

again := false ;
enddo ;
# done: communicate the results
out( ProductMake, CurrentShop,

CurrentPrice )@self
...

Notice that a private locality, PAsite, is used in order
to communicate with pending agents, so that there cannot
be any interference with other processes. For instance, the
main agent may have created this locality before leaving the
site of the client.

3.2. Load Balancing

In this second scenario, we figure out remote clients that
send processes for execution to a server node which dis-
tributes the received processes over a group of processors by
using, each time, the idlest one. This is determined by using
the Leaky Bucket Of Credits[14] pattern. When entering the
system, each processor sends a number of ‘credits’ to the
server. This number corresponds to the processor willing-
ness to perform computations on behalf of the server. The
server stores the number of credits in a database and, when
a processor is needed, the one with the highest number of
credits is chosen and the credit number is decreased:

rec DeliverProcess[ ProcessorDB : ts ]
declare
var P : process ;
var HighestCredit, NumOfProcessors,

ProcessorNumber, Credits, i : int ;
var Processor, HighestProcessor, screen : loc ;
var sentProcess : bool

begin
while ( true ) do
in( !P )@self ; # wait for a process
sentProcess := false ;
while ( sentProcess != true ) do

HighestCredit := 0 ;
in( !NumOfProcessors )@ProcessorDB ;
i := NumOfProcessors ;
# search for the processor
# with highest number of credits
while ( i > 0 ) do

read( !Processor, !Credits, i )@ProcessorDB ;
if ( Credits > HighestCredit ) then



HighestCredit := Credits ;
HighestProcessor := Processor

endif ;
i := i - 1

enddo ;
if ( HighestCredit = 0 ) then

# no more credits for any Processor...
# ...wait for new credits
out( "WAIT" )@ProcessorDB ;
out( NumOfProcessors )@ProcessorDB ;
# wait for notification of new credits
in( "WAKE UP" )@ProcessorDB

else
out( eval( P )@HighestProcessor )
@HighestProcessor ;

# update its credits
in(HighestProcessor, HighestCredit,

!i)@ProcessorDB ;
out(HighestProcessor, HighestCredit - 1,

i)@ProcessorDB ;
sentProcess := true ; # found a free Processor
out( NumOfProcessors )@ProcessorDB

endif
enddo

enddo
end

Notice that the server may exhaust all credits; in
that case it waits (out("WAIT")@ProcessorDB) un-
til it is notified that new credits have arrived (in("WAKE
UP")@ProcessorDB). The code executed is:
while( true ) do
in( "SERVER", "CREDIT",

!Processor )@CreditLoc ; # get a credit
out( "Credit from: " )@screen ;
out( Processor )@screen ;
in( !NumOfProcessors )@ProcessorDB ; # locks DB
if in( Processor, !NumOfCredits,

!ProcessorNumber )@ProcessorDB within 0 then
# update this Processor’s credits number
out( Processor, NumOfCredits + 1,

ProcessorNumber )@ProcessorDB ;
if in( "WAIT" )@ProcessorDB within 0 then
# someone’s waiting to be notified
out( "WAKE UP" )@ProcessorDB

endif
endif ; # ignore errors
# release DB
out( NumOfProcessors )@ProcessorDB
enddo

When a processor receives a process, it immediately
starts executing it and, after an “appropriate” waiting, sends
a credit back to the server. This is implemented by the fol-
lowing code fragment
rec ReceiveProcess[ server : loc ]
declare

var P : process ;
var screen : loc

begin
while ( true ) do

in( !P )@self ;
out( "Received Process\n" )@screen ;
eval( P )@self ;
Sleep( 700 ) ; # wait for a while
out( "Sending Credit to Server\n" )@screen ;
# send one credit
out( "SERVER", "CREDIT", self )@server

enddo
end

This pattern is based on the (heuristic) fact that if a pro-
cessor is busy, it cannot send a credit back, or at least it does
not send it immediately.

We want to point out that locality screen is ac-
tually attached to the output device. Hence, opera-
tion out("Received Processnn")@screen corre-
sponds to printing tuple ("Received Processnn")
on the screen. Indeed, I/O operations in X-KLAIM are
implemented as tuple space operations as well. Figure 2
presents a screen shot of the server and three processors.

Figure 2. Load balancing: a screen shot of
the server and some processors

3.3. A Chat System

In our last scenario we have a simple chat system con-
sisting of a few clients and a server. The server registers
the clients and delivers messages to them. Clients pop mes-
sages from the net by executing

while ( true ) do
(
in( "MESSAGE", !message, !from )@self ;
out( "(" )@screen ;
out( from )@screen ;
out( ") " )@screen ;
out( message )@screen ;
out( "\n" )@screen
+
in( "PERSONAL", !message, !from )@self ;
out( "PERSONAL " )@screen ;
out( "(" )@screen ;
out( from )@screen ;
out( ") " )@screen ;
out( message )@screen ;



out( "\n" )@screen
)
enddo

and keep track of the users currently in the chat-room by ex-
ecuting the following code that intercepts server’s messages
of a certain form:

while ( true ) do
(
in( "ENTER", !nickname, !from )@self ;
out( nickname )@screen ;
out( " entered chat\n" )@screen ;
out( nickname )@usersList
+
in( "LEAVE", !nickname, !from )@self ;
out( nickname )@screen ;
out( " left chat\n" )@screen ;
in( nickname )@usersList

)
enddo

Again, we want to point out that both localities screen
and usersList are attached to output devices.

The server receives messages from clients and delivers
these messages to every client:

while ( true ) do
in( "MESSAGE", !message, !from )@self ;
if read( ! num, !sender, from )@usersDB within 0 then

BroadCast( "MESSAGE", message, sender, usersDB )
endif
enddo

When new clients enter the chat, the server accepts them
only if there is no other client with the same nickname, and
in case the access is granted, every client is notified about
the new client; note that the new client is also provided with
the list of the clients currently in the chat.

while ( true ) do
in( "SERVER", "ENTER", !nickname, !from )@self ;
in( ! userNum )@usersDB ; # lock DB
if read( ! num, nickname, !user )@usersDB within 0 then

out( false )@from ;
out( userNum )@usersDB # release DB

else
userNum := userNum + 1 ;
out( userNum, nickname, from )@usersDB ;
out( true )@from ;
out( userNum )@usersDB ; # release DB
SendUserList( from, usersDB ) ;
out( nickname )@users ;
out( "Enetered Chat : " )@screen ;
out( nickname, from )@screen ;
BroadCast( "ENTER", nickname, "server", usersDB )

endif
enddo

A screen shot of a chat session is reported in Figure 3.
The input text areas (with buttons) and the list of currently
connected users are accessible through tuple spaces. The
code that reacts to input events is:

while ( true ) do
in( !message )@messageKeyb ;
# is there someone selected?
out( "getSelectedItem", ID )@usersList ;
in( "getSelectedItem", ID, !selected )@usersList ;
if ( selected != "" ) then

newloc( selectedUsers ) ;
out( selected )@selectedUsers ;
# there’s some one selected
out( "PERSONAL", message, selectedUsers,

self )@server
else
out( "getSelectedItems", ID )@usersList ;
in( "getSelectedItems", ID,

!selectedUsers )@usersList ;
if read( !selected )@selectedUsers within 0 then

# there’s some one selected
out( "PERSONAL", message, selectedUsers,

self )@server
else

# no one selected: broadcast
out( "MESSAGE", message, self )@server

endif
endif

enddo

A string entered in the message input text area is re-
trieved by means of command in( !message )@mes-
sageKeyb, where messageKeyb is the tuple space
“connected” to that field. If a user in the list is selected,
the message is dispatched only to him/her, otherwise it is
delivered to every client. The list of the selected users is
retrieved by means of tuples with string "getSelecte-
dItems" as first field.

4. Related Work

General Magic’s Telescript[15] has been, probably, the
first well-known language designed for network program-
ming with mobile agents. A central concept in Telescriptis
that of place, which in X-KLAIM corresponds to site. Tele-
scriptagents migrate from one place to another by invoking
the go operation, which is similar to the X-KLAIM go op-
eration. The main advantage of X-KLAIM’s approach are
the notions of (logical) locality and allocation environment,
which provide powerful abstractions over the precise phys-
ical distribution of sites. Telescripthas been replaced first
by Odyssey[8], a Java [1] framework that implements all of
Telescriptfunctionalities, and then by ADF [10], an agent
scripting language based on XML.

There are currently a number of other Java frameworks
and libraries that implement useful functionalities for pro-
gramming distributed and mobile applications. The IBM
Aglets [9] is specifically designed for programming mo-
bile agents. Jada [5] implements a dialect of Linda with
multiple tuple spaces; there is neither distinction between
logical and physical addresses, nor dynamic creation of tu-
ple spaces, nor support for process mobility. MARS[4]
adds programmability to tuple spaces by associating reac-
tion rules to communication events.

Other languages which exploit the multiple tuple spaces
paradigm [7] to coordinate mobile agents are Lime[13], that
allows processes to transiently share their own tuple spaces,
and TuCSoN[12], that permits programming the behavior
of tuple spaces in response to communication events.



Figure 3. A chat system: a screen shot of the server and some clients
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