6 research outputs found

    DynaMod: Dynamische Analyse für modellgetriebene Software-Modernisierung

    Get PDF
    Erfolgreiche Softwaresysteme leben lange. Gleichzeitig sind diese jedoch der enormen Geschwindigkeit der Fortentwicklung der technischen Komponenten und Plattformen unterworfen, so dass die Anwendungen technisch sehr schnell altern. Von dieser Alterung sind jedoch nicht nur Programmiertechniken betroffen, sondern auch die Softwarearchitekturen erodieren sehr schnell. Um dieser Alterung entgegenzuwirken, neue technologische Potentiale zu nutzen und auch auf zukünftige Anforderungen flexibel reagieren zu können, ist eine kontinuierliche Modernisierung von Softwaresystemen erforderlich. Bei der Neuentwicklung von Softwaresystemen hat sich mit der Modellgetriebenen Softwareentwicklung (Model-Driven Software Development, MDSD) ein Konzept etabliert, das eine elegante Lösung dieser Problematik bietet: Anstatt das System vollständig in einer technischen Programmiersprache zu entwickeln, werden fachliche Aspekte mittels geeigneter, abstrakter Modellierungssprachen dargestellt. Hierbei handelt es sich oftmals um sogenannte domänenspezifische Sprachen (Domain Specific Languages, DSLs), die speziell auf die betreffende Anwendungsdomäne zugeschnitten sind und dadurch eine knappe und präzise Formulierung der relevanten Sachverhalte ermöglichen. Die Überführung dieser abstrakten Modelle in technische Artefakte, beispielsweise Quellcode in einer Programmiersprache, wird automatisiert durch Codegeneratoren vorgenommen. Auf diese Weise ist es möglich, durch Anpassung der Generatoren die Implementierung der Modelle zu verändern, ohne Modifikationen an den zugrundeliegenden Modellen vornehmen zu müssen. Im Gegensatz zu Neuentwicklungen stehen bei vielen Bestandssystemen keine derartigen Modelle zur Verfügung. Klassische Ansätze der Modernisierung von Bestandssystemen versuchen stattdessen, die im Quellcode unmittelbar codierten Strukturen des bestehenden Systems automatisiert in Quellcode des Neusystems zu überführen. Da durch diesen Ansatz eine Transformation auf sehr elementarer Ebene stattfindet, kann dieser Ansatz der zuvor erwähnten Erosion der Anwendungsarchitektur nicht begegnen. Zudem ist auch die Übertragung elementarer Strukturen zwischen Programmiersprachen nicht trivial; häufig muss in der Zielsprache das originäre Konstrukt mit zusätzlichem Aufwand simuliert werden. Dadurch kommt es zu einer Aufblähung des Quellcodes, was der Wartbarkeit abträglich ist. Zuletzt bleiben technologische Potentiale der Zielplattform häufig ungenutzt, da das ursprüngliche System letztlich strukturuell unverändert übertragen wird. Im DynaMod-Projekt wurde mit der modellgetriebenen Modernisierung (Model Driven Modernisation, MDM) ein neuer, innovativer Ansatz untersucht, Modelle aus bestehenden Softwaresystemen abzuleiten, die in einem MDSD-Prozess genutzt werden können und dem Bestandssystem auf diese Weise die zuvor beschriebene Flexibilität der Implementierung verleiht. Zur Ableitung dieser Modelle werden nicht nur die statischen Strukturen des Softwaresystems betrachtet; ein besonderer Schwerpunkt ist die Nutzung dynamischer Analyseverfahren, d.h. der Untersuchung des Verhaltens des Softwaresystems zur Laufzeit. Diese dynamischen Analysen erlauben Einblick in die tatsächliche Nutzung des Systems durch die Nutzer und produziert somit Informationen, die zur Modernisierung eines Systems unabdingbar sind. Von besonderem Interesse ist eine gleichzeitige Betrachtung statisch und dynamisch gewonnener Informationen, eine sogenannte hybride Analyse. Hierbei entfaltet die Nutzung abstrakter Modelle eine besondere Stärke, da die Modelle eine Plattform bieten, auf der die verschiedenen Daten zusammengeführt werden können. Auch Daten aus anderen Quellen, beispielsweise Expertenwissen, können den Modellen hinzugefügt werden und führen Wissen auf der Semantikebene hinzu, das automatisiert nicht erhoben werden kann. Auf diese Weise zeigen die Modelle ein strukturiertes und umfangreiches Bild der Anwendung, das als Grundlage für eine Modernisierung dienen kann. Neben der eigentlichen Modernisierung lag ein weiterer Fokus auf der Nutzung der gewonnenen Analysedaten zum systematischen Testen der modernisierten Anwendung. Hier bestand das Ziel darin, Methoden zu entwickeln und zu erproben, die Tests zur Prüfung funktionaler und nicht-funktionaler Eigenschaften der Anwendung aus den Analysedaten generieren können

    KomBInoS - Modellgetriebene Entwicklung von multimodalen Dialogschnittstellen für Smart Services

    Get PDF
    Diese Arbeit ist angesiedelt im Kontext der drei Forschungsgebiete Smart Service Welt, Modellgetriebene Softwareentwicklung und Intelligente Benutzerschnittstellen. Das Ziel der Arbeit war die Entwicklung eines ganzheitlichen Ansatzes zur effizienten Erstellung von multimodalen Dialogschnittstellen für Smart Services. Um dieses Ziel zu erreichen, wurde mit KomBInoS ein umfassendes Rahmenwerk zur modellgetriebenen Erstellung solcher Benutzerschnittstellen entwickelt. Das Rahmenwerk besteht aus: (1) einer Metamodell-Architektur, welche sowohl eine modellgetriebene Entwicklung als auch die Komposition von multimodalen Dialogschnittstellen für Smart Services erlaubt, (2) einem methodischen Vorgehen, welches aus aufeinander abgestimmten Modelltransformationen, möglichen Kompositionsschritten und manuellen Entwicklungstätigkeiten besteht, sowie (3) einer integrierten Werkzeugkette als Implementierung der Methode. Es wurde außerdem eine cloud-fähige Laufzeitumgebung zur mobilen Nutzung der so erstellten Benutzerschnittstellen entwickelt. Als Proof-of-Concept werden acht Beispielanwendungen und Demonstratoren aus fünf Forschungsprojekten vorgestellt. Zusätzlich zur Smart Service Welt fand und findet KomBInoS auch Anwendung im Bereich der Industrie 4.0.This work is located in the context of the three research areas Smart Service World, Model-Driven Software Development and Intelligent User Interfaces. The aim of the work was to develop a holistic approach for the efficient creation of multimodal dialogue interfaces for Smart Services. To achieve this goal, KomBInoS was developed as a comprehensive framework for the model-driven creation of such user interfaces. The framework consists of: (1) a metamodel architecture that allows both model-driven development and the composition of multimodal dialogue interfaces for Smart Services, (2) a methodical approach consisting of coordinated model transformations, possible compositional steps and manual development activities, as well as (3) an integrated tool chain as an implementation of the method. Furthermore, a cloud-enabled runtime environment was developed for mobile use of the user interfaces created in this way. As proof-of-concept, eight sample applications and demonstrators from five research projects will be presented. In addition to the Smart Service Welt, KomBInoS was and is also used in the field of industry 4.0

    Integration und Konnexion : Tagungsband zur 26. AKWI-Jahrestagung vom 15. bis 18.09.2013 an der Technischen Hochschule Mittelhessen

    Get PDF
    Das aufgerufene Thema „Herausforderungen an die Wirtschaftsinformatik: Integration und Konnexion“ provozierte Beiträge, die thematisch ein sehr breites Spektrum abdecken. Neben theoretischen Betrachtungen und Definitionen des sicher noch nicht final geprägten Begriffs der Konnexion gab es auch sehr praktische Beiträge wie die Darstellung von konkreten prototypischen Entwicklungsvorhaben. Auch das ist ein Indiz für die lebendige Landschaft der Wirtschaftsinformatik an den deutschsprachigen Hochschulen für Angewandte Wissenschaften

    Echtzeitfähige Softwareagenten zur Realisierung cyber-physischer Produktionssysteme

    Get PDF
    Aktuelle ökonomische Trends, wie die zunehmende Globalisierung und die wachsende Technisierung und Individualisierung vieler Konsumgüter, führen im Hinblick auf die zur Fertigung dieser Güter eingesetzte Automatisierungstechnik zu steigender Komplexität und hohen Flexibilitätsanforderungen. Ein Konzept zur Adressierung dieser Anforderungen ist die Auslegung von automatisierten Anlagen als modulares System flexibel kombinierbarer cyber-physischer Komponenten. Die namensgebende Einheit von mechatronischem Bauteil und lokaler Rechenkapazität ermöglicht Herstellern solcher Komponenten, Softwarebausteine für typische Steuer-, Bedien- oder Diagnoseaufgaben gebrauchsfertig vorzubereiten und so den (Re-)Engineeringaufwand bei der (Um-)Gestaltung des Gesamtsystems deutlich zu reduzieren. Allerdings stellt diese Vision hohe Ansprüche an die zugrundeliegende Softwarearchitektur, die von den derzeit zur Realisierung automatisierter Systeme eingesetzten Technologien nicht vollständig erfüllt werden. Das Paradigma der Agentenorientierung ist ein tragfähiger Ansatz zur Realisierung solcher lose gekoppelten verteilten Systeme und stellt durch leistungsfähige Interaktionsmechanismen sowie die enge Integration von semantischem Wissen zusätzliche Funktionalität in Aussicht: Als Agenten ausgelegte Komponenten könnten auch die logische Vernetzung untereinander während der Inbetriebnahme, nach Umrüstungen oder in Reaktion auf Betriebsstörungen teilweise selbst übernehmen. Dadurch ergeben sich Fähigkeiten wie Selbstkonfiguration und Selbstregeneration, die in der Fachliteratur unter dem Begriff Self-X zusammengefasst werden. Die fehlende Echtzeitfähigkeit, insbesondere in Bezug auf besagte Interaktionsmechanismen, hat jedoch bisher die Einsetzbarkeit von Agentensystemen in der Automatisierung limitiert und die Ausschöpfung der genannten Potentiale behindert. Deshalb wird in dieser Dissertation eine echtzeitfähige Laufzeitumgebung für Softwareagenten entworfen und anschließend die Überarbeitung bestehenden Kommunikationsmechanismen im Hinblick auf ihre Echtzeitfähigkeit vorgenommen. In diesem Kontext wird mit dem Konzept der semantischen Adressierung eine vielfältig einsetzbare Möglichkeit geschaffen, Nachrichten an ausgewählte Gruppen von Agenten mit bestimmten, semantisch beschriebenen Eigenschaften zur verschicken. Die dabei zur Wissensrepräsentation genutzten Taxonomie-Bäume bieten ein für viele Aufgabenstellungen ausreichendes Maß an Ausdrucksstärke und erlauben zudem die Verarbeitung unter harten Echtzeitbedingungen. Abschließend werden die geschaffenen Mechanismen in einem Antwortzeitmodell abgebildet, mit dem das rechtzeitige Reagieren eines Agentensystems auf lokal oder verteilt zu behandelnde Ereignisse überprüft und nachgewiesen werden kann. Damit wird ein Hauptkritikpunkt von Agentensystemen adressiert, was zu einer nachhaltigen Steigerung der Akzeptanz des Agentenparadigmas führen könnte. Während große Teile der erarbeiten Lösung als allgemeingültige Grundlagenforschung verstanden werden können, wird bei der Formulierung von Anforderungen, der Darstellung von Beispielen und der Erläuterung von Entwurfsentscheidungen immer wieder auf automatisierungstechnische Belange Bezug genommen. Außerdem wird am Ende der Arbeit eine kritische Bewertung der Ergebnisse vor dem Hintergrund eines möglichen Einsatzes in zukünftigen Automatisierungssystemen durchgeführt und damit das Gesamtbild abgerundet

    Modellbasierte Entwicklung und Optimierung flexibler zeitgesteuerter Architekturen im Fahrzeugserienbereich

    Get PDF

    Modellgestützter Entwurf von Feldgeräteapplikationen

    Get PDF
    Die Entwicklung von Feldgeräten ist ein äußerst komplexer Vorgang, welcher auf vielen Vorrausetzungen aufsetzt, diverse Anforderungen und Randbedingungen mitbringt und bisher wenig beachtet und veröffentlicht wurde. Angesichts der fortschreitenden Digitalisierung drängen immer mehr Anbieter auf den Automatisierungsmarkt. So sind aktuell zunehmend Technologien und Ansätze aus dem Umfeld des Internet of Things im Automatisierungsbereich zu finden. Diese Ansätze reichen von Sensoren ohne die in der Industrie üblichen Beschreibungen bis hin zu Marktplätzen, auf denen Integratoren und Anwender Softwareteile für Anlagen kaufen können. Für die neuen Anbieter, die häufig nicht aus dem klassischen Automatisierungsgeschäft kommen, sind die bisher bestehenden Modelle, Funktionalitäten, Profile und Beschreibungsmittel nicht immer leicht zu verwenden. So entstehen disruptive Lösungen auf Basis neu definierter Spezifikationen und Modelle. Trotz dieser Disruptivität sollte es das Ziel sein, die bewährten Automatisierungsfunktionen nicht neu zu erfinden, sondern diese effektiv und effizient in Abhängigkeit der Anforderungen auf unterschiedlichen Plattformen zu verwenden. Dies schließt ihre flexible Verteilung auf heterogene vernetzte Ressourcen explizit ein. Dabei können die Plattformen sowohl klassische Feldgeräte und Steuerungen sein, als auch normale Desktop-PCs und IoT-Knoten. Ziel dieser Arbeit ist es, eine Werkzeugkette für den modellbasierten Entwurf von Feldgeräteapplikationen auf Basis von Profilen und damit für den erweiterten Entwurf von verteilten Anlagenapplikationen zu entwickeln. Dabei müssen die verschiedenen Beschreibungsmöglichkeiten evaluiert werden, um diese mit detaillierten Parameter- und Prozessdatenbeschreibungen zu erweitern. Außerdem sollen modulare Konzepte genutzt und Vorbereitungen für die Verwendung von Semantik im Entwurfsprozess getroffen werden. In Bezug auf den Geräteengineeringprozess soll der Anteil des automatisierten Geräteengineerings erweitert werden. Dies soll zu einer Flexibilisierung der Geräteentwicklung führen, in der die Verschaltung der funktionalen Elemente beim Endkunden erfolgt. Auch das Deployment von eigenen funktionalen Elementen auf die Geräte der Hersteller soll durch den Endkunden möglich werden. Dabei wird auch eine automatisierte Erstellung von Gerätebeschreibungen benötigt. Alle diese Erweiterungen ermöglichen dann den letzten großen Schritt zu einer verteilten Applikation über heterogene Infrastrukturen. Dabei sind die funktionalen Elemente nicht nur durch die Gerätehersteller verteilbar, sondern diese können auch auf verschiedenen Plattformen unterschiedlicher Gerätehersteller verwendet werden. Damit einher geht die für aktuelle Entwicklungen wie Industrie 4.0 benötigte geräteunabhängige Definition von Funktionalität. Alle im Engineering entstandenen Informationen können dabei auf den unterschiedlichen Ebenen der Automatisierungspyramide und während des Lebenszyklus weiterverwendet werden. Eine Integration diverser Gerätefamilien außerhalb der Automatisierungstechnik wie z. B. IoT-Geräte und IT-Geräte ist damit vorstellbar. Nach einer Analyse der relevanten Techniken, Technologien, Konzepte, Methoden und Spezifikationen wurde eine Werkzeugkette für den modellgestützten Entwurf von Feldgeräten entwickelt und die benötigten Werkzeugteile und Erweiterungen an bestehenden Beschreibungen diskutiert. Dies Konzept wurde dann auf den verteilten Entwurf auf heterogener Hardware und heterogenen Plattformen erweitert, bevor beide Konzepte prototypisch umgesetzt und evaluiert wurden. Die Evaluation erfolgt an einem zweigeteilten Szenario aus der Sicht eines Geräteherstellers und eines Integrators. Die entwickelte Lösung integriert Ansätze aus dem Kontext von Industrie 4.0 und IoT. Sie trägt zu einer vereinfachten und effizienteren Automatisierung des Engineerings bei. Dabei können Profile als Baukasten für die Funktionalität der Feldgeräte und Anlagenapplikationen verwendet werden. Bestehende Beschränkungen im Engineering werden somit abgeschwächt, so dass eine Verteilung der Funktionalität auf heterogene Hardware und heterogene Plattformen möglich wird und damit zur Flexibilisierung der Automatisierungssysteme beiträgt.The development of field devices is a very complex procedure. Many preconditions need to be met. Various requirements and constrains need to be addressed. Beside this, there are only a few publications on this topic. Due to the ongoing digitalization, more and more solution providers are entering the market of the industrial automation. Technologies and approaches from the context of the Internet of Things are being used more and more in the automation domain. These approaches range from sensors without the typical descriptions from industry up to marketplaces where integrators and users can buy software components for plants. For new suppliers, who often do not come from the classical automation business, the already existing models, functionalities, profiles, and descriptions are not always easy to use. This results in disruptive solutions based on newly defined specifications and models. Despite this disruptiveness, the aim should be to prevent reinventing the proven automation functions, and to use them effectively, and efficiently on different platforms depending on the requirements. This explicitly includes the flexible distribution of the automation functions to heterogeneous networked resources. The platforms can be classical field devices and controllers, as well as normal desktop PCs and IoT nodes. The aim of this thesis is to develop a toolchain for the model-based design of field device applications based on profiles, and thus also suitable for the extended design of distributed plant applications. Therefore, different description methods are evaluated in order to enrich them with detailed descriptions of parameters and process data. Furthermore, c oncepts of modularity will also be used and preparations will be made for the use of semantics in the design process. With regard to the device engineering process, the share of automated device engineering will be increased. This leads to a flexibilisation of the device development, allowing the customer to perform the networking of the functional elements by himself. The customer should also be able to deploy his own functional elements to the manufacturers' devices. This requires an automated creation of device descriptions. Finally, all these extensions will enable a major step towards using a distributed application over heterogeneous infrastructures. Thus, the functional elements can not only be distributed by equipment manufacturers, but also be distributed on different platforms of different equipment manufacturers. This is accompanied by the device-independent definition of functionality required for current developments such as Industry 4.0. All information created during engineering can be used at different levels of the automation pyramid and throughout the life cycle. An integration of various device families from outside of Automation Technology, such as IoT devices and IT devices, is thus conceivable. After an analysis of the relevant techniques, technologies, concepts, methods, and specifications a toolchain for the model-based design of field devices was developed and the required tool parts, and extensions to existing descriptions were discussed. This concept was then extended to the distributed design on heterogeneous hardware and heterogeneous platforms. Finally, both concepts were prototypically implemented and evaluated. The evaluation is based on a two-part scenario from both the perspective of a device manufacturer, and the one of an integrator. The developed solution integrates approaches from the context of Industry 4.0 and IoT. It contributes to a simplified, and more efficient automation of engineering. Within this context, profiles can be used as building blocks for the functionality of field devices, and plant applications. Existing limitations in engineering are thus reduced, so that a distribution of functionality across heterogeneous hardware and heterogeneous platforms becomes possible and contributing to the flexibility of automation systems
    corecore