2,301 research outputs found

    Word-length optimization of folded polynomial evaluation

    No full text
    Published versio

    PaReNTT: Low-Latency Parallel Residue Number System and NTT-Based Long Polynomial Modular Multiplication for Homomorphic Encryption

    Full text link
    High-speed long polynomial multiplication is important for applications in homomorphic encryption (HE) and lattice-based cryptosystems. This paper addresses low-latency hardware architectures for long polynomial modular multiplication using the number-theoretic transform (NTT) and inverse NTT (iNTT). Chinese remainder theorem (CRT) is used to decompose the modulus into multiple smaller moduli. Our proposed architecture, namely PaReNTT, makes four novel contributions. First, parallel NTT and iNTT architectures are proposed to reduce the number of clock cycles to process the polynomials. This can enable real-time processing for HE applications, as the number of clock cycles to process the polynomial is inversely proportional to the level of parallelism. Second, the proposed architecture eliminates the need for permuting the NTT outputs before their product is input to the iNTT. This reduces latency by n/4 clock cycles, where n is the length of the polynomial, and reduces buffer requirement by one delay-switch-delay circuit of size n. Third, an approach to select special moduli is presented where the moduli can be expressed in terms of a few signed power-of-two terms. Fourth, novel architectures for pre-processing for computing residual polynomials using the CRT and post-processing for combining the residual polynomials are proposed. These architectures significantly reduce the area consumption of the pre-processing and post-processing steps. The proposed long modular polynomial multiplications are ideal for applications that require low latency and high sample rate as these feed-forward architectures can be pipelined at arbitrary levels

    Optimized Entanglement Purification

    Get PDF
    We investigate novel protocols for entanglement purification of qubit Bell pairs. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits achieving higher success rates and better final fidelities than what is currently available in the literature. We provide a software tool for analytical and numerical study of the generated purification circuits, under customizable error models. These new purification protocols pave the way to practical implementations of modular quantum computers and quantum repeaters. Our approach is particularly attentive to the effects of finite resources and imperfect local operations - phenomena neglected in the usual asymptotic approach to the problem. The choice of the building blocks permitted in the construction of the circuits is based on a thorough enumeration of the local Clifford operations that act as permutations on the basis of Bell states

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Ideal-Theoretic Explanation of Capacity-Achieving Decoding

    Get PDF
    In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes

    Programming models, compilers, and runtime systems for accelerator computing

    Get PDF
    Accelerators, such as GPUs and Intel Xeon Phis, have become the workhorses of high-performance computing. Typically, the accelerators act as co-processors, with discrete memory spaces. They possess massive parallelism, along with many other unique architectural features. In order to obtain high performance, these features must be carefully exploited, which requires high programmer expertise. This thesis presents new programming models, and the necessary compiler and runtime systems to ease the accelerator programming process, while obtaining high performance

    Randomly punctured Reed--Solomon codes achieve list-decoding capacity over linear-sized fields

    Full text link
    Reed--Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is determining if Reed--Solomon codes can optimally achieve list-decoding capacity. A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed--Solomon codes are combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured Reed--Solomon codes over an exponentially large field size 2O(n)2^{O(n)}, where nn is the block length of the code. A natural question is whether Reed--Solomon codes can still achieve capacity over smaller fields. Recently, Guo and Zhang showed that Reed--Solomon codes are list-decodable to capacity with field size O(n2)O(n^2). We show that Reed--Solomon codes are list-decodable to capacity with linear field size O(n)O(n), which is optimal up to the constant factor. We also give evidence that the ratio between the alphabet size qq and code length nn cannot be bounded by an absolute constant. Our proof is based on the proof of Guo and Zhang, and additionally exploits symmetries of reduced intersection matrices. With our proof, which maintains a hypergraph perspective of the list-decoding problem, we include an alternate presentation of ideas of Brakensiek, Gopi, and Makam that more directly connects the list-decoding problem to the GM-MDS theorem via a hypergraph orientation theorem
    • …
    corecore