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ABSTRACT

Sabne, Amit J. PhD, Purdue University, August 2016. Programming Models, Com-
pilers, and Runtime Systems for Accelerator Computing. Major Professor: Rudolf
Eigenmann.

The last decade has seen a growing trend in the use of accelerators for high-

performance computing. Accelerators are computationally powerful, massively paral-

lel co-processors. Examples of accelerators include NVIDIA CUDA GPUs [1], AMD

GCN GPUs [2], Intel Xeon Phi [3] (Many Core Processors), and Cell Broadband En-

gine [4]. Accelerators gain most of their performance through massive parallelism. A

key challenge hindering the widespread use of accelerators is their programmability.

The architectural complexity of these accelerators necessitates explicitly parallel pro-

gramming models and creates a multitude of tuning avenues that must be explored to

obtain high performance. This thesis proposal offers improved programming models,

compilation techniques, and runtime systems to make accelerator programming easy,

while bettering/retaining the performance.

In this abstract, we first briefly describe some of these accelerator architectures.

Due to the massive parallelism, accelerators typically rely on explicitly parallel pro-

gramming models, which we describe next. Lastly, the abstract provides an overview

of open issues in accelerator programming, and the contributions made by this thesis

to address them.

Accelerator Architectures

Graphical Processing Units (GPUs) were the first accelerator architectures to

have received widespread attention. The advances in GPU technologies led to their

instruction set to resemble the ones of CPUs, creating an opportunity for general-

purpose computations on GPUs [5]. A primary motivation for using GPUs for general-
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purpose computation was the massive parallelism imbibed in them. GPUs work

in an SIMD fashion, where thousands of threads can co-exist on the chip. GPU

architectures comprise many light-weight cores, which are computationally much less

powerful than the CPU cores. However, due to a large number of such cores, the

achievable throughput was much higher than the CPU.

This throughput-oriented paradigm also gave birth to other accelerator architec-

tures, such as Cell Broadband Engine and Intel Xeon Phi processors. These archi-

tectures were immediately adopted by the high-performance computing community

and many supercomputers started to gain a high percentage of their computational

power through the accelerators.

Typical high-performing accelerators are connected as coprocessors to the host

CPU in the system, through a PCIe bus. The main memory of the accelerator is

separate from the CPU. Further, the accelerator architectures possess specialized

memory spaces that can be used to boost the program performance.

Programming Accelerator Architectures

The architectural distinctions of accelerators necessitate specialized programming

models. First, to utilize the massive parallelism, explicitly parallel programming

models, such as CUDA [1] and OpenCL [6] are necessary. In order to obtain accel-

eration, the programmer must identify the compute-intensive, parallel code regions

and offload them on to the accelerator as kernels. Secondly, since accelerators have

discrete memories, input data must be copied from the CPU memory into the acceler-

ator, and vice-versa for the output data. These data transfers need to be handled by

the programmer. Both CUDA and OpenCL offer necessary APIs for data transfers.

Recently, there have been attempts to unify the CPU-accelerator memory spaces.

Although such mechanisms improve accelerator programmability, they suffer on the

performance, owing to page-level data handling. For HPC uses, programmers still

manually perform the data transfers. Lastly, these architectures have unique memory
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hierarchies. CUDA, which is specific to NVIDIA GPUs, provides explicit function-

alities to utilize on-chip memories, such as shared, texture and constant memories.

It also offers architecture- specific functions for using vector units, performing warp-

operations etc.

Despite the availability of CUDA and OpenCL, programming accelerator archi-

tectures remains difficult and error prone, owing to the complexity of these mod-

els. Programmers need to rewrite their applications to make use of the accelerators.

To obtain better programmability, researchers created more user-friendly, high-level

programming models, such as OpenMPC [7] and hiCUDA [8]. The former offers

an OpenMP to CUDA translation system with additional, CUDA-specific directives

added to OpenMP. The latter presents directives to be placed on a serial program,

and a compiler that translates the annotated program into a CUDA program. Such

high-level programming models have now been standardized. OpenACC [9] is the

first such OpenMP-like programming standard for accelerators. Commercial compil-

ers [10–12] are presently available for OpenACC. Recently published OpenMP 4.0 [13]

extends the OpenMP standard to accelerators.

Thesis Contributions

While the high-level programming models offer better programmability, program-

mers still face several issues. We highlight such open issues below, and briefly sum-

marize our contributions to address them.

• Program tuning : Several factors affect the program performance in accel-

erator programs. These factors include compiler optimizations (e.g. parallel

loop interchange, data transfer reduction) and user specifications (e.g. num-

ber of threads to use, CPU-accelerator synchronization) [14–16]. Due to the

presence of a large number of these factors, achieving the best performance

requires tuning, which may be performed by an automatic tuning system, or

manually by the programmer. In Chapter 1, we evaluate the effects of compiler
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optimizations on OpenMP to CUDA translation. This work is built on top of

the OpenMPC [7] system, which comprises an auto-translator from OpenMP to

CUDA. OpenMPC offers many compiler optimizations and an auto-tuning sys-

tem for the same. This auto-tuner performs a pruned-exhaustive search among

the possible program configurations. Chapter 1 will present a more advanced

tuning approach that reduces the search time-complexity to a polynomial time,

and finds better program configurations than the pruned-exhaustive search ap-

proach. With this new tuning method, we analyze the performance effects of

each compiler optimization.

• Limited accelerator memory sizes : Accelerators typically use non-

virtualized memories. Therefore, the programmer must ensure that the data

size used by the problem fits inside the main memory. Otherwise, the program-

mer must carry out manual computation blocking so that the data fits within

the accelerator memory. The available automatic solutions, such as zero-copy

memory, or unified virtual memory [1], require excessive CPU-GPU communica-

tion while the kernel is in flight, lowering the performance. Chapter 2 addresses

this issue of limited memory spaces on accelerators. It presents a novel com-

piler technique, called Computation Splitting or COSP [17] that automatically

splits the computation so as to make the problem fit in the accelerator memory,

without lowering the performance.

• Multi-GPU scaling : Many supercomputers comprise of nodes containing

multiple GPUs. The previous solutions to exploit all GPUs of a node required

manual computation partitioning [18, 19]. There existed one automatic ap-

proach that provides a single device image for all GPUs [20]. However, the

computation size in such an approach is restricted by the combined memory of

all the GPUs. The COSP technique in Chapter 2 generates data-independent

subproblems. The chapter describes how these subproblems can be mapped to

multiple GPUs attached to a node, overcoming the memory size barrier.
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• Computation-communication overlap : As the input data must be copied

in the accelerator memory before the computation, and the output data must

be copied out from the accelerator memory to the CPU memory, an opportunity

arises to overlap this communication with the kernel computations. Program-

mers must manually obtain this overlapping behaviour. Chapter 2 will present

an automatic mechanism to perform such pipelining and a runtime tuning mech-

anism to obtain a high performing pipeline stage size. This is in contrast to

previous approaches [21–24] where pipelining was exploited on the GPU to hide

device memory latency by copying data into the on-chip programmer-managed

cache first.

• Accelerator clusters : MapReduce is a popular programming framework for

distributed computing. However, when it comes to accelerator clusters, avail-

able systems either use CPUs [25–28], or GPUs [29–31]. Since CPUs perform

better on IO-intensive applications, while GPUs perform better on the compute-

intensive ones, a need of a framework that uses both CPUs and GPUs arises to

cater to all possible workloads. Chapter 3 will present HeteroDoop, a MapRe-

duce programming system that exploits both CPUs and GPUs in a cluster.

HeteroDoop [32] programs require simpler modifications to already available

CPU-only MapReduce programs, unlike other GPU-MapReduce frameworks

that require explicit parallelization or custom APIs [30,33,34].

• Control flow divergence : The SIMD execution model employed by accel-

erators mandates the set of threads/lanes in the SIMD to execute the same

instruction. If the threads encounter a branch wherein some threads take the

if while others take the else path, then the execution of these two diver-

gent outcomes gets serialized. The lockstep execution can only resume once

the immediate post-dominator (IPDOM) of the divergent branch is reached.

Such divergence can worsen the program performance under the presence of

“unstructured” control flow [35]. Unfortunately, there is little formalization
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available on what unstructured control flow means. Chapter 4 will formalize

the notion of structured control flow graphs. The chapter will also present

an unstructured-to-structured conversion algorithm which eliminates the expo-

nential code expansion possible in previous approaches [36–40]. Our control

flow structuring approach improves divergent code execution on SIMD units, to

which no software solution was previously available [35].
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1. EFFECTS OF COMPILER OPTIMIZATIONS IN

OPENMP TO CUDA TRANSLATION

1.1 Introduction

OpenMP is an established standard in parallel programming and is of particular

interest for today’s and future multicores. There is a large and growing code base, the

standard is widely understood and is well documented, and there exists a multitude

of compilers and supporting tools. These features are of paramount importance to

the programmer. They help reduce the difficulty and the cost of developing parallel

software significantly.

The number of new parallel languages that have been proposed in even just the

past two decades is massive. The question of cost versus benefit arises with every such

proposal. Unfortunately, few quantitative analyses are available that would allow one

to find out if the same objective could have been achieved with an existing language

standard and what are costs and benefits of new versus old, in terms of performance

and productivity. Obviously, any new language will start from zero in building a code

base, compilers, tools, and programming experience.

A new language development has emerged in the context of new graphics process-

ing units, or accelerators. These devices offer promising avenues towards low-energy,

highly parallel computation for a class of parallel applications. Among the proposed

programming models are CUDA and OpenCL, both of which allow the programmer to

access architecture-specific features. These architecture-specific interfaces, however,

significantly depart from the parallel programming semantics offered by standards,

such as OpenMP. The cost/benefit question arises anew.

Previous work has addressed this cost/benefit question [41]. This work provided

quantitative comparisons of hand-written CUDA programs versus equivalent pro-
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grams written in OpenMP and translated to CUDA. Using an automatic translator

and tuning system, called OpenMPC, we were able to achieve performance results

that came close to hand-coded CUDA on a large set of benchmarks. The contribution

of the present chapter is to address three open issues of that work.

• The previous work provided overall performance numbers. The breakdown into

individual techniques was not yet available. In this chapter, we quantify the

contributions of each individual technique. Of particular interest in this anal-

ysis is also the importance of CUDA-specific OpenMP extensions, which are

generated automatically in the OpenMPC system.

• A key component of the OpenMPC is its tuning system, which empirically

searches through a large space of optimization variants and tries to find the best.

The initial OpenMPC system used an inefficient exhaustive search mechanism.

In this work, we use an improved Iterative Elimination (IE) [42] based tuning

system that significantly reduces the tuning time.

• A problem faced by all empirical tuning systems is the variability of execution

times, even for the same program executed repeatedly on the same platform in

single-user setup. This effect makes it difficult to correctly measure the impact

of an optimization technique. A common approach is to average over multiple

runs, increasing tuning time. We have developed a new method that identi-

fies optimizations that are vulnerable to runtime variations and uses increased

measuring time only for those.

The remainder of the chapter is organized as follows. Section 1.2 describes Open-

MPC and its available optimization options. It also identifies opportunities for im-

provement in the present OpenMPC tuning system. Section 1.3 explains our tuning

mechanism for finding the best tuning options. Individual performance analysis is

shown in Section 1.4. Section 4.9 presents the takeaways from this chapter.
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Figure 1.1.: OpenMPC workflow

1.2 Overview of OpenMPC System

OpenMPC [41] is a programming framework that generates CUDA programs from

OpenMP programs. The framework includes an extended OpenMP programming

interface, a source-to-source translator, and an automatic tuning system. The pro-

gramming interface extends OpenMP with a new set of directives and environment

variables (henceforth referred to as CUDA extensions1) for controlling CUDA-related

parameters and optimizations. OpenMP translates standard OpenMP programs by

applying a set of program transformations and by inserting CUDA extensions. Open-

MPC includes an empirical tuning system that automatically generates, prunes, and

searches the optimization space and determines the best combination of optimiza-

tions. Fig. 1.1 shows the workflow of the OpenMPC translator. Fig. 1.2 displays a

small example of the OpenMPC translated CUDA code for Jacobi benchmark.

1.2.1 Optimization options

There are 18 optimization options available in OpenMPC, grouped into 4 cate-

gories: (1) Program environment configuration, (2) Data caching strategy, (3) Data

offloading optimizations, and (4) Code transformation. Table 1.1 shows all optimiza-

1Our CUDA extensions are not meant to be a proposal for extending the OpenMP standard. They
represent a research framework for exploring questions such as those addressed in this chapter.
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Listing 1.1: Source code in OpenMP

1 #pragma omp parallel for private(i, j)
2 for (i = 1; i <= SIZE; i++){
3 for (j = 1; j <= SIZE; j++){
4 a[i][j]=(b[i-1][j]+b[i+1][j]+b[i][j-1]+b[i][j+1])/4.0f;
5 }
6 }

Listing 1.2: Resulting CUDA kernel from OpenMPC translation

1 __global__ void kernel(...){
2

3 int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));
4 int _gtid = (threadIdx.x+(_bid*blockDim.x));
5 tid = (_gtid+1);
6

7 if (tid<=SIZE){
8 for (i=1; i<=SIZE; i ++ ){
9 a[i][j] = ( b[i-1][tid]+ b[i+1][tid] +

10 b[i][tid-1] + b[i][tid+1] )/4.0F;
11 }
12 }
13 }

Figure 1.2.: OpenMPC translation example
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tion options in OpenMPC that are considered for individual optimization analysis.

The first three groups are supported by our CUDA extensions. The fourth group is

applied through source-to-source transformation in the OpenMPC compiler.

1.2.2 Improving the OpenMPC Tuning System

To analyze the effects of individual tuning options, we make use of the OpenMPC

system, which allows us to implement the method in [43]: Using the highest-optimized

program variant as a baseline, this method iteratively switches off one optimization

at a time, to measure its effect in terms of the slowdown incurred. To this end, we

have identified a number of open issues in OpenMPC, which we address in the present

work.

Advanced Optimization Space Navigation:

The goal of an empirical tuning system is to generate a set of optimizations that

yield best performance. In OpenMPC, 18 optimizations are available as compiler

flags. Finding the best combination from these flags is non-trivial, because each

optimization can improve or worsen the performance of a program, depending upon

its characteristic and depending on other present optimizations.

The initial OpenMPC system uses simple exhaustive search to navigate the space

of optimization variants. This space can be very large (for n on-off optimization op-

tions, the size is 2n). OpenMPC reduces this space using aggressive tuning heuristics,

which we refer to as pruned exponential search (PE). PE does the program analysis to

prune the tuning space by removing the inapplicable or non-beneficial tuning options

for the particular program. It then runs exhaustive search over the remaining tuning

options. However, two issues remain: The resulting search space can still be large

(which was acceptable for obtaining the original research results [41], but can be too
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Table 1.1.: Optimization options in OpenMPC

Program Environment Configuration
Compiler Flags Description

cudaThreadBlockSize=N Set the default CUDA thread block size
assumeNonZeroTripLoops Assume that all loops have non-zero iterations

Data Caching Strategy

Compiler Flags Description

shrdSclrCachingOnReg Cache shared scalar variables onto GPU register
shrdArryElmtCachingOnReg Cache shared array elements onto GPU register
shrdSclrCachingOnSM Cache shared scalar variables onto GPU shared mem-

ory
prvtArryCachingOnSM Cache private array variables onto GPU shared mem-

ory
shrdArryCachingOnTM Cache 1-dimensional, R/O shared array variables onto

GPU texture memory
shrdSclrCachingOnConst Cache R/O shared scalar variables onto GPU constant

memory
shrdArryCachingOnConst Cache R/O shared array variables onto GPU constant

memory

Data Offloading Optimization

Compiler Flags Description

useMallocPitch Use cudaMallocPitch() for 2-dimensional arrays
useGlobalGMalloc Allocate GPU variables as global variables

which provides more scope for reducing memory transfers
globalGMallocOpt Apply CUDA malloc optimization for globally allocated

GPU variables
cudaMallocOptLevel=N Set CUDA malloc optimization level for locally allocated

GPU variables
cudaMemTrOptLevel=N Set CUDA CPU-GPU memory transfer optimization level

Code Transformation
Compiler Flags Description

localRedVarConf=N Configure how local reduction variables are gen-
erated for array-type variables

useMatrixTranspose Apply Matrix Transpose optimization
useParallelLoopSwap Apply Parallel Loop Swap optimization
useUnrollingOnReduction Apply Loop Unrolling for in-block reduction
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Table 1.2.: Variations on GPU Programs

Benchmark Relative Standard Deviation Relative Standard Deviation Ratio
for Memory Transfer Time (A) for Computation Time (B) (A/B)

NW (8192) 0.2395 0.0128 18.71
Jacobi (12288) 0.7394 0.0001 7394
CG (W) 0.2562 0.0706 3.63
FT (W) 0.1521 0.0112 13.58

long for end users). In addition, sometimes the aggressive pruning heuristics may

eliminate the best optimization combination.

Runtime Variations – A Key Problem of Auto-Tuning Systems:

In computer systems, unpredictable system variations during program execution

are usual. They arise due to OS overheads, other running processes, or underlying

hardware operations. Although these variations do not affect the correctness of the

program, they can impact its execution time. We define this type of variation as

runtime variation. Although runtime variation does not disrupt program execution,

in auto-tuning system, runtime variation can be problematic. Since the auto-tuning

systems improves the program based on execution time, the variation can cause some

beneficial optimizations to be removed from the tuning result and vice versa.

One of the significant observations made during our study was the fact that most

of the variations on GPU programs are due to the variations in memory transfer

times. Since GPU and CPU do not share a common address space, memory transfers

form an essential part of GPU programs. GPUs are generally connected to the CPU

using a PCIe bus, thereby leading to a variability in the memory transfer times.

Table 1.2 compares the relative standard deviation in computation time and the

memory transfer time. Relative standard deviation is a percentage of the ratio of

standard deviation to the mean of the sample. It acts as an indicator as of how the
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variations relate to the average. From Table 1.2, we can see that the relative standard

deviations in memory transfer can be as much as 7000 times the relative standard

deviations in computation time.

To alleviate runtime variations, one can average execution times across multiple

runs. However, multiple executions can increase the tuning time significantly. The

PE algorithm does not take runtime variations into consideration, and therefore is

more prone to erroneous final option combinations on GPU programs.

Objectives of this Work:

Our goal is to determine the impact of individual optimization techniques in the

OpenMP to CUDA translator. To this end, we use the improved OpenMPC trans-

lation and tuning system, which can find the best combination of optimization tech-

niques for each program. In doing so, it also reports the performance difference made

by individual optimizations. We proceed as follows.

• We modify a previously described Iterative Elimination (IE) [42] tuning algo-

rithm to make it applicable to GPU programs.

• We describe a generic tuning methodology to deal with memory transfer time

based variations of GPU applications.

• With the best tuning option combination generated by the above tuning system,

we analyze the impact of each tuning option or compiler flag.

The next section presents the new tuning algorithm. Section 1.4 presents results

obtained using this methodology.
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1.3 Modified IE (MIE) Algorithm for OpenMPC

To address the issues presented in Section 1.2.2, we propose a Modified IE (MIE)

algorithm, which is a tuning algorithm based on Iterative Elimination (IE) [42]. In

this section, we briefly describe IE and then present our MIE algorithm.

1.3.1 Iterative Elimination

The IE algorithm is shown in Algorithm 1. IE begins by switching on all optimiza-

tion options, and then iteratively measures their effect by switching off one tuning

option at a time. Next, it removes the one with the most negative effect. The process

repeats until all remaining optimizations show non-negative effects. The complexity

of IE is O(n2), compared to O(2n) of the PE algorithm.

Algorithm 1: Iterative Elimination Algorithm

Input: n = Number of Tuning Options (F1, F2, ... Fn)
Output: B = {F1 = 1, F2 = 1, ..., Fn = 1} B is a set of combination options

1 i← 1; NextB ← B;
// NextB stores the fastest combination in every iteration

2 for (i = 1→ n) do
3 for (j = 1→ n) do
4 if (Fj 6= 0) then

// Compares the runtimes

5 NextB = min(NextB, B with Fj = 0);
// Termination: No Fi has changed from 1 to 0

6 if (NextB = B) then
// None of the switched on options has a negative

impact

7 break;

8 B ← NextB;
// Start next iteration with a new baseline NextB

Another tuning method, Combined Elimination (CE) [42] performs the option

removal in a more aggressive fashion, under the assumption that some interferences
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between options are negligible. The tuning time of CE is known to be shorter than IE.

However, since the performance of IE is known to be the best amongst the available

tuning algorithms [42], we chose IE as our base algorithm. Other algorithms could

be adapted in place of IE in our system [44, 45]. Unlike the work in [46], which

uses optimal ordering of compiler flags, IE tries to find the best tuning options set,

irrespective of the order.

1.3.2 Grouping of different Optimization Options

To deal with the problem of runtime variations, a direct implementation of IE

would require multiple runs and averaging before eliminating an optimization op-

tion. This would lead to high tuning times, because the runtime variations of GPU

programs can be large.

Comparing only the computation runtime instead of the total execution time can

eliminate the effect of memory transfer variations on tuning. To achieve that, the

behavior of memory transfers must be the same between two comparable candidate

combinations of IE. If this invariant is maintained, the memory transfer time can be

subtracted from total execution time (e.g., by obtaining these times from available

hardware profilers) an optimization technique is evaluated by IE.

An intuitive strategy would be to apply techniques that affect memory transfers

(i.e. data offloading optimizations shown in Table 1.1) in a first tuning phase, aver-

aging the results over multiple runs. In a second phase, the remaining optimization

options are tuned, whereby transfer times are removed from execution times. In this

way, most of the runtime variations in the GPU program can be filtered out; a single

run suffices.

The split into the two phases is beneficial only when the data offloading opti-

mizations do not interfere with other. That is not always the case. For example,
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Table 1.3.: Grouping of OpenMPC Options for Tuning (MemTR = Memory Transfer
Optimization, Comp = Computation Optimization). Options in paranthesis imply
multi-values options

Phase Type Tuning Options

1 MemTR useGlobalGMalloc, globalGMallocOpt,
cudaMallocOptLevel=1, cudaMemTrOptLevel=2

2 Comp useUnrollingOnReduction, useLoopCollapse,
useMatrixTranspose, useParallelLoopSwap,

prvtArryCachingOnSM, localRedVarConf=0,
assumeNonZeroTripLoops

3 Dependent useMallocPitch
4 Independent ArrayCache = {shrdArryElmtCachingOnReg,

shrdArryCachingOnTM, shrdArryCachingOnConst}
ScalarCache = {shrdSclrCachingOnReg,

shrdSclrCachingOnSM, shrdSclrCachingOnConst}

useMallocPitch, which manages 2D array allocation and transfer, may or may not be

beneficial depending on the stride of 2D array accesses. Since useParallelLoopSwap

transforms the array accesses in the code, useMallocPitch may improve performance

if useParallelLoopSwap is applied.

To address this problem, MIE uses a third phase, in which memory transfer op-

timizations that are affected by computation optimization options are placed. This

phase also averages runtimes over multiple runs. In a fourth phase, MIE tunes sep-

arately those optimizations that do not interact with others. It uses a simple, fast

tuning algorithm for this phase.

Phase 1 contains all memory transfer-based (data offloading) optimizations, ex-

cept useMallocPitch. Phase 2 contains program environment configuration and code

transformation options that impact the computation. Phase 3 contains dependent

optimizations. With the currently available tuning options in OpenMPC, Phase 3

contains only useMallocPitch. This technique impacts the data offloading (mem-

ory transfers), but is dependent upon computation technique useParallelLoopSwap.
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Phase 4 contains data caching optimizations. They are independent of the techniques

in the other groups.

1.3.3 MIE Running Strategy

With the above groups of optimizations in place, we now describe the MIE run

strategy.

1. Data Offload Optimizations: First the algorithm runs IE with the Phase 1

optimizations as the input set. Since these options all impact memory transfers,

they are vulnerable to high runtime variations. The MIE algorithm runs each

IE stage multiple times and considers the average execution times for making

elimination decisions.

2. Computation Optimizations: The configuration formed in Phase 1 is the

baseline configuration. MIE now appends Phase 2 options to this configura-

tion and runs IE over all new options. While making comparisons between two

combinations, the memory transfer time is removed from the comparison, effec-

tively considering only the computation time. This helps reduce the effect of

variations to a large extent. This stage requires calculation of the time spent

in copying the data between CPU and GPU memories. This is accomplished

by using the CUDA profiler. Using this method, MIE avoids averaging over

multiple runs, substantially reducing the time required.

3. Dependent Optimizations: In the combination formed after Phase 2, MIE

includes Phase 3 option i.e. useMallocPitch and averages the runtimes over

multiple executions to see if this option is beneficial and should be included.

(Should there be more tuning options added in Phase 3, MIE would run IE on

this group, with averaging runtimes over multiple executions.)
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4. Independent Optimizations: Since this group does not depend upon other

options, MIE iteratively runs each Phase 4 option on top of the configuration

formed in Phase 3, and adds the best value of each multi-valued option to the

final optimization configuration.

1.4 Performance Analysis

1.4.1 Setup

We ran both the PE and the MIE algorithm on NVIDIA Quadro FX 5600 GPU

device, which has 16 multiprocessors (SMs) clocked at 1.35GHz and 1.5 GB of mem-

ory. Each SM consists of 8 SIMD processing units (SPs) and has 16 KB of shared

memory. The host CPU is a 3-GHz AMD dual-core processor with 12 GB memory.

The OpenMPC generated CUDA programs were compiled using the NVIDIA CUDA

Compiler (NVCC) with option -O3.

We demonstrate the effectiveness of our tuning system on NAS OpenMP Parallel

benchmarks, Rodinia OpenMP benchmarks and some scientific computation applica-

tions. As described in 1.3.3, we run Phase 1 and Phase 3 options 5 times each and

use the average runtimes for IE. For other groups, we compare only the computation

times for IE runs.

1.4.2 Performance Comparison Between Pruned Exhaustive and Modi-

fied IE Algorithms

To evaluate the performance of the MIE algorithm, we show in Figure 1.3 the

speedup of benchmarks achieved with MIE, normalized with respect to the PE algo-

rithm. MIE performs better than the PE algorithm in most of the cases, averaging

to a 11% performance improvement over PE. In fact, MIE outperforms Pruned Ex-
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Figure 1.3.: Program Speedups of Modified IE relative to Pruned Exhaustive Algo-
rithm

haustive method substantially for the Hotspot and LUD benchmarks. This effect is

due to the over-pruning occurring in the PE method, thereby missing out on the best

option combination.

Another important observation is the fact that MIE performs marginally better (2

to 5 %) compared to Pruned Exhaustive method on most other programs where over-

pruning does not happen. This is counter-intuitive since PE is expected to search

through all possible choices. It is explained due to the excessive memory transfer

based variations, wherein the best option combination produced by the Pruned Ex-

haustive method may not be the optimal, rather it is the one that suffered the least.

Table 1.4 compares the tuning time required by the Pruned Exhaustive algorithm

against the tuning time required by the MIE algorithm. The advantage of IE in terms

of tuning time is evident from this table.

1.4.3 Impact of Individual Optimization Options

As stated earlier, to analyze the effect of individual tuning options in OpenMPC,

we follow the method from [43], wherein we turn off one optimization at a time
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Figure 1.4.: Individual impacts of the 18 optimizations. Bars show normalized per-
formance of the benchmarks after disabling the selected optimization. A large drop
in performance indicates high impact.
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Table 1.4.: Tuning Time Comparison of Pruned Exhaustive Vs. Modified IE Algo-
rithm

Benchmark Tuning Time (mins)
Pruned Exhaustive Tuning Modified IE Tuning

SRAD 538 23
FT (S) 2345 23
CG (S) 1108 17
CFD (97k) 1083 210
FT (A) 3680 97
Jacobi (12288) 98 55

from the best tuning options set, so as to understand the effects of the individual

optimization in terms of the slowdown incurred. The bigger the slowdown, the larger

is the benefit of the optimization. We analyze the results in Fig 1.4 with respect to

the techniques shown in Table 1.1.

Some benchmarks like SRAD, Jacobi, SPMUL depict high benefits obtained due

to compiler techniques. However, some others like Backprop show relatively small

effects. The effectiveness of our Modified IE tuning algorithm can be gauged from

the observation that switching off an individual technique with respect to the best

tuning optimization set has never improved the performance beyond 3%, which can

be attributed to the computation variations.

Memory transfer optimization-based techniques show high impact on many GPU

programs. Similarly, the techniques that change data access strides can be highly

beneficial since they help coalesce memory accesses. useParallelLoopSwap and use-

MatrixTranspose are some such techniques.

Exploiting GPU specific memories for caching both the scalar and array variables

can be highly beneficial. GPUs have on-chip cache and shared memories and off-

chip constant and texture memories. The current OpenMPC setup tries to put all

the variables (either scalar or arrays) on one of these memories, depending upon the
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tuning option provided. However, since these memories may not be large enough to

hold the complete data sets, the compilation of such programs may fail (in which

case the current tuning system ignores the option). We foresee a methodology to

adaptively exploit all the GPU specific memories.

1.5 Chapter Takeaways

We have analyzed the performance of GPU optimization techniques present in

the OpenMPC translation and tuning system. Our main findings indicate that the

compiler engineer who wishes to translate a program in a given language into a CUDA

program should consider the following optimizations:

1. Memory transfer optimization-based techniques are essential for offloading-

based programming models.

2. Exploiting special memories on GPUs can yield significant speedups.

3. Transformations that change the memory access strides are of great importance

in GPU programs.

4. Tuning is important. With its help, standard OpenMP programs can be trans-

lated effectively and efficiently into CUDA/GPU code.

5. Explicit GPU programming (without tuning support) needs to make use of

CUDA-extensions (above items 1, 2) for best performance. It is important for

emerging standards, such as OpenMP (4.0) [13] and OpenACC [47] to support

these features. Above items 1 and 3 should be applicable to a wide range of

accelerators. Item 2, however, is CUDA specific, but is necessary to obtain best

performance.
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We also proposed a new empirical tuning algorithm for GPU programs called

Modified IE (MIE), which significantly reduces tuning time. MIE addresses and

is able to tolerate runtime variations caused by memory transfer between GPU and

CPU. As a result, MIE performs 11% better, on average, than the original OpenMPC

tuning system [41], while maintaining polynomial tuning time.

One key learning from this chapter is that the cost of data transfers can be detri-

mental to the overall accelerator program performance. Pipelining is a well known

technique to mitigate this cost, as the computation can be overlapped with the data

transfers. We address this issue in the next chapter.
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2. SCALING LARGE-DATA COMPUTATIONS ON

MULTI-GPU ACCELERATORS

2.1 Introduction

Accelerators have become the forerunners of high-performance computing. Many

supercomputers now use GPUs as accelerators. Among many open issues are those

related to programming models and program optimization. This chapter addresses

some such issues.

First, even though accelerators can be used as independent computational de-

vices, they commonly serve as co-processors. Eligible computation is offloaded from

the CPU - either explicitly by the programmer, or implicitly by the system soft-

ware/hardware. Offloading involves data transfer from the CPU to the accelerator,

which causes significant overhead – up to 95% of the program execution time, in our

experiments. The primary contribution of this chapter is an automatic pipelining

generation technique that reduces this overhead. To do so, the pipelining technique

overlaps data transfer with computation. It creates opportunities for such overlap

by transforming the computation into multiple chunks and transferring the data for

chunk ‘(i+1)’ while executing chunk ‘i ’. Our technique contrasts with those that

reduce data transfer overhead by eliminating redundant memory transfers [7,48] and

by advancing or delaying the data copy operations [49].

Second, the pipelining technique builds on an enabling technique that deals with

another important issue in accelerators: The accelerator’s memory space, which is

discrete from the host CPU’s, is limited in size; computation that fits in the CPU’s

memory may exceed the accelerator’s capacity. The simple-most form of the tech-
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nique splits computation into blocks that fit in memory. The same technique can be

a key enabler for optimizations that tend to increase memory demand. Examples of

such optimizations are data privatization, prefetching, and our pipelining technique.

The difficulty in designing the technique is to model the increase in memory demand

and determine the maximum chunk size that fits in the device memory. While most

common accelerator benchmarks use data sizes that fit in memory, researchers have

encountered the issue of limited memory sizes as well. For example, Liang [50] et al.

discuss an example of an out-of-card FFT computation; a set of map-reduce based

systems [29, 30] need to handle large data sizes that can exceed the GPU memory

size. With the evolution of big-data systems, we expect the computing focus to move

to large datasets. Our technique is the first to automatically tailor computation to

the available memory space while considering optimizations that increase memory

demand. The ability of splitting the computation also provides an opportunity to

perform multi-device mapping of the program. Multiple GPUs attached to a single

computation node are becoming an architectural reality, especially in supercomput-

ing environments. Several techniques have been proposed [18, 19] to port custom

applications to multi-GPUs. Our framework automates this process.

The third issue addressed in this chapter is the programmability of accelerators.

An important issue is the design of a suitable high-level programming model, with

one of the key questions being what architectural details need to be exposed to the

programmer. Among many proposed models [1, 7–9, 51, 52], recently, the idea of us-

ing OpenMP extended with directives for accelerators, has gotten traction. We will

integrate and evaluate our techniques in one of the most advanced compilers that has

been pursuing this idea, OpenMPC [7]. In doing so, we introduce a novel component

that addresses a fundamental problem in high-level programming environments for

accelerators: The architectural complexity of the CPU-Accelerator systems exacer-
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bates the difficulty of advanced compilers in making optimization decisions that need

runtime information. These architectural intricacies are detrimental to the portabil-

ity of the code. An optimally tuned program on one platform may perform poorly on

another [15]. The most advanced compilers make use of offline tuning techniques to

obtain the optimal choices of system-specific parameters. By contrast, we describe an

adaptive runtime tuning mechanism that learns the architectural details in the initial

phase of the program in a short time and determines the most suitable pipeline stage

size that is used in the rest of the computation to attain best performance.

To summarize, in this chapter we make the following contributions:

• We design and implement an automatic pipelining technique that reduces CPU-

accelerator data transfer overhead by overlapping the data transfers with com-

putation. We will demonstrate the efficacy of this technique by displaying the

performance benefits achieved on a set of benchmarks, including kernels and ap-

plications. On average, pipelining achieves a speed-up of 1.49x over the baseline

OpenMPC codes.

• We design and implement an automatic computation splitting technique, COSP,

that fits large computations into the accelerator’s device memory. In doing so,

it considers program transformations that increase memory demand, including

our pipelining technique. We will show that large, out-of-card data sizes that

can not be otherwise handled by OpenMPC/CUDA can be successfully run.

• We describe a low-overhead (less than 3% execution time) adaptive runtime

tuning method that chooses a good split size for a problem and the underlying

hardware so as to approach the best pipelining performance.

• We describe a system containing our novel techniques that automatically trans-

lates an input OpenMP code into a multi-device CUDA code that can employ
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multiple GPUs attached to the same host node. We evaluate the performance

of benchmarks executed on multi-GPU systems.

The remainder of the chapter is organized as follows : Section 2.2 provides back-

ground information about GPGPU programming and OpenMPC. Section 2.3 analyzes

the benefits of COSP and describes implementation details. Section 2.4 explains how

pipelining and multi-GPU code generation are enabled by computation splitting and

provides compiler design details for both. Section 2.5 describes the proposed adaptive

runtime tuning system. Finally, Section 2.6 evaluates our system on a set of bench-

marks from the StreamIt benchmark suite, CUDA SDK and Rodinia benchmarks.

2.2 Preliminaries

This section describes the GPU system architecture and the CUDA programming

model. We also describe the OpenMPC compiler system that translates an input

OpenMP program into CUDA code.

2.2.1 GPUs and CUDA

Typically, one or more GPUs are connected to a Host CPU via a PCIe bus. The

CPU can offload computation kernels onto the GPU(s). Since the CPU and the GPU

have different memories, input data must be copied from the CPU to the GPU before

the start of a kernel. This operation is called copy-in. Similarly, copying the outputs

of a kernel from the GPU to the CPU is termed copy-out. CPU-GPU data transfers

are initiated and governed by the CPU.

GPUs are SIMD units with a large number of processors. NVIDIA GPUs have

termed these processors Streaming Multiprocessors or SMs, each being an SIMD pro-

cessor. CUDA [1] is a multi-threaded, SIMD programming model. The threads on
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the GPU device are divided into ThreadBlocks. Each ThreadBlock consists of a set of

threads, each executing the same code. When the CPU launches a kernel, it prescribes

the number of threads in a ThreadBlock along with the number of ThreadBlocks to

launch. The set of ThreadBlocks launched by a kernel is called a grid.

CUDA has a complicated memory hierarchy. Each thread has its own local mem-

ory and a set of registers. Local memory contains a stack which is primarily used to

spill the registers. A ThreadBlock has its on-chip local storage in the form of shared

memory. The off-chip global memory is accessible to all threads in the grid. Further,

on-chip constant and texture memories can act as read-only buffers.

Various factors impact the performance of a GPU kernel: coalesced memory

accesses, register and shared memory usage, number of threads in a ThreadBlock,

shared memory bank conflicts etc., making it difficult to predict the GPU perfor-

mance [53–55]. To obtain good performance results, tuning is essential for GPU

programs.

2.2.2 OpenMPC

OpenMPC [7] is a programming framework that synthesizes CUDA programs from

OpenMP codes. The framework includes an extended OpenMP programming inter-

face, a source-to-source translator [56], and an automatic compiler-assisted tuning

system. The programming interface extends OpenMP with a new set of directives

and environment variables for controlling CUDA specific parameters and optimiza-

tions. OpenMPC applies various code transformations and CUDA extensions to the

input OpenMP code.

We chose OpenMPC as the underlying compiler for our system implementation

because of the following reasons : (a) OpenMP-like programming models are becom-

ing popular, especially with the advent of OpenACC [9]. The OpenMP standard itself
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is in the process of being extended to support accelerator devices [57]. OpenMPC is

a research framework pursuing the same idea. (b) OpenMPC automatically performs

many safe and beneficial code transformations so as to coalesce memory accesses and

map data to different kinds of memories available on the GPU. OpenMPC also imple-

ments sophisticated CPU-GPU live variable analysis to remove or hoist the redundant

memory transfers. (c) Considering the complexity of the CUDA programming model,

its not always possible for a compiler to find the performance optimal CUDA param-

eters. OpenMPC provides OpenMP extensions for the programmer that can be used

to set the CUDA related parameters. (d) The OpenMPC translator is realized on top

of the Cetus [58] compiler, which provides an efficient implementation infrastructure.

2.3 COSP - An Enabler Technique

COSP, or Computation Splitting, divides a given problem into smaller, homoge-

neous subproblems. It acts as an enabler technique to other optimizations. In this

section, we describe the nature of COSP and the optimizations it enables. While

doing so, we establish an analytical upper bound on the size of a problem that can

be run on an accelerator with limited memory. We provide a lower bound on the

number of splits that the problem must undergo in order to fit in the device memory.

We also describe the implementation of COSP.

2.3.1 Catering to Arbitrary Device Memory Sizes

COSP reduces the runtime device memory requirement of a problem; every sub-

problem requires less memory than the overall computation. We now analyze the

factors that impact the device memory requirement. The total device memory re-

quirement of a kernel depends upon the following:
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Figure 2.1.: COSP - MemSplittable data can be split since only a part of them is
required per chunk of computation, MemFused is the part of the data accessed by
every chunk.

• COSP converts a large problem into smaller subproblems. An example of such

operation is shown in Fig. 2.1. In this example, data A, B, and C are a part

of OpenMP ‘shared’ data objects i.e. all threads work on a single copy of the

data. In the original computation, data A and B are copied-in. The kernel uses

these elements to generate data C, which is copied out of the device memory.

The kernel, even after splitting, requires all data A for generating even a part

of data C; we call A MemFused type of data. On the other hand, data B and

C can be split, and each subproblem only requires a part of these elements. We

call B and C MemSplittable data. If the splitting is perfect, amongst numSplits

subproblems, the original runtime device memory space for the shared data goes

down from (MemSplittable + MemFused) to (MemSplittable/ numSplits +

MemFused). However, a subproblem may also use the data of another (mostly

neighboring) subproblem. We model this extra data requirement overhead by

SplitOverlap.

• Every OpenMP Private data element in the input OpenMP program has to

be allocated per thread in the computation. If the size of the private element
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is small (e.g. scalars), the element is generally stored in the device register.

However, if the size of the private element is large (e.g. for arrays), the element

needs to be placed in the local memory of the thread. Therefore, if P is the size

of all such elements together and NumThreads is the number of total threads,

the device memory requirement is P × NumThreads. Further, if the problem

is split amongst numSplits subproblems, the device memory requirement for

the private data would be P ×NumThreads/numSplits.

• Memory prefetching is an important technique in accelerator programming. De-

vice memory prefetching advances the copy-in operation for the ready data so

as to overlap the copying time with the CPU computation. Similarly, for the

data that is not immediately required by the CPU, the copy-out can be delayed

while overlapping the copy-out time with the CPU computation. Both these

optimizations require device memory to hold the buffered data. We denote this

size as PrefBuffer.

To ensure that the device memory, DevMem, can fit all of the above components,

the following constraint must be met:

DevMem ≥
(
P × NumThreads

numSplits
+ PrefBuffer+

MemFused +
MemSplittable

numSplits
+ SplitOverlap

)

⇒ numSplits ≥

d (MemSplittable + P ×NumThreads)

(DevMem− PrefBuffer −MemFused− SplitOverlap)
e

(2.1)

Equation 2.1 provides a lower bound on the number of splits required on the in-

put problem to make it fit in the device memory. Equation 2.1 also indicates that
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the benefits of COSP are multi-faceted. COSP can enable an accelerator program

to run successfully even when the OpenMP private elements push the device mem-

ory requirements beyond available. COSP can also partition the computation into

appropriate subproblems so as to enable prefetching in the device memory.

2.3.2 COSP Through a Code Example

Listing 2.1: Input Scalar Product OpenMP Code

#pragma omp parallel for shared(D, E, F) \\

private(vec, pos, sum)

for(vec = 0; vec < NUM_VECTORS; vec++) {

sum = 0;

for(pos = 0; pos < NUM_ELEMENTS; pos++) {

sum += D[NUM_ELEMENTS * vec + pos ] *

E[NUM_ELEMENTS * vec + pos];

}

F[vec] = (float)sum;

}

Section 2.3.1 provided a discussion on the lower bound of the number of splits

required by the computation so as to make it fit in the device memory. We now

describe a mechanism to achieve COSP through a compiler transformation. If all

the parameters in Eq.2.1 are known, the compiler can choose the number of splits

required to make the computation fit in the device memory. As we would show later

in Section 2.4, COSP creates an opportunity for pipelining the subproblems. The

number of subproblems required to obtain efficient pipelining can be less than the
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upper bound provided by Eq.2.1. Our compiler therefore abstracts out the number

of splits as a variable.

OpenMP programs usually encapsulate parallelism using large for loops. We

introduce the COSP mechanism through an example of Scalar Product code, as shown

in Listing 2.1. This program generates scalar products for a set of vectors. The split

version of the code generated by our compiler is shown in Listing 2.2. The input

parallel for loop is split into many small loops. The upper bound for the inner for

loop is set to be SplitSize. SplitSize is left as a parameter that can be set by the user

or the automated tuning system. The inner loop body represents a subproblem of the

initial large problem. We hereafter refer to the inner loop as a Split and the outer

loop as Split Loop.

Listing 2.2: Split Parallel Region for Scalar Product

for (split=0; split < NUM_VECTORS/SplitSize; split = split+1) {

#pragma omp parallel for shared(D, E, F)

private(vec, pos, sum) shared(split, SplitSize)

for (vec = 0; vec < SplitSize; vec++ ) {

sum=0;

for (pos = 0; pos < NUM_ELEMENTS; pos++ ) {

sum+=(D[(pos + (NUM_ELEMENTS *

(vec + split*SplitSize)))]*

E[(pos + (NUM_ELEMENTS * (vec + split*SplitSize))]);

}

F[(vec + split*SplitSize)] = (float)sum;

}

}
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For the Scalar Product program, the total number of splits created is equal to

NUM VECTORS/SplitSize. This number needs to be larger than the numSplits

calculated by Eq. 2.1 in Section 2.3.1 so as to meet the device memory size constraint.

The number of splits in the problem is controlled by the SplitSize. Further, SplitSize

governs the data size required by the kernel as well as the number of GPU threads

synthesized by the OpenMPC system. Note that the COSP version in Listing 2.2 does

not explicitly formulate the data partitions per Split. We defer the data partitioning

analysis till the next section.

COSP can lead to extra data copy overheads in cases where the computation

splitting is not perfect. As an example, consider stencil programs where computing

each output requires an array element along with its neighbors. In such cases, COSP

would require to account for the storage of boundary elements of each split, increasing

the amount of overall data copied from the CPU to the GPU.

Since the subproblems provided by COSP are devoid of data dependences, they

can be run in parallel. COSP can therefore generate opportunities for pipelining the

slow host-device memory channel in an accelerator-based system. It also offers an

easy- to-distribute program structure to the compiler system, which can then map

subproblems to different devices.

2.4 Pipelining

Pipelining, in general, is a throughput-enhancing technique that overlaps the ex-

ecution phases of one computation with another so as to make the best use of the

available computational resources. We introduce an example of pipelining in Fig. 2.2.

After performing COSP, one Split’s kernel execution is overlapped with the next

Split’s memory copies; i.e. while the first subproblem kernel is working on the al-

ready copied-in data B, the copy-in for the next subproblem kernel’s data B is taking



30

Figure 2.2.: Pipelining Opportunity Generated by COSP : Individual Splits are in-
dependent; they can be pipelined

place. It is important to note that to achieve successful pipelining, there should

be two buffers present for each MemSplittable data so as to obtain the necessary

prefetching.

In the case at hand, the three resources that we propose to pipeline include the

CPU-GPU channel, GPU-CPU channel (if different than the first) and the GPU

computational units. This section focuses on the pipelining code generation of the

compute-split code. It also explains the strategy to perform multi-device code map-

ping and implementation mechanisms adopted by our compiler.

2.4.1 Achievable Speedup from Pipelining

Maximum attainable speedup from pipelining is restricted by the number of

pipelining stages. In the proposed scheme, there are three pipeline stages : (i) Mem-

ory channel between the CPU and the GPU (ii) Memory channel between the GPU

and the CPU (iii) GPU Computation cores. Hence, the pipelining speedup can be at
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most three. Most new GPUs support overlaps between the computation and trans-

fers. Some advanced GPUs, such as Tesla M2090, also support overlaps in the memory

copy operations in different directions, since they have different channels for copying

in each direction. For GPUs without dedicated copy engines, the speedup would be

restricted by two.

Speedup =
tcompute + tMemFused + tco + tci

tMemFused + max(tcompute, tco, tci)
(2.2)

where

tcompute = Time spent in kernel computation

tMemFused = Time spent in transferring MemFused data

tci = Time spent for copy-in of MemSplittable data

tco = Time spent for copy-out of MemSplittable data

Equation 2.2 provides an upper bound on the pipelining speedup, assuming the

COSP overhead is zero. It also assumes the presence of different memory copy chan-

nels for copy-in and copy-out operations.

All outputs of a parallel program fall under the MemSplittable category unless

they are reductions. Although COSP can always ‘split’ the outputs of a program, it

may not be always able to do so for its inputs, if the inputs fall under the MemFused

category. The worst case scenario would be a program wherein computation of a

single output element requires input data of type MemFused that has a size larger

than the device memory. In such a case, algorithmic change in the program structure

is the only alternative.
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Figure 2.3.: Overall System Flow : Darker boxes indicate the base OpenMPC passes.

2.4.2 Compiler Organization

Figure 2.3 shows the structure of our compiler. It builds on OpenMPC, repre-

senting the program using Cetus IR [58]. After parsing the source code, OpenMPC

system-internal decision making is performed to identify the kernels to be offloaded to

the GPU. COSP is performed next on the kernel regions recognized by the OpenMP

analyzer. For each eligible kernel region, tuning code is generated. The pipelining

pass is applied next. Pipelining is optional in the sense that a user could simply

generate only the compute-split code. Communication generation for each pipeline

chunk is handled by the advanced symbolic range analysis [59] stage, which encodes

its results as OpenMPC memory transfer pragmas. Once the OpenMPC directive

handler and CUDA optimizer have finished their work on the IR, the multi-device

code generation pass maps the pipelines to their respective devices. For the correct

functioning of the multi-device code generation pass, the pipelining pass is made

multi-device aware, in the sense that it keeps a map of the pipelines to devices, which

is utilized later on by the multi-device code generation pass.
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2.4.3 Generating Pipelined Code

At the heart of realizing the pipelining is the ability of the CPU to execute memory

copy and kernel operations on the device asynchronously. The underlying CUDA

model provides a mechanism called ‘CUDA streams’ that realizes this asynchronous

operation. A ‘cudaStream’ [1] represents an instruction stream of computation on

the host CPU that queues the launches of device commands i.e. kernel launches and

memory transfers. All operations on a given cudaStream are launched sequentially,

however, different cudaStreams can run independently of each other. Our pipelining

implementation describes the strategy using cudaStreams.

The pipelining stage unrolls the Split Loop in Listing 2.2 twice. Listing 2.3 dis-

plays the intermediate code generated by our compiler. The unrolling factor of two

corresponds to the two data buffers required; one for the currently executing Split

and another for prefetching the inputs of the next Split. Each unrolled Split is trans-

formed into a separate kernel and the required memory buffers are allocated for each

kernel by the base OpenMPC system. Unrolling the Split Loop eases the software

pipelining implementation.

Listing 2.3: Intermediate Representation for Pipelining the Compute Split Parallel
Region

for (split=0; split<NUM_VECTORS/SplitSize; split=split+2) {
//Determine starting points and ranges required per Split

3 E_c2gstart_stream_0=((split*NUM_ELEMENTS)*SplitSize);
E_c2grange_stream_0=(NUM_ELEMENTS*SplitSize);
F_g2cstart_stream_0=(split*SplitSize);

6 F_g2crange_stream_0=SplitSize;
D_c2gstart_stream_0=((split*NUM_ELEMENTS)*SplitSize);
D_c2grange_stream_0=(NUM_ELEMENTS*SplitSize);

9 E_c2gstart_stream_1=((NUM_ELEMENTS*SplitSize)+
((split*NUM_ELEMENTS)*SplitSize));
E_c2grange_stream_1=(NUM_ELEMENTS*SplitSize);

12 F_g2cstart_stream_1=(SplitSize+
(split*SplitSize));



34

F_g2crange_stream_1=SplitSize;
15 D_c2gstart_stream_1=((NUM_ELEMENTS*SplitSize)+

((split*NUM_ELEMENTS)*SplitSize));
D_c2grange_stream_1=(NUM_ELEMENTS*SplitSize);

18

//Code to be launched by cudaStream 0
#pragma omp parallel for private(pos, sum, vec) shared \

21 (NUM_ELEMENTS, NUM_VECTORS, split, SplitSize, D, E, F)
#pragma cuda gpurun \
g2cmemtr(F[F_g2cstart_stream_0: F_g2crange_stream_0]) \

24 c2gmemtr(D[D_c2gstart_stream_0: D_c2grange_stream_0]) \
c2gmemtr(E[E_c2gstart_stream_0: E_c2grange_stream_0])
#pragma cuda gpurun noc2gmemtr(F) \

27 nog2cmemtr(NUM_ELEMENTS, NUM_VECTORS, D, E)
for (vec=0; vec<SplitSize; vec ++ ) {
sum=0;

30 for (pos=0; pos<NUM_ELEMENTS; pos ++ ) {
sum+=(D[(pos+(NUM_ELEMENTS*
(vec + split*SplitSize)))]*

33 E[(pos+(NUM_ELEMENTS*(vec + split*SplitSize)))]);
}
F[(vec + split*SplitSize)]=((float)sum);

36 }

//Code to be launched by cudaStream 1
39 #pragma omp parallel for private(pos, sum, vec) shared \

(NUM_ELEMENTS, NUM_VECTORS, split, SplitSize, D, E, F)
#pragma cuda gpurun \

42 g2cmemtr(F[F_g2cstart_stream_1: F_g2crange_stream_1]) \
c2gmemtr(D[D_c2gstart_stream_1: D_c2grange_stream_1]) \
c2gmemtr(E[E_c2gstart_stream_1: E_c2grange_stream_1])

45 #pragma cuda gpurun noc2gmemtr(F) \
nog2cmemtr(NUM_ELEMENTS, NUM_VECTORS, D, E)
for (vec=0; vec<SplitSize; vec ++ ) {

48 sum=0;
for (pos=0; pos<NUM_ELEMENTS; pos ++ ) {

sum+=(D[(pos+(NUM_ELEMENTS*
51 (vec + (split+1)*SplitSize)))]*

E[(pos+(NUM_ELEMENTS*(vec + (split+1)*SplitSize)))]);
}

54 F[(vec + (split+1)*SplitSize)]=((float)sum);
}

}
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Figure 2.4.: System Strategy to generate and run programs on Multiple Devices -
In this case, the number is 2. Straight arrows depict dependences, the curved arrow
represents Split loop

Bounds for the data required by each Split need to be precisely calculated to avoid

transferring more than necessary data (lines 8-13 in Algo. 2). We develop an aggregate

data sections analysis using the advanced symbolic range analysis techniques offered

in Cetus. This algorithm determines the starting locations and data lengths per Split

required for all aggregate data elements.

It also categorizes the data into MemSplittable and MemFused categories. The

algorithm determines the range of access for each usage of the given variable. It then

performs a union operation on the individual ranges to get the comprehensive access

range as well as the starting address of the data. Both these expressions are symbolic

in nature and are parameterized by SplitSize and Split (Lines 3-17 in Listing 2.3).

The starting address and length for data copy are specified to the OpenMPC

system using c2gmemtr and g2cmemtr pragmas that govern the generation of CPU-

to-GPU and GPU-to-CPU communication, respectively. (Lines 23-25 and 42-44 in

Listing 2.3). For MemFused data elements, for every Split, entire aggregate datatype

transfer is required. In such cases, transfers for these data elements are hoisted outside

the Split Loop.
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Algorithm 2: Pipelined Code Generation from Compute Split Program

Input: Compute Split Loop ‘Region’
Output: Pipelined CUDA code

1 Unroll Region by a factor of 2;
2 Create cudaStreams stream0, stream1;
3 StreamMap = new Map(cudaStream, Split);
4 StreamMap.insert(stream0, first Split in Region);
5 StreamMap.insert(stream1, second Split in Region);
6 foreach (split ∈ Region) do

// Static code contains only two Splits

7 foreach (sharedV ar ∈ split) do
// sharedVar is OpenMP shared type

8 range = rangeAnalysis(sharedV ar , split);
9 if (range contains SplitSize) then

10 start = getStartingPoint(range);
11 insertCopyPragmas(sharedV ar, start, range);

12 else
// this is a MemFused Variable, hoist memory

// transfers out of the Split Loop

13 insertCopyPragmas(sharedV ar, Region);

14 cudaCode = translate(Region, StreamMap);
// Format CUDA code to achieve desired

// queueing using streams

15 reOrganize(cudaCode, stream0, stream1);
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Since GPUs have at most one data copy engine in the CPU-to-GPU or GPU-to-

CPU direction, it is necessary to schedule the operations on this channel wisely in

order to avoid bottlenecks on the data copy engines. Correct scheduling is necessary

to assure maximum overlapping benefits as well. The first Split in the unrolled Split

Loop is assigned to cudaStream 0. That is, the kernel launches and memory transfers

for this Split are handled by cudaStream 0. Similarly, the second Split is attached

to cudaStream 1. In this manner, unrolling of the Split loop helps in (a) Creat-

ing private buffers on the device per cudaStream and (b) Providing an easy kernel-

cudaStream mapping. Memory copy requests in a given direction from both cudaS-

treams get serialized. Hence, the corresponding queueing strategy performs copy-in

from cudaStream 0 for Split 1, then issues the kernel from cudaStream 0 for Split 1

and simultaneously performs copy-in via cudaStream 1 for Split 2. Next, the system

launches the kernel from cudaStream 1 and subsequently issues copy-out from cud-

aStream 0 and cudaStream 1 respectively. Listing 2.3 shows that alternate Splits go

on different cudaStreams.

Our system maintains a mapping between a Split and its corresponding cudaS-

tream. After the CUDA code is generated by OpenMPC, the compiler reorganizes

the memory transfer and kernel launches so as to realize the queuing strategy. We

portray the complete pipelining code generation algorithm in Algorithm 2.

2.4.4 Multi-GPU Code Generation

As seen in the previous section, to implement pipelining, two cudaStreams are

required for a single GPU. For multi-device code generation, our system extends this

strategy and assigns two cudaStreams per device, the overall number of cudaStreams

used being twice the number of devices. In other words, the Split Loop is unrolled

twice per device.
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The next important stage in multi-device code generation is to perform work par-

titioning amongst devices. We use block-cyclic partitioning wherein two contiguous

Splits are attached to the same device, since these Splits are more likely to access

data elements in the vicinity of each other; this method improves spatial locality while

performing CPU-GPU transfers.

Further, data elements that need to be present completely inside the device mem-

ory even for a single Split computation (MemFused elements) need to be made ‘pri-

vate’ per device, and the memory copies for such elements need to be hoisted out of

the Split Loop. An example with the overall multi-device code generation strategy

for two devices is shown in Fig. 2.4. Note that the dependences are caused due to the

queueing on the memory copy channels.

2.5 Adaptive Runtime Tuning System

SplitSize is the number of iterations of the parallel loop in a given Split. SplitSize

can therefore be thought of as the size of the pipeline stage. Each iteration of the Split

is mapped to a GPU thread by OpenMPC. Hence, the choice of SplitSize determines

the number of ThreadBlocks issued per Split, governing both the time required for

computation and CPU-GPU communication. In this section, we describe how the

choice of SplitSize impacts the pipelining performance. We then propose a heuristic

tuning algorithm that selects the most suitable SplitSize.

2.5.1 Performance Variation with SplitSize

Equation 2.1 gave the maximum SplitSize that fits in the device memory. The

SplitSize that yields the best performance results is usually less than this upper

bound. Fig. 2.5 shows such execution time variation with different SplitSizes for two
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benchmarks. Experiments were run on Tesla M2090, which has separate memory

copy engines in CPU-to-GPU and GPU-to-CPU directions. Vector Add is a mem-

ory copy-intensive application, whereas Filterbank is a compute-intensive one. Vector

Add results were generated for problem size (iteration space) of 227; for Filterbank,

the problem size was 224. Fig. 2.5 shows that the performance becomes better with

increasing SplitSize for Vector Add, while better results can be achieved at lower Split-

Size values for Filterbank. The choice of SplitSize is therefore important to achieve

good performance, but selecting the correct SplitSize is not straightforward for the

programmer. To build an intuition for choosing the SplitSize, we begin by analyzing

the performance results on both memory copy-intensive and compute-intensive pro-

grams. The former spend most of their execution time on CPU-GPU transfers. The

latter spend most of their execution time running the GPU kernels.

Fig 2.6 shows examples of the different behaviors of compute-intensive and mem-

ory copy-intensive programs. Monte Carlo is compute-intensive, while Black Sc-

holes is memory copy-intensive. SplitSizes are chosen such that the number of

ThreadBlocks launched by each SplitSize is a multiple of the number of SMs, SM-

Count, of the GPU. Note that the memory copy times show linear increase at smaller

SplitSizes as compared to the kernel execution times. Since the pipelining benefits

are higher when the pipelining stages are of equal size, relative increase in kernel exe-

cution time as compared to the memory copy time leads to better performance. Once

the kernel execution starts to grow linearly with SplitSize, there is no more opportu-

nity for higher benefits. This explains the performance variation with SplitSizes for

Vector Add and Black Scholes benchmarks. Both these benchmarks have the highly

memory copy-intensive Type 1 overlapping pattern as shown in Fig. 2.7.

Compute-intensive programs like Filterbank, Monte Carlo, show the second type

of overlap displayed in Fig. 2.7. In both these codes, the kernel execution time is larger
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Figure 2.5.: Performance Variation with SplitSize : Performance is higher for smaller
SplitSizes for compute-intensive benchmarks, while for memory copy-intensive ones,
performance is higher for larger SplitSizes. MaxThreads is the maximum number of
threads that can co-exist on the GPU.

Figure 2.6.: Kernel execution and Memory copy times per Split for different Split-
Sizes. Monte Carlo is compute-intensive; Black Scholes is memory copy-intensive.
Experiments were run on Tesla M2090.

than the sum of copy-in and copy-out times. A quick look at Fig. 2.7 shows that when

the kernels are executing, the memory channel(s) are unused. One way to increase the

kernel and memory copy overlap would be to run more cudaStreams so that the kernel

time between the overlap of t1K and t2K (Fig. 2.7) can be further overlapped by memory

transfers. Another alternative is to reduce the SplitSize and allow concurrent kernel
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Figure 2.7.: Possible Overlap Types for GPUs with Distinct Copy-in and Copy-
out Engines : tci is the copy-in time, tco is the copy-out time and tk is the kernel
execution time. Number in the superscript represents the cudaStream. Type 1 is
the highly memory copy-intensive type with tci > tco + tk. Note that tci and tco are
interchangeable. Type 2 is highly compute-intensive, with tk > tci + tco . Type 3 is
neither (tci > tk > tco & tk + tco > tci ). Note that shown is one of the many cases
of different program patterns that can fit in Type 3.

execution, supported by the newer GPUs. Kernel-kernel overlaps can easily occur in

compute-intensive benchmarks. Due to the limited knowledge in GPU ThreadBlock

scheduling mechanisms in the presence of multiple kernels, kernel-kernel overlap per-

formance is difficult to predict or model and the performance tuning would need

explicit runs with different SplitSizes. However, increasing the SplitSize to be larger

than the maximum number of threads that can coexist on a GPU (MaxThreads)

would only lead to queueing up of ThreadBlocks in the launching process. Hence,

the SplitSize search space of interest in case of compute-intensive benchmarks is fairly

small i.e. SplitSize ≤MaxThreads.

2.5.2 Adaptive Runtime Tuning Algorithm

With the aforementioned observations, we have developed a heuristic adaptive

runtime tuning algorithm (Algorithm 4.5.2) for finding the SplitSize that would yield

the best performance. First, the algorithm determines if the kernel is highly memory

copy-intensive (Type 1) or highly compute-intensive (Type 2) or neither (Type 3) by

running a pilot run with SplitSize equal to the MaxThreads.
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Note that running just one Split (RUN ONE SPLIT, line 20 of Algo. 4.5.2) of

the Split Loop is sufficient for the algorithm to determine the type of the kernel.

The algorithm then generates a unique set of SplitSizes, named CSet or configuration

set, depending upon the type of the program. Each SplitSize is chosen such that

the number of ThreadBlocks contained in it is a multiple of SMCount, so as to

evenly distribute the ThreadBlocks on SMs. The CSet generation is handled by

the GENERATE CONFIGS function (line 17 of Algo. 4.5.2). The largest SplitSize

generated by the GENERATE CONFIGS function is bounded by the device memory

capacity. It is worthwhile to note that the algorithm is agnostic of the number of

threads per ThreadBlock.

For Type 1 programs, generated CSet contains SplitSizes ≥ MaxThreads in an

increasing order. As explained earlier, a linear increase in the kernel execution time

indicates the highest performance for memory copy-intensive programs. The algo-

rithm therefore runs one Split per SplitSize in the CSet until the kernel time starts to

grow linearly. Linear growth is established by comparing the kernel execution time

of the previous SplitSize in the CSet (Line 23, in Algo. 4.5.2). This results in the se-

lection of smallest SplitSize that would generate high performance while maintaining

low device memory requirements.

For Type 2 programs, algorithm generates the CSet with SplitSizes that are ≤

MaxThreads. For each SplitSize, the runtimes for a single Split are noted, and the

SplitSize with the best normalized overlapped time (Line 2, Algo. 4.5.2), to, is selected

as the candidate.

Type 3 programs are neither highly compute-intensive nor memory copy-intensive.

In such cases, the algorithm generates all possible SplitSizes (bounded by the device

memory size) and runs one Split for each of them. The SplitSize with the best normal-

ized overlapped time, to, is selected. Type 3 denotes the worst case for the algorithm,
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Algorithm 3: Heuristic SplitSize Tuning Algorithm

Input: T is the Number of Threads per ThreadBlock
Input: SMCount is the Number of SMs
Input: B is the maximum ThreadBlocks per SM
Output: Best SplitSize configuration
// tci is copy-in time, tk is kernel execution time

// tco is copy-out time, to is the overlapped time

// to = min[max((tci + tk), tco),max((tco + tk), tci)]

// timer is an array of structures storing the

// quadruplet tci, tco, tk, to
// Normalizer(i) = MaxThreads/CSet(i)

1 Function tuner()
2 MaxThreads← T × SMCount×B ;
3 Type← Nil ;
4 (tci, tk, tco, to)← RUN ONE SPLIT (MaxThreads) ;
5 if (tci + tco ≤ tk) then
6 Type← 2;
7 else if (tci + tk ≤ tco ∨ tco + tk ≤ tci) then
8 Type← 1;
9 else

10 Type← 3;
// GENERATE CONFIGS creates a sorted set of

// SplitSize configurations

11 CSet← GENERATE CONFIGS(Type);
12 min← 1;
13 for (i = 1→ length(CSet)) do
14 timer[i] = RUN ONE SPLIT (CSet[i]);
15 if (Type = 1) then
16 if (i > 1) then
17 diff ← ((timer[i].tk ×Normalizer(i))− (timer[i− 1].tk ×

Normalizer(i− 1));
18 if (|diff | ≈ 0) then
19 return CSet[i− 1];

20 else if
(timer[min].to ×Normalizer(min) < timer[i].to ×Normalizer(i))
then

21 min = i;

22 if (Type = 1) then
23 return CSet[i− 1];
24 else
25 return CSet[min];

26 Function RUN ONE SPLIT(SplitSize)
27 Run one Split from the Split loop;
28 Return corresponding tco, tci, tk, to;
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since it requires a traversal in a larger space. However, most of the programs that we

tried fell into either Type 1 or Type 2.

Since the algorithm needs to run only a single Split to learn about the character-

istics of a given SplitSize, the runtime overhead incurred is low.

2.5.3 Compiler Support for Tuning

The adaptive runtime tuning algorithm is automated in the compiler. The com-

piler automatically generates a tuning function for each kernel region. The tuning

function contains an outlined copy of the parallel region, which is used to realize

RUN ONE SPLIT function. This outlining is performed at the OpenMP level. Since

the tuning function involves execution of some extra Splits, the original data may

get modified. Outlining prevents this potentially harmful behavior to the kernel data

during the tuning execution, as it forces the data elements in the tuning function to

be allocated separately. Timer calls are inserted in this outlined copy to gather tk,

tci and tco. Certain parts of the algorithm are inserted in this function, while others,

such as GENERATE CONFIGS, are implemented in a run-time library. The com-

piler automatically inserts the necessary calls to the runtime library functions. The

tuning function is invoked only during the first call to the kernel; subsequent kernel

calls use the SplitSize value that was generated during the first run.

Notice that the tuning system may not represent the best SplitSize if the control

flow of the parallel region is divergent. However, if the parallel region is invoked only

once, the first invoke runs the tuner which indeed finds the correct SplitSize.
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2.6 Evaluation

This section evaluates the performance of the presented computation splitting,

pipelining and multi-device code generation regimes. We study seven kernels and

two applications. DCT, FFT and Filterbank are traditional streaming benchmarks

from the StreamIt benchmark suite [60]. These are compute-intensive applications.

Other kernels, such as Scalar Product, Black Scholes and Vector Add, are from the

CUDA SDK [61] and are mostly memory copy-intensive. Monte Carlo, also from

CUDA SDK, is compute-intensive. SRAD and CFD are two applications from the

Rodinia benchmark suite [62] and both are memory copy-intensive. To explore out-

of-card situations, the benchmarks were run with larger datasets than provided in the

benchmark suites. The baseline, non-pipelined translation from OpenMPC is used as

the comparison point.

We used an NVIDIA Tesla M2090 GPU for our experiments. The device has 16

Streaming Multiprocessors (SMs) and remarkably large 6GB of DRAM. The GPU

is connected via an x16 PCIe link to a host system consisting of an AMD Opteron

Processor 6282 with 16 cores, running at 2.6 GHz. The host system has 64GB RAM.

Up to 4 GPUs were connected to the host using the same PCIe bus.

We evaluate the contributions of our system in the following manner : (a) We

demonstrate the ability of our system to handle large out-of-card data sizes by per-

forming COSP. We compare the scalability of our approach against hand-written

CUDA and baseline OpenMPC programs. (b) We evaluate the efficacy of our tuning

method by comparing its performance to a naive compiler-only strategy. We also

measure the overheads incurred by the tuning system. (c) To evaluate the benefits of

pipelining and multi-GPU code generation, we compare the results obtained by these

techniques over baseline OpenMPC.
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Table 2.1.: Scalability of the COSP and Pipelining Mechanism : We compare the exe-
cution times of hand-written CUDA, baseline OpenMPC and compute split, pipelined
OpenMPC programs. The ideal speedup is calculated using Eq. 2.2. In the table,
‘***’ represent failure of the code due to larger-than-allowed grid sizes used. ‘—’
represent code failure due to out-of-memory data size errors. Scalability of our ap-
proach can be gauged as arbitrarily large problems with out-of-card data sizes can be
run and the speedup achieved for any large data size remains almost constant.

2.6.1 System Scalability

COSP allows large, out-of-card data sizes to run on GPUs with limited de-

vice memories. Table 2.1 shows the system scalability of the COSP approach for

three different representative benchmarks and also compares the results with hand-

written CUDA and baseline OpenMPC codes. We calculate the maximum achieve-

able speedup from pipelining and compare it with the achieved speedup. To generate

these results, we used hand-written CUDA codes from the CUDA SDK. Asynchronous

transfers between the CPU and GPU require the corresponding memory to be allo-

cated in ‘pinned’ pages i.e. the OS pages that can not be swapped out of the host

memory. This can be achieved using the CUDA cudaHostAlloc API call. Since

OS pages allocated in this fashion improve the overall application performance, the



47

hand-written and base OpenMPC-generated CUDA codes were modified, allocating

the host memories using cudaHostAlloc, to produce consistent comparison results

with the CUDA versions generated by our system.

The scalability problems faced by the hand-written CUDA programs and the base

OpenMPC-produced programs can be clearly seen from Table 2.1, since whenever the

data size goes out-of-card, both these codes fail. For hand-written CUDA programs,

as seen for the Monte Carlo benchmark, the number of ThreadBlocks, or the grid

size, launched by the code crosses the CUDA-imposed limit of 65536 in a single

dimension and the code starts failing even when the memory space requirement is

sufficiently small to fit in the device. This is a severe programmability issue, as the

programmer must consider all possible input sizes and manage the grid formation

accordingly. A high-level programming model, such as OpenMPC, can easily tackle

this issue by launching two dimensional grids if one dimension exceeds the limit.

Hand-written CUDA codes underperform the baseline OpenMPC-generated codes as

the input sizes grow large for the Black Scholes and Monte Carlo benchmarks. In

the Black Scholes hand-written CUDA code, the launched grid size is constant and

is better suited for small data sizes. In the Monte Carlo hand-written CUDA code, a

part of the parallel loop is left out from the kernel and is instead run on the CPU. Our

system translates this entire loop for GPU execution. Further, the constant memory

allocation in the hand-written Monte Carlo CUDA code is proportional to the data

size, and constant memory can run out of space if the problem size increases. High-

level programming models can alleviate these programmability issues, ensuring the

scalability of programs for arbitrary data sizes.

Performance benefits of our pipelining scheme can be seen in Table 2.1. This

table also dispays the effectiveness of our implementation by comparing the ideal

speedup that can be achieved from pipelining against the one obtained by our sys-
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tem. Except for the smallest data sizes, pipelining speedup numbers closely follow the

ideal speedups for the Monte Carlo and Scalar Product programs. The differences be-

tween the ideal and achieved speedups are mainly due to the underperformance of the

bidirectional transfer overlaps on the PCI Express (PCIe). This effect becomes a per-

formance limiter for programs like Black Scholes, which have large bidirectional data

transfers. For the small dataset of Monte Carlo, the optimal SplitSize suggested by

our tuning system was 8192, being just one fourth of the input iteration space, thereby

lowering the obtained pipelining benefits. Similar is the case for Black Scholes . Con-

stant speedups for any large data size demonstrate the scalability of our approach.

Figure 2.8.: Performance of Adaptive Runtime Tuning System : Speedups are with
respect to the OpenMPC non-pipelined baseline. Higher performance of the tuned
program versions over a naive pipelining approach emphasize the necessity of tuning.

2.6.2 Tuning System Performance

To measure the performance benefits gained from tuning the pipelined system,

we compare the speedups achieved by our adaptive tuning method over the baseline

OpenMPC codes against a naive compiler-driven splitting strategy. We found 1024

splits to be a good number that generated performance improvements and chose it

as the “naive” reference point.
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Fig. 2.8 displays the effectiveness of the adaptive runtime tuning system over this

naive strategy. The superior performance of the tuned codes over the naive strategy

indicates the importance of tuning; a static estimate of the number of splits can not

provide the best performance. Further, a number of splits that yields good results

for a given program may be suboptimal for another program. We also measure the

overheads incurred by the adaptive runtime tuning system in terms of the percentage

runtime spent in tuning. Because the tuning system runs only a single Split of the

Split Loop per tuning configuration, the runtime overhead is low. The maximum

overhead, measured as the percentage runtime of the total execution time, is less

than 3%. Note that the tuning overhead decreases as the computation size grows.

Figure 2.9.: Speedup over the Baseline OpenMPC Generated Codes (without pipelin-
ing) : Compute-intensive applications show good scalability with multiple GPUs.
Memory copy-intensive programs scale poorly with multiple GPUs since PCIe bus
forms a bottleneck.
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2.6.3 Overall Performance Comparison

We now present comprehensive results over all benchmarks showing the effects of

pipelining on 1, 2 and 4 GPUs in Fig. 2.9. Since the maximum speedup over the

baseline system that can be achieved with pipelining is limited by three in our setup,

the theoritical maximum speedup that can be achieved by pipelining, implemented

on four GPUs, can be at most twelve.

Benchmarks like DCT, FFT, Scalar Product, Monte Carlo, Filterbank show large

performance benefits since they have balanced computation and memory transfer

contents, translating into equally sized pipeline stages. SRAD, CFD and Vector Add

have a low computation-to-communication ratio and therefore show lesser overall

speedups. Highly compute-intensive benchmarks like Filterbank, Monte Carlo show

excellent scalability when multiple devices are used.

Secondly, not all benchmarks show large performance benefits when run with mul-

tiple GPUs; the reason being the bottleneck formed on the PCIe bus while transferring

the data.

2.7 Related Work

An alternative to deal with problems of arbitrarily large data sizes can be to write

the basic program flow in terms of a stream graph. Each kernel can then be made

to have a granularity of a single iteration of the stream graph. Two recent systems

propose mechanisms to convert streaming programs written in StreamIt [63] language

into GPU codes. The first system, Sponge [24], suggests mechanisms to optimize the

stream graph. It then splits the graph into multiple kernels. Huynh et al. propose

another system [23] that takes a different approach and places an entire iteration of

a stream graph on a single Streaming Multiprocessor (SM). This mechanism can face
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scalability issues due to the restriction of running just one iteration on an SM. Since

each filter in a StreamIt graph consists of its own inputs and outputs, global memory

accesses can be overwhelming. Both these systems therefore propose mechanisms to

prefetch data into the GPU shared memory and optimize the shared memory us-

age. However, the behavior of these systems is undefined if the data size required is

larger than the GPU memory. Secondly, the applicability of the stream programming

model to large applications is still an open challenge. Further work by Huynh et

al. [64] performs multi-level partitioning of the stream graph to overcome the scal-

ability challenges in [23]. In this work, a mechanism to port StreamIt programs to

multi-GPUs on the same system has also been proposed. This system heterogeneously

executes kernels on several GPUs, owing to the outcome of the multi-level partition-

ing performed on the StreamIt graph. By contrast, our system partitions the work

homogeneously amongst GPUs and yields the best possible pipelining code with the

help of a fast tuning system.

A naive CUDA-provided solution to deal with out-of-card data sizes is to make

use of Zero Copy memory. The Zero Copy memory mechanism allocates the corre-

sponding buffers in the host memory instead of the device memory. The pointers to

the buffers on the CPU and the GPU are mapped to each other. GPU reads the

memory objects directly from the host during the kernel execution. Therefore, if

the kernel has significant amount of reuse, the overheads of copying from the CPU

memory would degrade the performance.

Pipelining benefits have been previously explored for GPUs to hide the global

memory access latencies by generating a software pipeline that copies data into shared

memory [21–24]. Aji et al. propose an approach [65] that deals with a network of

nodes containing GPUs, aiming to overlap the communication between nodes with
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computations. Our work complements these techniques since our goal is to efficiently

pipeline the CPU-GPU bus.

GPU performance tuning has been a research challenge; many approaches try to

model and tune the GPU performance. While many proposed tuning systems are spe-

cific to the problem domains (3D Stencil [66], N-body simulations [67], 3-D FFT [68],

SpMV [69]) , Ryoo et al. [54] propose generic performance metrics that help pre-select

some potential parameter configurations to choose from. A distinguishing factor of

our work is the tuning objective: In contrast to approaches that try to optimize the

size of the ThreadBlock, our work attempts to optimize the grid size i.e. the num-

ber of ThreadBlocks. OpenMPC’s inherent tuning system performs compiler-driven

optimization option pruning to generate a set of parameter configurations. However,

both the OpenMPC tuning system and the space pruning proposed by Ryoo et al.

are run offline and require multiple complete runs of the entire programs to choose

the best configuration.

Partitioning the application so as to make use of multiple GPUs attached to the

same host CPU is an emerging research challenge. While some approaches target

specific applications, e.g. Matrix multiply [18], fluid simulations [19], Kim et al. [20]

provide an OpenCL based approach that provides a single device image of a multi-

GPU system to the application developer. However, the scalability of this approach

is bound by the total GPU memory sizes.

By contrast, ours is the first work that automatically deals with out-of-card data

sizes and generates pipelined, multi-GPU code for generic applications, starting with

a high-level program representation.
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2.8 Chapter Takeaways

In this chapter, we have described a novel pipelining optimization that is able

to scale large-data computations on multi-GPU accelerators. To this end, the tech-

nique splits a computation so it fits in the available memory resources and overlaps

data transfer with computation. The execution can take advantage of multiple GPU

devices. We have demonstrated that the technique can successfully execute out-of-

card datasets that would fail without our optimization. For programs and datasets

whose baseline versions succeed, our technique improves performance by 1.49x, on

average, owing to the computation-communication overlap. We have implemented

our optimization in one of the most advanced compilation platforms for GPGPUs:

OpenMPC. This system converts OpenMP programs to CUDA, performing several

advanced transformations. OpenMPC provided a state-of-the-art baseline for our

measurements; it also allowed us to demonstrate our technique in the context of an

important current language trend, which is the extension of OpenMP with accelerator

directives.

This chapter dealt with multi-GPU systems, wherein multiple GPUs are attached

to the same host node. However, many supercomputing environments contain a

cluster of nodes, where each node has one or more GPUs. To exploit GPUs across

a cluster, distributed programming models are necessary. Next chapter describes

a MapReduce programming system that can automatically employ both CPUs and

GPUs in the cluster.
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3. HETERODOOP : A MAPREDUCE PROGRAMMING

SYSTEM FOR ACCELERATOR CLUSTERS

3.1 Introduction

A growing number of commercial and science applications in both classical and

new fields process very large data volumes. Dealing with such volumes requires paral-

lel processing in cluster environments, and often on systems that offer high compute

power.

For this type of parallel processing, the MapReduce paradigm has found pop-

ularity. The key insight of MapReduce is that many processing problems can be

structured into one or a sequence of phases, where a first step (Map) operates in

fully parallel mode on the input data; a second step (Reduce) combines the resulting

data in some manner, often by applying a form of reduction operation. MapReduce

programming models allow the user to specify these map and reduce steps as distinct

functions; the system then provides the workflow infrastructure, feeding input data

to the map, reorganizing the map results, and then feeding them to the appropriate

reduce functions, finally generating the output.

The large data volumes involved may not fit on a single compute or storage node.

Thus, distributed architectures with many nodes may be needed. Among the sys-

tems that support MapReduce on distributed architectures, Hadoop [25] has gained

wide use. Hadoop provides a framework that executes MapReduce problems in a

distributed and replicated storage organization (the Hadoop Distributed File System

– HDFS). In doing so, it also deals with node failures.
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Big-data problems pose high demands on processing and IO speeds, often with

emphasis on one of the two. For general compute-intensive problems, accelerators,

such as NVIDIA GPUs and Intel Xeon Phis, have proven their ability for an increasing

range of applications. To obtain high performance, their architectures make differ-

ent chip real-estate tradeoffs between processing cores and memory than in CPUs.

A larger number of simpler cores provide higher aggregate processing power and re-

duce energy consumption, offering better performance/watt ratios than CPUs. In

GPUs, intra-chip memory bandwidth is high and multi-threading reduces the effec-

tive memory access latency. These optimizations come at the cost of an intricate

memory hierarchy, reduced memory size, data accesses that are highly optimized for

inter-thread contiguous (a.k.a. coalesced) reference patterns and explicitly parallel

programming models. Using these architectures therefore requires high programmer

expertise.

While accelerators can perform well on compute-intensive applications, IO-

intensive MapReduce problems may not always benefit. Previous research efforts on

MapReduce-like systems employ either GPUs [29–31] alone, disregarding IO-intensive

applications, or CPUs [25–28] alone, leaving out the GPU acceleration. In this chap-

ter we present our HeteroDoop1 system, which exploits both CPUs and GPUs in a

cluster, as needed by the application. HetereoDoop makes four specific contributions,

addressing the following challenges.

The first challenge in developing such a heterogeneous MapReduce system is the

programming method. In a naive scheme, the programmer would have to write two

program versions, one for CPUs and the second for GPUs. This need arises as acceler-

ators rely on explicitly parallel programs, be it either low-level programming models

such as CUDA [1] and OpenCL [6], or high-level ones, such as OpenACC [9] and

1https://bitbucket.org/asabne/heterodoop/wiki/Home

https://bitbucket.org/asabne/heterodoop/wiki/Home
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OpenMP 4.0 [13]. Although available high-level programming models relieve the user

from having to learn model-specific APIs, such as in CUDA or OpenCL, they still

require explicit parallel programming. On the other hand, in CPU-oriented MapRe-

duce systems, programmers write only sequential code; the underlying framework

automatically employs all cores in the cluster by concurrently processing the input

data, which is split into separate files. Previous research on GPU uses for MapReduce

has either relied on explicitly parallel codes with accelerator-specific optimizations

[30, 31, 33, 70], and/or on specific MapReduce APIs [29, 30, 33, 34]. Programmability

in both approaches is poor; the former requires learning low-level APIs and the latter

necessitates application rewriting. To overcome these limitations, our contribution

enables programmers to port already available sequential MapReduce programs to

heterogeneous systems by annotating the code with HeteroDoop directives. Inserting

such directives is straightforward, requires no additional accelerator optimizations,

and leads to a single input source code for both CPUs and GPUs. Furthermore, the

resulting code is portable; it can still execute on CPU-only clusters.

The second key challenge in exploiting accelerators is their limited, non-virtual

memory space. The default parallelization scheme used in MapReduce/Hadoop en-

gages multiple cores by processing separate input files in parallel – typically one per

core, as an individual task. Data input is appropriately partitioned into separate

fileSplits, which are fed to the different compute nodes and their threads. Simul-

taneous accesses by many threads to their fileSplits require a large memory. This

size requirement is not a problem in today’s typical CPUs with 4 to 48 cores and

virtual memory support; however, in GPUs with several hundred cores and possibly

thousands of threads, the available, non-virtual memory is insufficient. Our second

contribution addresses this challenge by processing the data records within a fileSplit

in parallel on accelerators, while retaining the default processing scheme on the CPU.
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The third challenge is to translate the annotated, sequential source code in a

way that obtains high accelerator performance. Our contribution is a MapReduce

domain-specific optimizing source-to-source translator, assisted by a runtime system,

that generates CUDA code and splits the work across CPUs and GPUs. Several

issues arise in this process. The first one is load imbalance across GPU threads, as

the records processed in parallel may be of different size. A global work-stealing

approach would incur high overheads, due to excessive atomic accesses by the GPU

threads. HeteroDoop overcomes this issue by using a novel record-stealing approach

that partitions the records statically across GPU threadblocks but dynamically within

threadblocks. Another issue is that GPU memory is statically allocated but the

size of the map phase output, the key-value pairs, is not known a priori. Over-

allocation would lead to inefficient sorting of the key-value pairs, which follows the

map phase. To resolve this issue, HeteroDoop includes a fast runtime compaction

scheme, resulting in efficient sort. Furthermore, the runtime system executes the

sort operation on the GPU rather than on the slower CPU. Other optimizations

include efficient data placement in the complex GPU memory hierarchy and automatic

generation of vector load/store operations.

A final challenge in developing such a heterogeneous MapReduce scheme is to

cater to the different processing speeds of CPUs and GPUs while performing work

partitioning. Although prior work [71,72] has dealt with load balancing across nodes,

intra-node heterogeneity has remained an issue. HeteroDoop’s tail scheduling scheme

addresses this issue. Our contribution is based on a key observation: the load imbal-

ance only arises in the execution of the final tasks in a job; careful GPU-speedup-based

scheduling of the tailing tasks can avoid this imbalance.

We have evaluated the HeteroDoop framework on eight applications, comprising

well-known MapReduce programs as well as scientific applications. We demonstrate
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the utility of HeteroDoop on a 48-node, single GPU cluster with large datasets, and

on a 64-node, 3-GPU cluster with in-memory datasets. Our main results indicate that

the use of even a single GPU per node can speed up the end-to-end job execution

by up to 2.78x, with a geometric mean of 1.6x, as compared to CPU-only Hadoop,

running on a cluster with 20-core CPUs. Furthermore, the execution time scales with

the number of GPUs used per node.

The remainder of the chapter is organized as follows: Section 3.2 provides back-

ground on GPUs, MapReduce, and Hadoop. Section 3.3 describes the HeteroDoop

constructs, followed by the compiler design in Section 3.4. Section 3.5 describes the

overall execution flow of the HeteroDoop framework and details the runtime system.

The tail scheduling scheme is explained in Section 3.6. Section 3.7 presents the ex-

perimental evaluation. Section 3.8 discusses related work, and Section 3.9 presents

the takeaways from the chapter.

3.2 Preliminaries

We introduce the basic terminology used in this paper for the GPU/CUDA ar-

chitecture and programming model as well as the MapReduce and Hadoop concepts.

We keep the discussion of GPUs and CUDA brief, assuming reader familiarity, but

we do refer to introductory material [73].

3.2.1 CUDA Architecture and Programming

In the CUDA [1] GPGPU architecture, the many GPU cores are structured into

multiple Streaming Multiprocessors (SM). CUDA threads execute in SIMD fashion,

where a warp consisting of 32 threads executes a single instruction and multiple warps

time-share an SM in multi-threading mode. Storage is separate from the CPU address
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space; it is structured into the global (or device) memory, the per-SM shared memory

(user managed cache), and specialized memories. The latter include the read-only

constant and texture memory as well as the registers.

CUDA programming is explicitly parallel with user-driven offloading; i.e, the user

identifies compute-intensive code sections, kernels, which are to be run on the GPU

(the device) and inserts data transfers between CPU and GPU. The threads are

organized into threadblocks. All threads within a threadblock execute on the same

SM. The programmer manages most of the storage hierarchy explicitly, including

fitting the data into the limited-size memories. There is no virtual memory support.

3.2.2 MapReduce and Hadoop

In the MapReduce model, programmers write a map and a reduce function, with

the system organizing the overall execution workflow. The input data is placed on

a distributed file system, such as the HDFS [74] (Hadoop Distributed File System).

HDFS stores the input in blocks, or fileSplits. A job consists of a set of map and

reduce tasks. In Hadoop, one node usually acts as master and the others as slaves.

The master node runs a JobTracker, while each slave runs a TaskTracker – together

they orchestrate the necessary map and reduce tasks in a way that exploits data

locality, engages all available nodes and cores, and provides fault tolerance. The total

number of concurrent tasks in a Hadoop cluster is typically the same as the number

of available cores.

In Hadoop, each map task processes one fileSplit. The map function applies a

map operation to each data record in this fileSplit. The map task emits a set of

<key, value> pairs (or KV pairs). The framework puts these KV pairs into different

partitions, each partition targeted at a particular reduce task. To form these parti-
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tions, the KV pairs are sorted by their keys and split by a default or user-provided

partitioning function.

Each partition is then sent to its target reduce task. This task typically resides

on a different node, making this a costly step. To reduce the cost, a task-local,

user-provided reduction operation, known as the combiner, is applied first on each

partition, minimizing the size of the communicated data. This communication is also

known as the shuffle phase.

In the next phase, the sort phase, each reduce task merges the incoming partitions

into a sorted list. Then the reduce phase applies the reduce function to these data.

The output is written back to the HDFS. As the data volumes involved are typically

very large, the intermediate results between map and reduce are typically written to

the local disk.

Hadoop uses a heartbeat mechanism for communication between the JobTracker

and TaskTracker. TaskTrackers send heartbeats to the JobTracker at regular inter-

vals. These heartbeats include items such as status of tasks and free cores or slots. If

the JobTracker finds that a TaskTracker has free slots, it schedules new tasks on the

particular TaskTracker in the heartbeat response.

Hadoop is written in Java, and therefore the baseline system supports map, com-

bine and reduce functions written in Java. Hadoop Streaming [75] is an extension

that supports other languages for writing MapReduce programs. It is implemented

so that the map, combine, and reduce functions obtain their input from standard

input and write the output onto standard output; map, combine, and reduce can be

written as unix-style “filter” functions, using a language of choice.
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3.3 HeteroDoop Directives

Recall that the HeteroDoop directives are designed to exploit both CPUs and

GPUs in a cluster with a single source program. They identify the map and combine

functions and their attributes in a serial, CPU-only MapReduce program. From this

information, our translator generates code that exploits both the CPUs and GPUs

available in the nodes of a distributed architecture.

While the concept of HeteroDoop directives is language-independent, our Het-

eroDoop prototype supports programs written in C. Our implementation makes use

of the Hadoop Streaming framework, which we extend to enable efficient execution

on both CPUs and GPUs.

3.3.1 HeteroDoop Directives with an Example

A key insight used in the design of HeteroDoop constructs is the observation that

both map and combine functions iterate over a non-predetermined number of records.

The bulk of the computation of the map and combine functions is performed inside

a while loop. HeteroDoop directives identify these loops and express attributes that

allow the translator to generate efficient parallel code for the GPUs.

Listing 3.1 shows an example map code, written in C, for Wordcount. This ap-

plication counts the occurrences of each word in a set of input files. The code reads

each input line and applies to it an elementary map operation. For each word in the

line, this map operation emits a KV pair < word, 1>. Notice that the input is read

from STDIN using the getline function, while the output is written to STDOUT via

printf.

In general, the elementary map operation is applied to every record. By default

a record is a line of input. The bulk of the map computation lies within the loop
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Listing 3.1: Wordcount Map Code with HeteroDoop Directives

1 int main() {
2 char word[30], *line;
3 size_t nbytes = 10000;
4 int read, linePtr, offset, one;
5 line = (char*) malloc(nbytes*sizeof(char));
6 #pragma mapreduce mapper key(word) value(one) \\
7 keylength(30) kvpairs(20)
8 while( (read = getline(&line, &nbytes, stdin)) != -1) {
9 linePtr = 0;

10 offset = 0;
11 one = 1;
12 while( (linePtr = getWord(line, offset, word,
13 read, 30)) != -1) {
14 printf("%s\t%d\n", word, one);
15 offset += linePtr;
16 }
17 }
18 free(line);
19 return 0;
20 }

iterating over these records – lines 8–17 in the example. The mapreduce directive

on line 6 with the mapper clause tells the compiler that this loop applies the map

operation. The key and value clauses identify the variables used for emitting KV

pairs. The keylength and vallength clauses indicate the lengths of the respective

variables; the clauses are needed if these variables do not have a compiler-derivable

type. Table 3.1 lists all HeteroDoop directives and clauses. Some of these clauses are

optional; users need to provide them only for further optimizations and tuning of the

generated GPU code.

Listing 3.2 shows an example combine code for the same Wordcount application.

Recall that, before the combiner is run, the underlying HeteroDoop system sorts the

KV pairs emitted by the map according to their keys and places them into different
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Listing 3.2: Wordcount Combine Code with HeteroDoop Directives

1 int main() {
2 char word[30], prevWord[30];
3 prevWord[0] = ’\0’;
4 int count, val, read; count = 0;
5 #pragma mapreduce combiner key(prevWord) value(count)
6 keyin(word) valuein(val) keylength(30) vallength(1)
7 firstprivate(prevWord, count) {
8 while( (read = scanf("%s %d", word, &val)) == 2 ) {
9 if(strcmp(word, prevWord) == 0 ) {

10 count += val;
11 } else {
12 if(prevWord[0] != ’\0’)
13 printf("%s\t%d\n", prevWord, count);
14 strcpy(prevWord, word);
15 count = val;
16 }
17 }
18 if(prevWord[0] != ’\0’)
19 printf("%s\t%d\n", prevWord, count);
20 }
21 return 0;
22 }

partitions. The combiner function operates on each partition and sums up the oc-

currences of each word. Note that the while loop in the map function can execute

in parallel, but the one in the combine function cannot, except for reduction-style

parallelism. The only readily available parallelism in the combine and reduce execu-

tions exists across partitions. Typically, the number of partitions is not high enough

to exploit the GPU completely. For this reason, HeteroDoop provides no directives

for reduce functions and executes them on the CPUs only. For combine functions,

however, as the data is already present in the GPU memory, HeteroDoop employs an

economical way for GPU execution (Section 3.4.2).
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Two extra clauses are necessary on the combiner function : keyin specifies the

variable that receives the map-generated key and valuein does the same for the map-

generated value.

3.3.2 Clauses for Memory and Thread Attributes

HeteroDoop directives also allow for clauses that improve performance by speci-

fying the attributes of the data and threads. The following constructs exist:

Read-only variables:

The sharedRO clause lists read-only variables. The compiler places such variables

in faster GPU memories, such as the constant memory and the texture memory. By

default, our compiler places read-only scalars in the constant memory. Arrays whose

sizes are known at compile time are placed in the texture memory, otherwise in the

global memory. The texture clause forces placement in the texture memory. Placing

data in the texture memory is especially useful for random array accesses, as this

memory comes with a separate on-chip cache.

Firstprivate:

This clause specifies variables that can be privatized during the map or combine

operation but are initialized beforehand. In the absence of this clause, the compiler

tries to identify such variables automatically. It issues a warning if the analysis is

inaccurate, e.g., due to aliasing.

Notice that in the MapReduce programming model, all written variables are pri-

vatizable during the map and combine operations. There is no shared written data.

The translator performs the privatization without the need for user directives.
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Table 3.1.: HeteroDoop Directives

Clause Arguments Description Optional
mapper Specifies that the attached region

performs map operation
No

combiner Specifies that the attached region
performs combine operation

No

key Variable name Specifies the variable that con-
tains the key

No

value Variable name Specifies the variable that con-
tains the value

No

keyin Variable name Specifies the variable that con-
tains the incoming key. Valid only
on the combiner

No

valuein Variable name Specifies the variable that con-
tains the incoming value. Valid
only on the combiner

No

keylength Integer variable Specifies the length of the key be-
ing emitted

No

vallength Integer variable Specifies the length of the value
being emitted

No

firstprivate A set of variable
names

These variables are initialized be-
fore being used in the attached re-
gion

No

sharedRO A set of variable
names

These are read-only inside the
map or combine regions

Yes

texture A set of variable
names

These variables are read-only and
hence can be placed in GPU tex-
ture memory

Yes

kvpairs Integer variable This is an optional clause on map
region specifying the maximum
KV pairs that can be emitted from
a single record

Yes

blocks Integer variable Specifies the number of thread-
blocks to use

Yes

threads Integer variable Specifies the number of threads in
a threadblock

Yes
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Space Allocation for KV Pairs:

The space needed for the KV pairs output by map is not known at translation

time. The translator allocates all free GPU memory for storing these KV pairs. In

practice, this leads to an over-allocation. To reduce the memory required for storing

these KV pairs, the users can indicate the maximum number of KV pairs emitted by

each record using the kvpairs clause. This reduction in the storage space required for

the KV pairs improves the aggregation efficiency for this storage, as will be described

in Section 3.4.3.

Thread Attributes:

The blocks and threads clauses allow the programmer to choose the number of

threadblocks and number of threads in a threadblock on the GPU, respectively. These

clauses help tune the map and combine kernel performance.

3.4 Compiler

This section describes the HeteroDoop source-to-source translator, which converts

an input MapReduce code annotated with HeteroDoop directives into a CUDA pro-

gram. It is built using the Cetus [58] compiler infrastructure. Translating directly

into CUDA, rather than a higher-level model such as OpenACC or OpenMP 4.0,

provides direct access to GPU-specific features. For the code running on the CPUs,

the same Hadoop Streaming code is compiled using the gcc backend compiler. In this

manner, a single MapReduce source is sufficient for the execution on both CPUs and

GPUs. The HeteroDoop compiler carries out various MapReduce-specific optimiza-

tions. The next two subsections describe the key translation steps of generating GPU
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kernel code for the map and the combine functions, respectively. Section 3.4.3 also

describes the code generation for the host CPU, which offloads the kernels.

Algorithm 4: Handling Variables in Generated Kernels

Input: region - Region attached to the annotation
Input: newGPUKernel - Extracted region copy (kernel)
Input: sharedROSet - Set of shared read-only variables inside

newGPUKernel
Input: textureSet - Set of shared read-only variables to be placed on texture

memory
Input: firstPrivateSet - Set of firstprivate variables
Output: Correct placement of variables in newGPUKernel, along with

necessary GPU memory allocation and data transfer generation
1 Function handleVariables(region, newGPUKernel, sharedROSet,
textureSet, firstPrivateSet)

2 usedV ars = newGPUKernel.getUsedVars();
3 foreach var ∈ usedV ars do
4 if (sharedROSet contains var) then
5 if (var is scalar) then

// //gets placed on constant memory

6 newV ar = addParameter(var, newGPUKernel);

7 else
// //a shared read-only array

8 newV ar = addParameter(var, newGPUKernel);
9 insertMallocAndCpyIn(region, newV ar, var);

10 else if (textureSet contains var) then
11 tex = createNewTexture(var);
12 newV ar = addParameter(var, newGPUKernel);

// cudaBindTexture

13 bindTexture(tex, newV ar, region);
// inserts cudaMalloc and cudaMemCpy

14 insertMallocAndCpyIn(region, newV ar, var);

15 else
// a private variable

16 newV ar = addPrivateVar(newGPUKernel, var);
17 if (firstPrivateSet contains var) then
18 newFPCopy = addParameter(var, newGPUKernel);
19 if (var is array) then
20 insertMallocAndCpyIn(region, newFPCopy, var);
21 insertInKernelCopyCode(newFPCopy, newV ar);
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3.4.1 Map Kernel Generation

Each thread in the map kernel fetches a record, performs the elementary map

operation, and stores the generated KV pairs into its portion of a central GPU storage,

called the global KV store. The process repeats until all records are done.

The compiler begins by locating the annotation with the mapper clause. The

annotated while loop is the target region for kernel generation. The compiler extracts

this region into a new function, newGPUKernel, which contains the kernel code. A key

step in doing this is the transformation of the different variable types. Algo. 4 shows

the procedure. From the user annotations, the compiler generates sharedROSet, which

lists the shared read-only variables. TextureSet consists of read-only array variables

that are to be placed in the texture memory. FirstPrivateSet contains all variables

that are firstprivate, either specified by the programmer or identified by the compiler.

The scalar sharedRO variables are passed as arguments to the kernel; the underlying

CUDA compiler places these arguments in constant memory (lines 5–6). A pointer

to each array sharedRO variable is passed through a kernel parameter (lines 8–9);

storage is allocated on the GPU and the array data is copied from the CPU into this

space. The transformation for using the texture memory is essentially the same as

for sharedRO arrays (lines 11–15). The functions addParameter and addPrivateVar

create new variables and automatically rename the previous variable names in the

newGPUKernel respectively.

The remaining variables inside the newGPUKernel are private (lines 17–24). For

each private variable, a new variable is created inside the kernel body using the

addPrivateVar function. For firstprivate variables, there is an extra step. For scalars,

the initial value is passed through a kernel parameter. For arrays, storage is allocated

and a reference is passed via kernel parameter. The initial values of the array ele-

ments are copied into the corresponding memory locations before the kernel. Inside
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the kernel body, each thread copies these values into the private spaces using the

insertInKernelCopyCode function.

Listing 3.3 shows the translated CUDA map kernel for Wordcount (listing 3.1).

The kernel generation procedure adds internal parameters for bookkeeping. Ip rep-

resents the input file buffer; ipSize is the input file size. RecordLocator is a data

structure that keeps a list of starting addresses of all input records. DevKey and

devVal are the GPU variables for keys and values of the global KV store, respectively.

StoresPerThread holds the storage size allocated to each thread in the global KV

store. DevKvCount array keeps a count of the KV pairs emitted by each thread.

The first GPU-specific translation step is the insertion of a mapSetup function

call (line 9) for the map execution. This function sets up internal variables for GPU

execution e.g. tid, which stores the thread ID. Next, the algorithm replaces the CPU

record input function, such as getline, with a GPU equivalent getRecord function (line

11). Similarly, the KV-emitting function, which is printf in the CPU code, is replaced

with a GPU equivalent emitKV function (line 18). The emitKV function puts the

generated KV pairs into the global KV store. The translation scheme replaces the

calls to all C standard library functions with GPU counterparts. Since the current

GPUs do not support all C standard library calls, their equivalent implementations

are provided by the runtime system. The runtime system also includes other functions

used in the translated code, such as mapSetup, getRecord, and emitKV. At the end of

the map kernel execution, the indexArray holds the locations of individual KV pairs

in the global KV store. This array is useful in indirectly accessing the global KV

store.

The mapFinish function (line 25) performs bookkeeping after a thread is done

with the map execution. Most importantly, it keeps a count of the total number of

KV pairs emitted by each thread.
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Listing 3.3: Translated Wordcount Mapper Code

1 __global__ void gpu_mapper(char *ip, int ipSize,
2 int *recordLocator, char * devKey, int * devVal,
3 int storesPerThread, int * devKvCount, int keyLength,
4 int valLength, int * indexArray, int numReducers) {
5 char gpu_word[30];
6 int gpu_read, gpu_one, gpu_offset, gpu_linePtr;
7 int index, tid, start;
8 __shared__ unsigned int recordIndex;
9 mapSetup(&start, &tid, &index, ipSize, storesPerThread,

10 ip, devKvCount, numReducers, &recordIndex);
11 while( ( gpu_read = getRecord(ip, &recordIndex, &start,
12 recordLocator) )!= - 1) {
13 gpu_linePtr = 0;
14 gpu_offset = 0;
15 gpu_one = 1;
16 while( (gpu_linePtr = getWord(ip + start, gpu_offset,
17 gpu_word, gpu_read, 30)) != -1) {
18 emitKV(gpu_word, &gpu_one, devKey, devVal, &index,
19 devKvCount, keyLength, valLength, numReducers,
20 storesPerThread, indexArray);
21 gpu_offset += gpu_linePtr;
22 }
23 }
24 mapFinish(index, storesPerThread, devKey, keyLength,
25 indexArray, numReducers, devKvCount);
26 }

Record Stealing:

The execution time taken by the map operation for each record can vary greatly

among different records in certain MapReduce applications due to the differences in

the amount of data in each record. For example, in the kmeans application, where

each record contains a list of movie ratings, some records have fewer reviews than

others. This leads to load imbalance among threads if the records are statically

partitioned. A better strategy is therefore to perform dynamic record distribution,

or record stealing. However, a global record distribution scheme would require global
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atomic functions on the GPU, which are expensive. We therefore devise a scheme

where the records are statically and equally split among the threadblocks used in

the map kernel, and threads of a given threadblock steal a new record from the

threadblock’s pool. As it is common for larger records to get distributed across

threadblocks, record stealing implemented at the threadblock level is effective. The

variable recordIndex (line 9, listing 3.3) acts as a counter for the records used by the

threads of a threadblock. This variable is placed in the GPU shared memory for

fast atomic increment operations. The maximum record stealing that a thread can

perform is limited by the storesPerThread it has in the global KV store.

Using Vector Data Types:

For array keys/values, the generated code uses an optimization of internally using

CUDA-specific vector data types, such as char4, which increase the memory accessing

performance. The functions that exploit such a vectorization include emitKV, and

string functions called within the map code, e.g. strcpy.

3.4.2 Combine Kernel Generation

As the combine function operates on one partition at a time, there is no explicit

parallelism. However, different partitions can be processed in parallel. Unfortunately,

we have found that the number of partitions i.e., the number of reducers can be low

in certain MapReduce applications. Therefore, the degree of exploitable parallelism

can be low, leading to underutilization of the GPU. Our scheme therefore exploits in-

partition, reduction-style parallelism, while sacrificing full functional equivalence with

respect to the CPU code. The idea for this approach is simple: e.g. for the Wordcount

code, a particular partition received the following KV pairs <a,1>, <a,1>, <a, 1>,
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<b,1>. The output from a CPU combiner would be <a,3>, <b,1>. However, if

two different threads were to operate on the partition, with the first operating on the

first two KV pairs, and the second on the last two, the intermediate output would be

<a,2>, <a,1>, <b,1>. In this manner, the functional equivalence of the combiner

is traded off for parallelism. Due to the presence of the global reducers, however,

this trade-off is legal; the global reducer will eventually produce the same output.

In practice, as the number of KV pairs in each partition is typically high, this small

dissimilarity has a negligible impact on the communication volume.

A second design choice in the combine kernel generation deals with the fact that

the degree of exploitable in-partition parallelism is still usually much less than the

number of GPU threads. The compiler-generated code forces all threads in a warp

to execute the same combine function redundantly. This way, intra-warp thread

divergence is eliminated. Listing 3.4 shows the generated kernel for the Wordcount

combine code (listing 3.2). The compiler inserted a number of parameters: Keys

and values hold the KV pairs emitted by the map for the particular reducer. OpKey

and opVal store the combine-emitted KV pairs. The lengths of keys and values for

both map and combine functions are passed as parameters. The handleVariables pass

(algo. 4) adds two parameters prevWordFP and countFP for firstprivate variables.

Similar to the map setup function, the combineSetup function (line 11) initializes

the internal variables of the combiner operation. The compiler performs an optimiza-

tion of placing the private array variables in the faster shared memory for each warp.

In this example, gpu prevWord and gpu word are placed in the shared memory. The

scalars are placed in the thread registers. The compiler replaces calls to scanf that

read in the KV pairs with a GPU-specific getKV call (line 18). The keyin and valuein

clauses are necessary for this function. The original printf function for outputting the

KV pairs is replaced by the storeKV function (lines 24, 34). FinalCount keeps track
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Listing 3.4: Translated Wordcount Combiner Code

1 __global__ void gpu_combiner(char *keys, int *values,
2 char *opKey, int *opVal, int *indexArray, int *finalCount,
3 int size, int mapKeyLength, int mapValLength,
4 int combKeyLength, int combValLength,
5 char *prevWordFP, char *countFP) {
6 int laneID, kvsPerThread, warpID, ptr, gpu_val;
7 int high, kvCount, index, gpu_read, gpu_count;
8 //WARPS_IN_TB = number of warps in a threadblock
9 __shared__ char gpu_prevWord[WARPS_IN_TB][30];

10 __shared__ char gpu_word[WARPS_IN_TB][30];
11 combineSetup(kvsPerThread, &laneID, &warpID, &ptr,
12 &high, &kvCount, &index, size);
13 for(int i=0; i < 30; i++) { //init firstprivate data
14 gpu_prevWord[warpID][i] = prevWordFP[i];
15 }
16 gpu_count = countFP;
17 while(getKV(gpu_word, keys, &gpu_val, values, ptr,
18 high, indexArray, mapKeyLength, mapValLength)!= -1) {
19 if(strcmpGPU(gpu_word, gpu_prevWord[warpID],
20 mapKeyLength)==0){
21 gpu_count += gpu_val;
22 } else {
23 if(gpu_prevWord[0] != ’\0’) {
24 storeKV(gpu_prevWord[warpID], &gpu_count, &index,
25 combKeyLength, combValLength, opKey, opVal,
26 &kvCount);
27 }
28 strcpyGPU(gpu_prevWord[warpID], gpu_word,
29 mapKeyLength);
30 gpu_count=gpu_val;
31 }
32 }
33 if (gpu_prevWord[0] != ’\0’) {
34 storeKV(gpu_prevWord[warpID], &gpu_count, &index,
35 combKeyLength, combValLength, opKey, opVal, &kvCount);
36 }
37 finalCount[warpID]=kvCount;
38 }
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of the KV pairs emitted by each thread so that the final output can be combined and

written back to the CPU.

While each thread in the warp executes the combiner function redundantly, for

getKV and storeKV the threads perform vectorized loading and storing of KV pairs,

respectively. This method loads/stores one element in an array key/value from one

thread. It improves performance as it enables coalesced memory accesses. This same

optimization is also performed on string functions, such as strcpy in the combiner

kernels. Note that in order to dynamically switch between the vector and non-vector

modes, all threads in the warp must be active for the entire code execution, making

redundant execution in non-vectorizable code sections necessary. This redundant

execution comes without any side-effects, owing to the warp-level SIMD model. If

neither the key nor the value is an array, the compiler would generate a code where

only a single thread per warp is active.

3.4.3 Host Code for Offloading

Since the GPU code execution is orchestrated by the host, the compiler must

generate the necessary host code. Fig. 3.1 displays a flowchart for the structure of

the generated code. First, the code copies the input fileSplit from HDFS into the

GPU memory. A GPU kernel is then launched to collect and count the records in

the input. Next, necessary storage is allocated on the GPU for map and combine

kernels. To allocate the global KV store, all available GPU memory is used in the

absence of the kvpairs clause. Otherwise, the global KV store memory allocation

can be reduced, because the total number of records is already known. Each GPU

thread in the map kernel generates KV pairs in its own portion of the global KV

store. Note that each thread may not completely use its own portion of the global

KV store, leading to whitespaces, which are the empty slots in the global KV store.
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Figure 3.1.: Flowchart for the driver code on the host CPU : Dark boxes indicate
functions provided by the runtime system

This leads to a scattering of the KV pairs belonging to each partition. These KV

pairs must be aggregated by removing the whitespaces before they are sorted in the

next phase, reducing the sort size. The indirection array (indexArray) is useful for

performing this aggregation as the KV pairs do not need to be shuffled directly. Note

that smaller global KV store size results in better aggregation efficiency. Next, sort,

followed by the combine kernel, are run on each partition. The generated output is

written back to a local disk. For map-only jobs, the output is written directly to the

HDFS. Finally, the allocated memories are freed.

3.5 Overall Execution and Runtime System

This section describes the overall flow of the HeteroDoop framework and the

runtime system. The runtime system assists the compiler-optimized code to run on a
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Figure 3.2.: Execution Scheme of HeteroDoop : Dashed arrows represent the execu-
tion flow; solid arrows represent the compilation flow

GPU by providing a number of library functions (Section 3.5.2), and helps implement

the MapReduce semantics (Section 3.5.3).

3.5.1 Overall Execution

Fig. 3.2 shows the overall workflow in HeteroDoop and the roles of the runtime

system. First, the user-written map and combine functions are translated by the

HeteroDoop source-to-source compiler. Next, the generated CUDA code is compiled

by the nvcc compiler for the GPU executable. The original source is compiled by gcc

for the CPU executable. The executables are inserted into the Hadoop Streaming

mechanism. When the execution starts, the JobTracker sends tasks to TaskTrackers,

which schedule them either on the CPU cores, using native Hadoop Streaming, or

on a GPU. The latter is coordinated by the GPU driver of the runtime system. The

GPU driver fetches new tasks and invokes the GPU executables to perform map,

combine and other MapReduce semantic-specific operations. Upon completion of a
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task, the GPU driver informs the TaskTracker about the task completion details,

which comprise execution time, task log, etc.

Hadoop Integration and Fault Tolerance:

Fault tolerance of HeteroDoop for GPU tasks manifests itself in two ways: i) a

task failure is communicated to the Hadoop scheduler so that it can reschedule the

task; ii) the failed GPU is revived so that future tasks can still be issued to it. To

obtain this fault tolerance and to achieve issuing of tasks to GPUs, we have modified

Hadoop’s MapTask class implementation to signal a new task to be run on the GPU

to the GPU driver. TaskTrackers on each slave keep one slot reserved per GPU.

Note that these slots simply offload the tasks on GPUs; no CPU time is consumed.

Scheduling decisions on the GPU are described in the next section. Internally, the

driver runs one thread for each GPU on the node. The driver assures that only a

single task runs on the GPU at a time. If a thread’s execution fails, the error is

communicated to Hadoop TaskTracker, and the driver restarts the thread. In this

manner, the GPU driver is made fault tolerant.

3.5.2 Assisting GPU Execution

The following runtime library functions help facilitate the GPU kernel execution.

File Handling:

HDFS does not follow the POSIX API for file handling; directly reading the input

fileSplit from a C-code is not supported. The runtime system uses libHDFS [76],

which provides a C/C++ function for fetching the input fileSplits from HDFS. The

output of the map + combine execution is written to the local disk in a Hadoop-
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compatible binary format (SequenceFileFormat). For map-only jobs, the output is

written directly to the HDFS, using libHDFS.

Record Handling:

The records in an input file must be pre-determined to support record stealing.

The runtime system implements a GPU kernel that pre-determines and counts the

records in the input file. This kernel is executed before the map kernel. The runtime

system provides a thread-safe function, getRecord, which can be called by each thread

of the map kernel to fetch a new record.

3.5.3 Implementing MapReduce Semantics

Performing Partition Aggregation:

After the map execution, KV pairs in each partition of the global KV store must be

compacted to get rid of the whitespaces, resulting in an improved sorting efficiency.

The runtime system provides an aggregation function that operates in parallel. It

utilizes the count of the KV pairs emitted by each thread of the map kernel and an

indirection array to locate KV pairs in the global KV store. A fast, parallel scan

method for GPUs [77] is used to compute the prefix sum of the emitted KV pairs

for each thread. From this information and the count of KV pairs emitted by each

thread, a GPU kernel converts the old indirection array into a new one, wherein the

generated KV pairs are aggregated.
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Intermediate Sort:

Recall that the MapReduce model sorts the KV pairs after the map operation.

HeteroDoop uses a modified version of the efficient GPU merge sort implementa-

tion [78]. The original implementation operates on fixed, short-length integer keys

and values, making efficient use of the GPU shared memory. For long keys and values,

this method would make inefficient use of the shared memory and thus restrict the

partial merge size. Our implementation therefore forgoes direct key-based sorting.

We instead modify the original method [78] to employ indirection for accessing the

KV pairs. The use of indirection avoids expensive movements of the KV pairs in

the device memory. We chose this implementation over an alternative merge sort

approach [79] for variable-length keys. This alternative approach hashes the first few

characters of the variable-length keys, breaking ties by comparing the next characters.

We chose not to use this method, since hashing requires additional memory on the

GPU.

3.6 Tail Scheduling

Hadoop’s default scheduler does not take into account the disparity in the com-

putational capabilities of the processors. When employing both CPUs and GPUs,

task execution times vary substantially, requiring more advanced scheduling deci-

sions. This section describes the HeteroDoop scheduler, aiming at optimal execution

on accelerator clusters where each node has a CPU and one or more GPUs.
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Figure 3.3.: Key Idea of Tail Scheduling
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3.6.1 GPU-First Execution vs Tail Scheduling

A simplistic scheduler for CPUs and GPUs would act as follows. Whenever a new

task is issued on a node, the task is scheduled on a GPU if such a device is free;

otherwise, the CPU is chosen. We refer to this method as “GPU-first.”

Algorithm 5: Tail Scheduling on JobTracker and TaskTracker

1 Function TailScheduleOnJT(numGPUs, maxSpeedup, numSlaves)
// this function executes on the JobTracker before

// sending heartbeat response

2 jobTail = numGPUs × maxSpeedup × numSlaves;
// identifying tail

3 if (jobTail ¡ getNumRemainingMaps()) then
// assures fairness

4 taskSet = scheduleNumGPUTasksAtMax();

5 else
6 taskSet = useHadoopDefaultScheduling();
7 numMapsRemainingPerNode = getNumRemainingMaps()/numSlaves;
8 heartBeatResponse.add(numMapsRemainingPerNode, taskSet);

// TaskTracker calculates GPU speedup over CPU for each task

9 Function TailScheduleOnTT(task, numGPUs, aveSpeedup,
numMapsRemainingPerNode)

10 taskTail = numGPUs × aveSpeedup;
11 if (taskTail ¡= numMapsRemainingPerNode) then

// tail is forced on GPU

12 forceGPUexecution(task);

13 else
14 useGPUFirst(task);

GPU-first scheduling keeps all CPU and GPU cores busy until the final tasks show

up. Consider the example scenario in fig. 3.3, which uses, 1 GPU and a 2-core CPU

for scheduling a total of 19 tasks. The GPU slot is 6x faster than the CPU slot. The

figure shows the sequence number of each task. In GPU-first scheduling, shown on

the left, the 1st task would go on the GPU and the 2nd and 3rd on the CPU. Since

the GPU finishes early, the 4th task would go again on the GPU. Continuing in this



82

manner, the 17th task goes on the GPU, while the 18th and 19th stay on the CPU.

Since the CPU tasks are much slower, the faster GPU remains idle at the end stage,

which is sub-optimal. A smarter scheme, as shown on the right side of fig. 3.3, would

force tasks 18 and 19 to execute on the GPU, saving on overall execution time. This

is the key idea of tail scheduling.

A key challenge in realizing tail scheduling in HeteroDoop is for the slaves to

know when their tails begin. As this information is not available to the slaves in

the baseline Hadoop, in our algorithm, the JobTracker will estimate the number of

remaining tasks for each node and communicate this information to the TaskTrackers,

as described next.

We implement tail scheduling in HeteroDoop at two levels : on the JobTracker

and on the TaskTracker. Algorithm 5 describes the mechanism. The TaskTracker

continually calculates the average GPU slot speedup over the CPU slot and informs

the JobTracker. The Hadoop heartbeat mechanism has been modified to carry this

information. The JobTracker remembers the maximum speedup from the TaskTrack-

ers. For the TaskTracker, the tail size (taskTail) is the number of GPU tasks that

execute in the same amount of time as one CPU task. It is computed as the number

of GPUs on the current node (numGPUs) multiplied by the average GPU speedup

(aveSpeedup) seen on that TaskTracker.

The JobTracker notifies each TaskTracker about the remaining number of map

tasks to be scheduled (numMapsRemainingPerNode). As task scheduling on the Job-

Tracker is on a first-come-first-serve basis, it does not exactly know how many tasks

would go on a given TaskTracker. The JobTracker estimates numMapsRemaining-

PerNode as the total number of remaining tasks divided by the number of slaves

(line 8). Whenever taskTail is greater than numMapsRemainingPerNode, GPU-first

scheduling is used (lines 13–17). Otherwise, all the next tasks - across all slots of the
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TaskTracker - are forced for GPU execution. As all slots on a TaskTracker force their

tasks on the GPU(s) once the taskTail begins, queuing might occur on the GPU(s).

To counter this effect, the JobTracker only schedules at most numGPUs tasks on a

TaskTracker per heartbeat once the jobTail begins. JobTail is the total number of

tasks all GPUs in the cluster can finish in the same amount of time as a single CPU

core. It is estimated as numGPUs × maxSpeedup × numSlaves, where numSlaves is

the total number of slave nodes in the cluster and maxSpeedup is the maximum GPU

speedup seen across the cluster. ScheduleNumGPUTasksAtMax replaces the original

Hadoop scheduling scheme, which schedules tasks up to the number of empty GPU

and CPU slots per heartbeat (lines 3–7).

3.7 Evaluation

This section evaluates the HeteroDoop system. We present the overall perfor-

mance achieved on our heterogeneous CPU-plus-GPU system versus a CPU-only

scheme, i.e. baseline Hadoop. To analyze the performance in further detail, we show

individual task speedups of GPU over CPU execution. We also present the perfor-

mance benefits of HeteroDoop compiler optimizations on individual kernels.

3.7.1 Benchmarks

We used eight benchmarks for our experiments. Grep, wordcount, kmeans, classi-

fication, histmovies and histratings are taken from the PUMA benchmark suite [80].

They represent typical MapReduce applications, including both IO-intensive and

compute-intensive ones. Apart from these, we evaluate two scientific computation ap-

plications, blackScholes and linear regression, that have been shown to be amenable to

MapReduce [30, 70]. Grep and wordCount are well-known MapReduce applications,
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Table 3.2.: Description of the Benchmarks Used

Benchmark %Exec. Time
Map + Com-
bine are Active

Nature (In-
tensiveness)

Combiner

Grep (GR) 69 IO Yes
Histmovies (HS) 91 IO Yes
Wordcount (WC) 91 IO Yes
Histratings (HR) 92 Compute Yes
Linear Regression
(LR)

86 Compute Yes

Kmeans (KM) 89 Compute No
Classification (CL) 92 Compute No
BlackScholes (BS) 100 Compute No

Table 3.3.: Description of the Benchmarks Used

Benchmark Total Reduce Tasks Total Map tasks Input Size (GB)
Cluster1 Cluster2 Cluster1 Cluster2 Cluster1 Cluster2

Grep (GR) 16 16 7632 2880 902 340
Histmovies
(HS)

8 8 4800 640 1190 159

Wordcount
(WC)

48 32 5760 1024 844 151

Histratings
(HR)

5 5 4800 2560 591 160

Linear Regres-
sion (LR)

16 16 2560 3840 714 356

Kmeans (KM) 16 16 4800 NA 923 NA
Classification
(CL)

16 16 4800 3200 923 72

BlackScholes
(BS)

0 0 3600 5120 890 210
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and both are IO intensive. Kmeans is an iterative clustering application. While

kmeans is a centroid-based clustering algorithm, other variants such as distribution-

based or density-based clustering are popular as well. All these clustering algorithms

are known to be compute intensive. Classification benchmark is derived from statis-

tical classification algorithms. It is similar to kmeans ; however, there is no clustering

involved. The application ends after classifying the input dataset to respective cen-

troids in a single iteration. Histograms are common in big-data applications. Hist-

movies and histratings are two such applications. Histmovies averages the review

ratings for each movie in a given dataset and puts these averages into bins. Histrat-

ings directly bins each review rating for all movies in the dataset. Since the combiner

receives larger data to operate on, histratings becomes more compute intensive than

histmovies. BlackScholes is a financial pricing model, with explicit parallelism. Other

financial applications with similar workloads include binomial options and SOBOL

quasi random number generator. Linear regression is a special case of polynomial

regression, and is commonly used in curve-fitting applications. For blackScholes, we

ran 128 iterations per option. For linear regression, each input file contained data for

12 regressors, with 32 rows each. The details of the benchmarks, data sizes and tasks

are presented in tables 3.2 and 3.3.

3.7.2 Cluster Setups

Table 3.4 shows the configurations of the two clusters used in this evaluation.

Cluster1 is our primary platform. Each node has one GPU, which is a newer gen-

eration device. To evaluate the scalability of HeteroDoop on a multi-GPU system,

we use Cluster2, which includes three older-type GPUs per node. This cluster is an

in-memory system. There are no disks; input, output and temporary storage all exist

in the main memory.
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Table 3.4.: Cluster Setups Used

Cluster1 Cluster2
#nodes 48 (+1 master) 32 (+1 master)
CPU Intel Xeon E5-2680 Intel Xeon X5560
#CPU cores 20 12
GPU(s) Tesla K40 (Kepler) 3×Tesla M2090 (Fermi)
RAM 256GB 24GB
Disk 500GB none
Communication FDR InfiniBand QDR InfiniBand
Hadoop Version Hadoop 1.2.1 Hadoop 1.2.1
CUDA Version CUDA 6.0 CUDA 5.5
HDFS Block Size 256MB 256MB
HDFS Replication Factor 3 1
Max. Map Slots Per Node 20 (+1 for GPU runs) 4 (+1/GPU for GPU runs)
Max. Reduce Slots Per Node 2 2
Speculative Execution Off Off
% map tasks to finish before
reduce starts

20 20

Figure 3.4.: Performance gains of HeteroDoop normalized to CPU-only Hadoop on
Cluster1
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Figure 3.5.: Performance gains of HeteroDoop normalized to CPU-only Hadoop on
Cluster2



88

3.7.3 Overall Improvements

Fig. 3.4 and Fig. 3.5 show the overall performance of HeteroDoop over the CPU-

only Hadoop baseline for Cluster1 and Cluster2, respectively. We ran each experiment

three times, and report the best run. The variation across runs was low (¡5%). The

benchmarks are arranged by increasing speedup. As expected, HeteroDoop greatly

outperforms CPU-only Hadoop on compute-intensive benchmarks owing to the GPU

acceleration. For IO-intensive benchmarks, the use of CPUs brings about most of the

achievable performance, indicating that execution on CPUs is essential in IO-intensive

applications. In these benchmarks, HeteroDoop speedups are higher for Cluster2 than

for Cluster1 because i) Cluster1 uses more CPU cores than Cluster2, and ii) Cluster2

is an in-memory system, reducing the IO-intensiveness of the applications. Fig. 3.5

shows multi-GPU scalability results of HeteroDoop. KM is not shown, as the memory

requirement exceeds the capacity of Cluster2. The figures also show the effectiveness

of tail scheduling over GPU-first scheduling. Note that tail scheduling improves

performance only if the GPU(s) go idle at the end of the execution. For LR on

Cluster1, this imbalance does not arise. For the IO-intensive benchmarks, the GPU

speedup over a CPU core is low, resulting in only marginal benefits of HeteroDoop

and tail scheduling.

3.7.4 Detailed Analysis

We present detailed analyses of the performance obtained on our primary cluster,

Cluster1. Cluster2 showed similar trends. Fig. 3.6 shows the speedups obtained

by a GPU task over a CPU task run by a single core, with the compiler-translated

baseline code and with the optimizations. The optimizations include vectorization of

map and combine kernels, using texture memory, record stealing and performing KV
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Figure 3.6.: Speedup of a single GPU task over a CPU task : Optimizations have
high impact on three benchmarks

Figure 3.7.: Execution time breakdown of a GPU task

Figure 3.8.: Effects of using Texture Memory
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Figure 3.9.: Effects of Record Stealing on map kernels

Figure 3.10.: Effects of Vectorized Read-Write on combine kernels

pair aggregation prior to sort. The GPU task comprises input copy, record counting,

map, aggregate, sort, combine, and output write operations. The benchmarks are

sorted by increasing speedups of their tasks. We attribute the increasing speedup

to higher compute intensiveness. Each bar in the figure shows the speedup achieved

by the baseline-translated code and the additional benefit of the optimizations. In

GR, KM, CL, and LR, the optimizations gain substantial additional performance.

Note that even for IO-intensive applications, such as GR and HS, the GPU achieves

speedups over a single CPU core, and therefore, executing MapReduce tasks on GPUs

along with CPU cores is still beneficial in these applications.

Fig. 3.7 breaks down the execution time for a single GPU task on each bench-

mark. Input reading time is the time for reading the HDFS file. Output writing time
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Figure 3.11.: Effects of Vectorized Read-Write on map kernels

Figure 3.12.: Effects of KV Pair Aggregation on sort kernels
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measures the time required for formatting the generated GPU output in Hadoop bi-

nary format, calculating the checksum, and writing the data on the HDFS/local disk,

depending on whether or not the application is map-only. Fig. 3.7 shows that differ-

ent stages of the MapReduce scheme can form a bottleneck on the GPU for different

benchmarks. Note that the partition aggregation times are negligible in all bench-

marks. Both these experiments (fig. 3.6, fig. 3.7) made use of input data-local map

+ combine tasks. These figures indicate that a single-task speedup can be as high as

47x for BS, which is our most compute-intensive application. The GPU task of BS

spends 62% of its execution time writing the output, which is up from 1% in a CPU

task. Evidently, the high computational power of GPUs moves the bottleneck from

computation to disk write. CL and KM are both map-heavy operations. Wordcount

shows an interesting case where most of the execution time is spent in sorting since

it emits many long-length keys. HR and LR spend substantial execution time in the

combine operation.

Fig. 3.8, 3.9, 3.10, 3.11 shows the effects of individual optimizations. The first

is the usage of texture memory, which can speed up the map kernel in KM and CL

benchmarks by 2x (fig. 3.8). Vectorized read and write of the KV pairs in the combine

kernel can improve this operation by 2.7x, as shown in fig. 3.10. Vectorized read and

write in the map kernel can yield gains of up to 1.7x (fig. 3.11). A speedup of up

to 1.36x is gained by the record stealing scheme on map kernels as shown in fig. 3.9.

Aggregating KV pairs in each partition prior to sorting can improve the sort kernel’s

performance by up to 7.6x (fig. 3.12).

3.8 Related Work

Single Node Systems: MapReduce has been studied as a programming model

for several architectures. Two approaches [81, 82] target multi-cores. Catanzero et.
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al. [31] proposed a MapReduce system for GPUs. Mars [29] uses MapReduce as a

programming model for a single GPU node. MapCG [34] offers a MapRedue API

that is portable across CPUs and GPUs. But all these systems lack a distributed

framework, and do not scale across a cluster.

Distributed Systems: GPMR [30] uses CUDA + MPI as a platform for writing

applications, but does not employ CPUs in a cluster. As both CUDA and MPI require

significant programmer expertise to organize the parallelism and manage communi-

cation, programmability of GPMR is low. MITHRA [70] is a system that shows the

effectiveness of using Hadoop and GPUs together in two scientific applications. Un-

like HeteroDoop, MITHRA relies on the programmer to write CUDA code for the

application. MITHRA uses Hadoop Streaming as well, and supports only the GPUs

in a cluster.

Employing CPUs and GPUs: HadoopCL [83] presents a Java-based approach,

where the programmer must write the map and reduce functions in GPU-friendly

classes. HadoopCL performs bytecode translation of the input Java program into

an OpenCL program, for both CPU and GPU. A key difference between HadoopCL

and HeteroDoop is the automatic parallelization on the CPU cores; only a single

task is run across all the CPU cores, because it is executed as an OpenCL program.

While this strategy works for a single job on a cluster, it would require significant

changes in the Hadoop scheduler when jobs have to share a cluster. In contrast to

HeteroDoop, HadoopCL lacks architecture-specific clauses that can improve the pro-

gram performance. Unlike HeteroDoop, HadoopCL does not have a runtime system

to handle MapReduce semantics, and therefore, they must be handled on the CPU.

Glasswing [33] uses another approach to utilize both CPUs and GPUs for MapRe-
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duce. It requires the input map and reduce kernels to be written with OpenCL and

offers a unified API to feed these kernels to the framework.

Scheduling Hadoop Tasks on a CPU-GPU Cluster: Shirahata et. al. [84]

present a strategy where map tasks can be run on both CPUs and GPUs. The pro-

grammer is expected to provide the corresponding CPU/CUDA codes. This work

employs a mathematical performance model for a heterogeneous scheduling strategy

that minimizes the overall execution time for the given constraints. However, such

minimization requires evaluation of the performance model throughout the job execu-

tion. By contrast, tail scheduling affects only the final tasks, reducing the scheduling

overhead.

GPU-Specific MapReduce Optimizations: Chen et. al. present a system [85]

and optimizations for running MapReduce on CPU-GPU coupled architectures, where

the CPU and GPU share the system memory. Another approach [86] presents a

system that makes better use of the on-chip shared memory of the GPU for running

reduction-intensive applications. Both these systems present important optimizations

for MapReduce as a programming model on a single node. However, they are not

directly applicable to distributed MapReduce since the map and reduce stages may

run on different nodes. Also, GPU-shared-memory based optimizations for storing

intermediate KV pairs would be precluded.

3.9 Chapter Takeaways

This chapter has presented HeteroDoop, a MapReduce framework and system

that employs both CPUs and GPUs in a cluster. It has introduced HeteroDoop di-

rectives, that can be placed on an existing sequential, CPU-only, MapReduce program

for efficient execution on both the CPU and one or more GPUs on each node. The
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optimizing HeteroDoop compiler translates the directive-augmented programs into

efficient GPU codes. HeteroDoop’s runtime system assists in carrying out the com-

piler optimizations and handling MapReduce semantics on the GPUs. HeteroDoop

is built on top of Hadoop, the state-of-the-art MapReduce framework for CPUs. The

HeteroDoop runtime system plays a vital role in this integration. A novel scheduling

scheme optimizes the execution times of jobs on CPU-GPU heterogeneous clusters.

Our experiments with HeteroDoop in eight benchmarks demonstrate that using a sin-

gle GPU per node can achieve speedups of up to 2.78x, with a geometric mean of 1.6x,

compared to a cluster running CPU-only Hadoop on 20-core CPUs. The proposed

tail scheduling scheme works well for intra-node heterogeneity. We leave handling of

extreme inter-node heterogeneity to future work, where the trade-off between data

locality and execution speed will be an important additional consideration.

This and the previous chapters have dealt with issues of GPU program tuning and

automatic scaling to single-GPU, multi-GPU, and multi-node systems. All of these

chapters have shown optimizations that work in either intra-kernel or inter-kernel

manner. In the next chapter, we are going to look at the problem of control flow

structuring, which occurs at an even finer level – at the granularity of each warp in a

kernel.
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4. FORMALIZED CONTROL FLOW STRUCTURING

WITHOUT CODE EXPLOSION

This chapter proposes a compiler technique to lower the penalty of divergent execution

on accelerators with SIMD execution mechanism. This penalty gets exacerbated on

“unstructured” control flow graphs (CFGs). The chapter first formalizes the notion

of structured CFGs, and then presents a mechanism to convert unstructured CFGs

into structured ones.

4.1 Introduction

Structured programming is a paradigm where programs are written using just

three base constructs [37, 87], namely, i) sequence of statements, ii) if -then-else

blocks, and iii) loops. Structured programming was sought for many reasons, two

important ones being readability of the program [37, 40] and ease of analyzing the

control flow [88]. While optimizing programs, compilers operate on the control flow

graph (CFG) of the program, which is usually built upon an intermediate representa-

tion (IR), and not on the program source itself. A CFG is a directed graph in which

the nodes represent basic blocks and the edges represent control flow paths [88]. As

compilers work on CFGs, structuredness of CFGs becomes an important considera-

tion. A key insight of this paper is that structured CFGs do not follow directly from

structured program source codes.

The common notion of structured CFGs considers three base patterns [89, 90],

similar to the structured program constructs mentioned above. They comprise a

sequence (Fig. 4.1a), a selection (Fig. 4.1b), and a loop (Fig. 4.1c). We argue that
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(a) Sequence (b) Selection (c) Loop

Figure 4.1.: Base Structured Patterns

such a pictorial depiction of base patterns alone is insufficient and leads to imprecision.

The “definition” fails to clearly distinguish a structured CFG from an unstructured

one. Consider the CFGs in Fig 4.2, which do not show any obvious matching to the

base patterns. Creating structured CFGs contrasts with structured programming,

where just by looking for the presence of unstructuring-causing constructs, such as

goto and break statements, unstructuredness can be easily detected. The difficulty

in doing the same in CFGs arises because the pictorial representations of the base

structured patterns do not show how to compose the patterns into larger CFGs or

decompose CFGs.

This paper formalizes the notion of base structured patterns by providing defini-

tions for each of them and presenting a conceptual framework, called folding, that

replaces base patterns by single nodes. The repeated application of folding determines

whether a given CFG is structured or not.

Structured CFGs are desirable for a number of reasons. A key reason is the ease

of program analysis, as structured CFGs cannot contain irreduciblity 1. Irreducibility

is a condition where one or more loops in a CFG have more than one entry points. Ir-

1We recommend e-reading to benefit from the hyperlinks
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Figure 4.2.: Are these CFGs structured? The base patterns in Fig. 4.1 fail to answer.

reducible CFGs are difficult to analyze. Many compiler analyses and transformations

take place only if the CFG is reducible [91–97]. Structured CFGs are considered eas-

ier to understand. A measure of control flow complexity is the number of knots [98].

A knot is an unavoidable crossing of two edges in a CFG. Structured CFGs have

no knots, and hence are less complex. Unlike unstructured CFGs, structured CFGs

can be translated back into high-level source codes, e.g., a Java bytecode with irre-

ducibility, which is unstructured, cannot be translated into Java source, since goto

statements are not supported in Java. Third, SIMD architectures such as GPUs have

poor or no support for unstructured CFGs, which may lead to control flow diver-

gence [35] resulting in performance degradations.

For the above reasons, techniques to remove unstructuredness are necessary. Many

prior proposals have offered mechanisms to convert unstructured programs into struc-

tured ones [36–40]. They work on the program source to eliminate constructs that

cause unstructuredness, such as goto and break, with an assumption that the out-

put structured programs are always converted into structured CFGs by the underlying

compiler. Table 4.1 (Section 4.8.3) will show that this indeed is not the case in prac-
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tice; compiler front-ends can generate unstructured CFGs from structured programs.

Furthermore, compiler optimizations can introduce unstructuring/irreducibility as

well, e.g, short-circuiting, inlining [35], jump threading, and tail-call elimination [99].

Therefore, techniques to remove unstructuredness that work directly on CFGs are

required.

Another issue with existing structuring techniques, both those that operate on

program source [36–40, 100–103] and those that operate on CFGs [104, 105], is that

they resort to a technique named Node Splitting [106] to remove irreducibility. Node

splitting operates by duplicating parts of the code. It has been shown that Node

Splitting-based mechanisms may lead to exponential code blowup [107], rendering

any CFG analysis impossible. Conventional compilers, such as llvm and gcc, forgo

Node Splitting, and disregard optimizations on irreducible loops. This is not the best

approach though; presence of a single irreducible loop has been shown to restrict

compiler optimizations on other reducible loops, due to loop nesting [108].

The exponential code expansion aspect of irreducible CFGs has found interest in

the software obfuscation field. Software obfuscation intends to make it practically

impossible for an attacker to statically determine program properties. To do so, it

changes the nature of the code while retaining the functionality. A common obfusca-

tion technique inserts dummy edges in the CFG to make it irreducible [107,109,110].

Since the equivalent reducible CFG would be exponentially larger, attacker’s tools

would fail to perform reasonable analyses.

This chapter presents a novel algorithm to remove unstructuredness from CFGs.

It operates directly on arbitrary CFGs to generate structured CFGs. The algorithm

avoids code duplication in all circumstances. The algorithm is based upon two novel

transformations that reorganize the control flow by inserting additional variables that

act as predicates. An important result proven in this chapter is that, unlike the Node
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Splitting-based mechanisms, the predication-based technique proposed in this work

does not face blowup and restricts the code expansion to only a polynomial function

of the original code size. Furthermore, we show that the additional control flow

inserted by our mechanism does not restrict traditional compiler analyses. This is

a word of caution to obfuscators that operate by introducing irreducibility. The

chapter presents experimental evaluation showing that while traditional compilers

fail to analyze the CFGs obfuscated by this approach, application of the proposed

structuring mechanism unlocks such analyses.

To summarize, the contributions of this chapter are:

• The chapter formalizes the notion of structured CFGs by presenting precise

definitions of the three base patterns that constitute a structured CFG. It in-

troduces folding, a conceptual framework that helps determine if a given CFG

is structured.

• It proposes two novel transformations and subsequently an algorithm that con-

verts an arbitrary unstructured CFG into a structured CFG, without requiring

code duplication.

• The chapter proves that this algorithm avoids exponential blowup in even those

cases where the input CFG is irreducible.

• We experimentally show that obfuscation by irreducibility insertion is rendered

ineffective with the help of the proposed structuring mechanism.

The rest of this chapter is organized as follows : Section 4.2 presents prelimi-

nary CFG concepts that are required to understand our transformations. Section 4.3

presents definitions that represent various phenomena in CFGs and theorems that

prove certain properties of CFGs. Section 4.4 builds on them, and describes the
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two structuring transformations. Section 4.5 presents an algorithm that uses these

transformations to convert an unstructured CFG into a structured one. Section 4.6

analyzes the growth in code size caused by this algorithm and proves that the code

expansion is limited by a polynomial function of the number on nodes in the CFG.

Section 4.7 describes related work. Section 4.8 presents experimental results, while

Section 4.9 presents the takeaways from the chapter.

4.2 Preliminaries

This section presents common definitions and concepts that lay foundations of

this work.

We consider CFGs with a single entry and exit nodes. There are no infinite loops,

i.e, there exists a path from each node in the CFG to the exit node. Symmetrically,

each node in the CFG can be reached from the entry node. Also, we assume that the

maximum in-degree and out-degree is two. Generality is maintained since a CFG with

any in-degree or out-degree can be converted into a CFG with a maximum in-degree

and out-degree of two.

Definition 4.2.1 Path : A path between nodes A and B is an ordered list of adjacent

edges and vertices. The list begins with an out-edge of A, and ends with an in-edge

of B.

Definition 4.2.2 Region : The region between two nodes (edges) A and B contains

all nodes and edges that are present on any path from A to B. If the starting/ending

points are nodes, they are included in the region too.

Definition 4.2.3 Dominator : A node (edge) P is a dominator of a node (edge) Q

if every path from the entry node of the CFG that reaches Q has to pass through P.
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Each node or edge dominates itself. Each dominator of a given node (edge), except

itself, is said to be a strict dominator of the node (edge).

Definition 4.2.4 Post-dominator : A node (edge) Q is a post-dominator of a

node (edge) P if every path from P to the exit node of the CFG has to pass through

Q.

Each node or edge post-dominates itself. Each post-dominator of a given node

(edge), except itself, is said to be a strict post-dominator of the node (edge). The

dominator (post-dominator) relationships allow construction of a dominator (post-

dominator) tree of the CFG, wherein the parent of a node is its strict dominator

(post-dominator). The parent node of a given node in the post-dominator tree is

known as the immediate post-dominator (IPDOM) of that node.

Definition 4.2.5 Single-entry-single-exit (SESE) region : The region between

two nodes (edges) A and B is SESE if all of the following are true:

• A dominates B

• B post-dominates A

• Every cycle containing A also contains B and vice versa.

A node (edge) is a SESE region by itself. Each base pattern in Fig. 4.1 represents

a SESE region. For the selection pattern (Fig. 4.1b), node A is the entry and node D

is the exit. For the loop pattern (Fig. 4.1c), node A is the entry as well as the exit.

Definition 4.2.6 Loop condition node, loop path : A given condition node N

(N has two out-edges) is said to be a loop condition node, if there is a simple path

(all nodes along the path have in/out-degree of one) that originates and ends at N.

We refer to any such path as a loop path.
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Figure 4.3.: Example of an irreducible CFG
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Next, we describe the transformations that determine if a CFG is reducible or

not. We attribute the definitions to Hecht and Ullman [111].

Definition 4.2.7 T1 : T1 is a transformation that removes an edge from a node

onto itself.

Definition 4.2.8 T2 : If a node B has a single predecessor node A, then transfor-

mation T2 replaces nodes A and B with a single node C. Predecessors of A become

the predecessors of C. Successors of A or B become successors of C.

Definition 4.2.9 Reducible CFG : A CFG is reducible iff it becomes a single node

through repeated applications of T1 and T2, otherwise, it is said to be irreducible.

Fig. 4.3 shows an example of an irreducible CFG, where neither T1 nor T2 can

be applied.

4.3 Analyzing Unstructuredness

This section formalizes the notion of structured CFGs by providing formal defini-

tions for the structured base patterns. It introduces the framework of folding, which

decomposes CFGs into base patterns. The section introduces terminology to define

elements of a CFG, and presents a set of theorems on which the structuring algorithm

described in the next sections is built upon.

We begin by defining structured selection and loop condition nodes (nodes with

two out-edges).

Definition 4.3.1 Structured selection condition node, selection body : A

condition node N is a structured selection condition if for every path from N to its

IPDOM, the region between the first and last edges is SESE. Therefore, the region

between the structured selection condition and its IPDOM is SESE as well, which is

said to be its selection body.
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Figure 4.4.: Maximal folding

Definition 4.3.2 Structured loop condition node, loop body : A structured

loop condition node is a loop condition node where there exists a SESE region between

one of its out-edges and in-edges. This SESE region is called the loop body.

Definition 4.3.3 Unstructured condition node : If a condition node is neither

a structured selection condition node, nor a structured loop condition node, then it is

an unstructured condition node.

Examples: Node A in the base selection pattern (Fig. 4.1b) is a structured selection

condition. Node A in the base loop pattern (Fig. 4.1c) is a structured loop condition,

with edge A→A being both the entry and exit edge of the SESE region (left figure)

or edge A→B being the entry edge and the edge B→A being the exit edge of the

SESE region (right figure). For condition node A in Fig. 4.4, G is the IPDOM. A→B

→E→G is one path from A to G, on which the region between the first and last edges

is not SESE. Hence, A is not a structured selection node. Similarly, for no out-edge

and in-edge pair of A, there exists a SESE region. Therefore, A is not a structured

loop condition node either. Hence, A is an unstructured condition node.
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Now, we present formal definitions for the base structured patterns shown in

Fig. 4.1.

Definition 4.3.4 Sequence : Two nodes, A and B, along with an edge A → B are

said to form a sequence if B is the sole successor of A, and A is the sole predecessor

of B.

Definition 4.3.5 Selection : The pattern of selection contains a structured selec-

tion condition node, its IPDOM, and the selection body. The selection body must

contain at least one node, and any path from the selection condition node to the IP-

DOM can have at most one node.

Definition 4.3.6 Loop : The pattern of loop contains a structured loop condition

node, the loop body, and the entry and exit edges of the loop body. The loop body can

contain at most one node.

To determine if a CFG is structured, we introduce a new concept, called folding.

Definition 4.3.7 Folding : Folding is a process of replacing a base structured pat-

tern with a single node in the CFG. During folding, any edge not belonging to the base

pattern, but having its source (sink) node in the base pattern, is redirected so that the

newly created single node is its source (sink).

Definition 4.3.8 Maximal Folding : Maximal folding repeatedly applies folding

to a CFG until no more base structured patterns exist.

Fig. 4.4 shows an example CFG and its maximally folded equivalent.

Definition 4.3.9 Completely Foldable CFG : If a maximally folded CFG con-

tains a single node, then the CFG is called completely foldable.
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Definition 4.3.10 Structured CFG : A CFG is said to be structured iff it is com-

pletely foldable. Otherwise, it is called an unstructured CFG.

Complete foldability, i.e., structuredness, implies that the CFG is composed of

the base structured patterns. While reducibility eases CFG analysis, it does not

determine if the CFG is structured or not. E.g., the CFG in Fig. 4.4 is reducible, but

is unstructured.

Definition 4.3.11 Structured Region : A completely foldable region is called a

structured region.

Theorem 4.3.1 Structured CFGs are reducible.

Proof Since a structured CFG is completely foldable, the idea here is to show that

each base structured pattern is reducible. As shown in Fig. 4.5a, a sequence can

be reduced into a single node by applying T2. Fig. 4.5b shows that the repeated

application of T2 can reduce the base selection pattern, while Fig. 4.5c shows that

application of T2 (if the loop is not a self loop), or T1 (if the loop is a self loop)

can reduce the base loop pattern. The process of folding replaces a base structured

pattern with a single node. Since each base pattern can be reduced by T1 and/or

T2, it follows that instead of folding a base pattern, one can apply T1 and/or T2,

and a continued application would result in a CFG containing a single node, implying

reducibility.

Corollary 1 Every irreducible CFG is unstructured.

Proof Follows directly from Theorem 4.3.1.

Lemma 1 In a maximally folded CFG that can not be completely folded, there must

be at least one unstructured condition node.
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(a) Sequence (b) Selection

(c) Loop

Figure 4.5.: Reducibility of base patterns

Proof Let us assume that all condition nodes in a CFG are either structured selec-

tion conditions or structured loop conditions. Then, there must be some (innermost)

condition node whose body does not have a condition node. There are two possibilities

for this node:

Case 1: Structured Selection Condition : In this case, there can only be two

distinct, simple paths originating at this node that reach its IPDOM, since there are

no condition nodes in the selection body. By the definition of a structured condition

node, nodes on each of these paths are dominated by their first edge, and hence none of

their nodes can have two in-edges. Therefore both these paths can only contain nodes

with a single predecessor and a single successor, however, as the CFG is maximally
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folded, there can at most be one node on either of these two paths. Hence, the

selection condition node, its IPDOM, and, the selection body would match the base

structured selection pattern.

Case 2: Structured Loop Condition : In this case, this node’s loop body

can only have nodes with a single predecessor and a single successor. With a similar

argument as in case 1, the loop body can only have at most one node. Hence, the

loop condition node, the loop body, and its entry and exit edges would match the

base structured loop pattern.

Thus, in both cases, a base structured pattern would exist in the CFG, which is a

contradiction. Hence, a maximally folded, but not completely folded CFG must have

an unstructured condition node.

So far, this section has described the nature of structured CFGs, and how to distin-

guish them from unstructured CFGs. We now present new terminology, and present

certain theorems that are crucial in converting unstructured CFGs to structured ones.

Definition 4.3.12 Pseudo Root (PR): PR is any condition node in the CFG.

Definition 4.3.13 Post-dominator Candidate (PDC): PDC is a node that can

be reached from both out-edges of a given PR through non-overlapping simple paths,

neither of which contains the PR itself. These two paths are called Left Path and

Right Path; the former starting at the condition true edge, and the latter beginning

at the condition false edge.

Definition 4.3.14 Candidate Subgraph (CS): CS is a set of nodes on the left

and right paths. A set of nodes on the left path is called LCS and on the right path

is called RCS.
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Figure 4.6.: Combinations of PR-PDC pairs for the maximally folded CFG in Fig. 4.4

Definition 4.3.15 Contending Edge (CE): A CE is an edge that is neither on

the left path nor on the right path, but a CS node is either its source or sink.

Definition 4.3.16 Incoming Contending Edge (ICE): A contending edge that

is an in-edge to a CS node.

Definition 4.3.17 Outgoing Contending Edge (OCE): A contending edge that

is an out-edge from a CS node.

Examples: Fig. 4.6 shows the combinations of various PR-PDC pairs in the maxi-

mally folded CFG in Fig. 4.4. Certain properties of a maximally folded graph can be

observed from this figure. First, for a given PR, multiple PDCs may exist, e.g. node

A has two possible PDCs, CRD and G. A PR can be its own PDC, e.g. node B is its

own PDC. The path from the left out-edge of B reaches itself through E, while the

path from its right out-edge reaches B through CRD and A. A single edge could be

both an ICE and an OCE for a given PR-PDC pair, e.g., for PR-PDC pair of A-G,

edge (B → CRD) is both an ICE and an OCE.
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Lemma 2 In a maximally folded CFG, if a given PR is a structured selection/loop

condition node, then there must exist an unstructured condition node in the selec-

tion/loop body of the PR.

Proof Consider the selection/loop body for such a PR, which is a SESE region. If

the PR is a structured selection condition, then without loss of generality, we can

treat the PR, its IPDOM and the selection body as a sub-CFG that is maximally

folded. Similarly, if the PR is a structured loop condition node, then without loss

of generality, consider the loop body as a sub-CFG that is maximally folded. As

this sub-CFG is not completely folded, by Lemma 1, it must contain an unstructured

condition node.

Definition 4.3.18 Bounded loop condition node : A loop condition node that

has a loop path whose first edge is post-dominated by the last edge is called a bounded

loop condition node. The corresponding path is called a bounded loop path.

Lemma 3 If a CFG contains a PR for which no PDC is present, then the PR must

be a bounded loop condition node.

Proof The IPDOM of a given condition node is its first strict post-dominator, i.e.,

each path from the condition node to the CFG exit node must pass through the

IPDOM. If no out-edge of the condition node is post-dominated by itself, then there

must be two non-overlapping simple paths from the condition node to its IPDOM,

making the IPDOM a PDC. The only case in which a condition node can not have

a PDC is if one of its out-edges is post-dominated by itself, i.e., the condition node

must be a loop condition node where the last edge of the loop path post-dominates

its first edge, meaning that the condition node is a bounded loop condition node.
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(a) Bounded loop paths overlap (b) Bounded loop paths do not overlap

Figure 4.7.: Bounded loop path (~P ) has a bounded loop condition node (M) : ~P is
represented by dotted lines

The next theorem, Theorem 4.3.2, plays an important role in our algorithm that

converts an unstructured CFG into a structured one, as will be described in Sec-

tion 4.5. This theorem guarantees that if a mechanism can generate a CFG where

no PR-PDC pairs exist in the maximally folded CFG, then it must be a structured

CFG.

Theorem 4.3.2 In a maximally folded CFG, if there is a PR for which no PDC

exists, then there must exist another PR in the CFG for which a PDC is present.

Proof Because there is no PDC for the given PR, the PR must be a bounded loop

condition node, by Lemma 3. Let this PR be called X. Consider any bounded loop

path, ~P , of X. There exist the following two cases:

1. ~P has at least one condition node : Consider one such condition node M,

which can be of the following two types:

(a) M is a bounded loop condition node (Fig. 4.7). Two cases arise:

Case i) A bounded loop path of M has a node N in common with ~P , as

shown in Fig. 4.7a. Then, from one out-edge of M, a simple path reaches N
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(a) Loop condition node has one in-edge
(b) Loop condition node has two

in-edges

Figure 4.8.: Bounded loop path (~P ) has no condition nodes : ~P is represented by
dotted lines

through the bounded loop path of M. The other out-edge of M reaches N

through ~P . Hence, M-N form a PR-PDC pair. Case ii) No bounded loop

path of M has a node in common with ~P , as shown in Fig. 4.7b. Then,

M-M form a PR-PDC pair, since one path from M reaches itself through

one of its bounded loop path, while the other reaches M via ~P .

(b) M is not a bounded loop condition node : A PDC must exist for M,

by Lemma 3.

2. ~P has no condition node (Fig. 4.8) : Since ~P is not folded, and since it

does not have any condition node, some node Y belonging to ~P must have two

in-edges. Again, since ~P does not have a condition node, the source node of

one of these edges, say Z, must not be on ~P . The following two cases arise:

(a) X has only one in-edge (Fig. 4.8a): Note that a sub-path of ~P from Y

(a single out-edge node) to X (a single in-edge node) is not folded. Hence,

it must mean that there is some other node S on it, which has an in-edge
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from some node T that is not on ~P . Let Q be the common nearest ancestor

of Z and T in the dominator tree of the CFG. From Q, one simple path

reaches S through ~P and through Z. The other reaches S without passing

through ~P , but through T. Hence, Q-S form a PR-PDC pair. Note that

Z and T can be the same node, in which case Q will be that node as well.

Also, it is possible that Q and Z are the same node, or Q and T are the

same node.

(b) X has two in-edges (Fig. 4.8b): Let U be the predecessor of the in-edge

of X that is not on ~P . Let V be the common nearest ancestor of Z and

U in the dominator tree of the CFG. From V, one simple path reaches

X through U, without passing through ~P . From V, another simple path

reaches X though the edge Z→Y, passing through ~P . Hence, V-X form a

PR-PDC pair. Z and U can be the same node, in which case V would be

that node as well. Also, it is possible that V and Z are the same node, or

V and U are the same node.

Therefore, some PR-PDC pair must exist in a maximally folded CFG that contains

at least one condition node.

Theorem 4.3.3 In a maximally folded CFG, the PR that is farthest away from the

entry node of the CFG, and for which a PDC exists, is always an unstructured con-

dition node.

Proof We prove this theorem by contradiction. Let us assume that such a PR is

a structured selection condition node or a structured loop condition node, and call

it PRO. Then by Lemma 2, there must be an unstructured condition node inside
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(a) Basic RICE technique

(b) RICE with short channelling

Figure 4.9.: RICE Transformation: Dotted edges and darkened nodes belong to left-
/right paths. Dashed edge is an ICE.
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the selection/loop body of PRO. Consider the selection/loop body of PRO, which is

SESE, as the target sub-CFG. Now, in this sub-CFG, there must be a PR, say PRI,

for which a PDC could be found, by Theorem 4.3.2.

Since PRO dominates its selection/loop body, any node inside the selection/loop

body is farther away from the entry node of the CFG than PRO. Hence, PRI is farther

away from the entry node, and also has a PDC, which is a contradiction. Therefore,

a PR that is farthest away from the entry node, and for which a PDC exists, has to

be an unstructured condition node.

Theorem 4.3.4 In a maximally folded CFG, for a PR that is an unstructured con-

dition node and has a PDC, there must be at least one CE.

Proof We prove this theorem by contradiction. Let us assume that there is no

CE for the PR-PDC pair with the PR being an unstructured condition node. Then,

each node on the left and right path must have only one in-edge and one out-edge.

Since the graph is maximally folded, on each path, there can only be one such node.

However, the PR, the PDC and the left and right paths would now form the base

selection pattern, which is a contradiction in a maximally folded CFG. Hence, for a

PR which is an unstructured condition node and has a PDC, there must at least be

one CE.

4.4 Structuring Transformations

This section presents two compiler transformations, RICE and ROCE, that oper-

ate on a maximally folded CFG and replace an unstructured PR with a structured se-

lection condition. As a result, the selection body of the new PR becomes a structured

region. Section 4.5 will explain how the repeated application of these transformations

to each unstructured condition node creates a structured CFG.
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Conventions: Each CFG node N contains code, c N, followed by a jump at the

end. If N is a condition node, the jump depends on a condition variable, condVar N.

Otherwise, the jump reaches the sole successor of the node. Without loss of gener-

ality, we assume that the CFGs are binary and condVar N is a boolean variable. If

condVar N is true, the left target is executed, otherwise the right target is executed.

Redirection of a node N containing an unconditional jump to some node X means

that the jump target of N’s jump instruction is changed to X. Similarly, if N were to

contain a conditional jump with one of the targets being Y, then the redirection of

edge N → Y to X means replacing the jump target containing Y by X.

4.4.1 Overview of RICE and ROCE

This section presents a high-level overview of the RICE and ROCE transforma-

tions. Sections 4.4.2, 4.4.3 describe the algorithmic details.

The key intuition in the RICE transformation is that it re-channels each ICE to

come in through the PR, and then creates a path from the PR to the original sink

node of the ICE. Fig. 4.9a shows a simple sub-CFG where for the PR-PDC pair of

A-E, Q→B is a single ICE. RICE splits the original PR into two nodes. The first

node is c A which contains the code in A followed by an unconditional jump to a

new node, npr. The second node, npr, contains only the conditional jump in A.

Next, to channel Q→B via npr, RICE first redirects it to to a new predicate setter

node, ps1, and directs ps1 to npr. To ensure that B is reached from npr if the

original ICE was taken, cond npr must be modified. To that end, RICE creates a

new predicate variable predin and inserts a “predin=true” instruction in ps1. It then

modifies condVar npr to be condVar npr ∨ predin. This way, if the original ICE were

to execute, predin will be true, and the control would reach B. Finally, RICE inserts
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instruction “predin=false” in the CFG entry node to initialize predin, and also in B,

to reset it after the ICE is executed.

A difficulty arises when the ICE sink node is not the immediate successor of the

PR. Consider Fig. 4.9b, where D has an ICE. In such a case, the above mechanism

would incorrectly execute B in the changed ICE path. To resolve this issue, RICE

inserts a condition node, called a short-channel node (sc1 ), as the PR’s left child.

RICE uses predin as condVar sc1, and sets the left target of cond sc1 to the original

ICE sink (D), and the right target to the PR’s original left child (B). Thus, if ICE is

taken, B will be skipped, and control reaches D.

Analogously, the ROCE transformation re-channels an OCE to go out through

the PDC node, and creates a path from the PDC to the original OCE sink node.

Fig. 4.10a shows a sub-CFG where the edge C→Q is the single OCE for the PR-

PDC pair A-E. First, ROCE redirects the OCE to a new node, ps1. ROCE creates

a new predicate variable, predout, and adds an instruction “predout=true” to indicate

that the OCE is being taken inside ps1. Next, ROCE creates a merge node, m1, as

the last node on the right path and directs ps1 to m1. ROCE creates a new node,

npdc, to act as the new PDC, and redirects the predecessors of E to npdc. ROCE

sets condVar npdc to be predout, with the left target being the sink node Q, and the

right target being E. Finally, ROCE inserts “predout=false” in the CFG entry node to

initialize predout, as well as in Q to reset it. Note that the sole purpose of the merge

node is to restrict the in-degree of npdc to two.

A final issue may arise as ROCE is performed after RICE. RICE may insert

condition nodes, i.e., short-channel nodes, on the left/right paths; ROCE must ensure

their structuredness while removing OCEs. Consider the sub-CFG in Fig. 4.10b where

an ICE and an OCE “cross”, i.e., the ICE R→D arrives at a node on the right path

that is after the OCE source node C. The above described basic ROSE transformation
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(a) Basic ROCE technique

(b) ROCE - performed inside-out, on crossing ICE and OCE

Figure 4.10.: ROCE Transformation: Dotted edges and darkened nodes belong to
left/right paths. Dashed edge is an ICE, shadowed edge is an OCE. Nodes named
sc* are short-channel nodes, m* are merge nodes, and ps* are predSetter nodes.
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would create an edge from ps1 to m1, rendering C and sc1 unstructured. To overcome

this problem, the ROCE transformation operates inside out. The key intuition here

is that C→Q is now an OCE for the inner PR-PDC pair of sc1 -D. Thus, the basic

ROCE transformation is applied to this pair first, and then to the outer PR-PDC

pair of npr -E.

RICE and ROCE create a new PR-PDC pair wherein the respective regions be-

tween the first and last edges of both the left and right paths become SESE due to

the removal of CEs. Therefore, the new PR becomes a structured selection condition

node.

4.4.2 RICE - Removing Incoming Contending Edges

The RICE transformation removes all ICEs for a given PR-PDC pair. Algorithm 6

shows the RICE procedure. For a given PR-PDC pair, if there is at least one ICE,

then the algorithm splits the PR node into two nodes, c PR and npr (Lines 2-3).

The lists LCS and RCS contain nodes in the left and right paths respectively, in

the order of their appearance, e.g., LCS for the CFG in Fig. 4.11a would be {B, E}.

Lists LCE and RCE contain ICEs whose sink nodes are in LCS and RCS, respectively.

They are arranged in the order of their sink nodes in the left/right paths, leading to

a closer-to-PR-first order of ICE removal.

We now describe how the algorithm performs the high-level steps described in

Section 4.4.1. RICE removes individual ICEs by traversing on both LCE and RCE.

For each ICE, it inserts an instruction “predin=false” to initialize the new predicate

variable at the beginning of the CFG entry node (Lines 12-13). It next creates

a predSetter node with a “predin=true” assignment. It also inserts an instruction

“predin=false” in the sink node of the ICE (Lines 21-22). RICE redirects the ICE to

predSetter and directs predSetter to npr. RICE inserts a short-channel node, sc, if
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(a) Input sub-CFG (b) First ICE removed (c) Second ICE removed

(d) First OCE removed (e) Second OCE removed

Figure 4.11.: Example of RICE and ROCE transformations: A-H is the PR-PDC
pair. Dashed edges are ICEs, shadowed edges are OCEs. Dotted edges and darkened
nodes belong to the left/right paths. Nodes named j* are join nodes, sc* are short-
channel nodes, m* are merge nodes, and ps* are predSetter nodes. Shaded boxes
indicate structured regions. After RICE and ROCE, the region between the first and
last edges of the left path become SESE, making npr a structured condition node.
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Algorithm 6: RICE - Removing Incoming Contending Edges in a given PR-
PDC pair

Input: PR - PDC pair. LCS is a list of all nodes on the left path, arranged
in the order of their appearance. RCS is symmetric. LCE is a list
containing the ICEs on the LCS nodes, arranged in order of the
appearance in the left path of their sink nodes. RCE is symmetric.
OCEs is a set of all OCEs for the PR-PDC pair

Output: npr - The new PR node
1 npr ← PR;
2 if (LCE.size() + RCE.size() > 0) then
3 npr ← splitNode(PR); // separate code from jump

4 foreach dir ∈ (left, right) do // do left and right paths

5 if dir = left then
6 curCS ← LCS; ICEs ← LCEs
7 else
8 curCS ← RCS; ICEs ← RCEs
9 foreach edge ∈ ICEs do // edge loop

10 source ← edge.getSource();
11 sink ← edge.getSink();
12 predin ← createNewVariable();
13 CFGEntryNode.insertAtBegin(“predin ← false”);
14 predSetter ← createEmptyNode();
15 if npr.getNumPredecessors() = 2 then
16 join ← createEmptyNode();
17 foreach predec ∈ npr.getPredecessors() do
18 predec.replaceSuccessor(npr, join);

19 source.replaceSuccessor(sink, predSetter);
20 predSetter.setJumpTo(npr);
21 predSetter.insertAtBegin(“predin ← true”);
22 sink.insertAtBegin(“predin ← false”);
23 if (OCE ← OCEs.find(edge)) 6= null then
24 OCE.setSink(predSetter)

25 if sink 6= curCS.getFirst() then // perform short chanelling

26 scn ← createEmptyNode();
27 npr.replaceSuccessor(curCS.getFirst(), scn);
28 scn.setJumpTo(predin, sink, curCS.getFirst());
29 curCS.pushFront(scn);

30 if dir = left then
31 npr.setCondVar(npr.getCondVar() ∨ predin);

32 else
33 npr.setCondVar(npr.getCondVar() ∧ ¬ predin);
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the sink node of the ICE is not the first node in curCS (Lines 25-29), and then marks

sc as the first node of curCS. If the original ICE sink was in LCS, then RICE inserts

an instruction to logically OR condVar npr with predin, otherwise to logically AND

it with NOT(predin) (Lines 30-33).

A corner case arises if there are multiple ICEs on a left/right path. In such a case,

after the first ICE is removed, npr would have two predecessors, and removal of the

next ICE would add another predecessor to npr, breaking the maximum in-degree of

two property. To resolve this issue, prior to the redirection of subsequent ICEs, RICE

creates an empty node, join, to which it redirects the in-edges of npr, and directs join

to npr (Lines 15-20). Another corner case arises if the ICE is also an OCE. As RICE

redirects the ICE to predSetter, the sink node of the OCE is changed to be predSetter

(Lines 23-24).

Correctness: The RICE algorithm maintains the execution order of the original

CFG. We show that this holds after each ICE removal. If the ICE sink node was

in LCS, and if the ICE is taken in the modified CFG at runtime, predin will be set,

and cond npr would evaluate to true. Splitting the original PR serves the purpose

of skipping c PR when the ICE is taken. Control would reach the sink node of the

original ICE either directly from npr, or through the sc node, since condVar sc is

set to predin as well. On the other hand, if the ICE is not taken, then condVar npr

would simply carry the value of the condition variable of the original PR. Resetting

predin to false in the original ICE sink node ensures that if after executing the ICE,

control were to return at npr through a non-ICE path, the original control flow is

maintained. For this to occur, predin must evaluate to false. Similarly, the control

equivalence can also be shown for an ICE with a sink node in RCS.

Fig. 4.11 shows an example of the RICE transformation. In the input sub-CFG

(Fig. 4.11a), LCE would contain {E→ B, R→ E}. Hence, in the first iteration of the
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edge loop (Line 9), edge E→ B will be processed. The transformed CFG is shown in

Fig. 4.11b. Note that no short-channel node was inserted for this node since B is the

first node in LCS. In the second iteration, for the edge R → E, a short-channel node,

sc1, is added (Fig. 4.11c). If the edge R → E was executed at the runtime in the

original CFG, then in the new CFG, first the edge R → ps2 will be executed. Then,

predin will be set to true in ps2, and the path ps2 → j1 → npr will be executed.

As predin is true, cond npr will evaluate to true and the edge npr → sc1 will be

executed. Again, as predin is true, cond sc1 will evaluate to true and the edge sc1 →

E will be executed, reaching the original ICE sink node E.

4.4.3 ROCE - Removing Outgoing Contending Edges

The ROCE transformation removes all OCEs for a given PR-PDC pair. Algo-

rithm 7 describes the ROCE compiler transformation. The lists LCS and RCS are

arranged to contain their nodes in the order of the left and right path, respectively.

The lists LCE and RCE contain OCEs whose source nodes are in LCS and RCS,

respectively. They are arranged in the reverse order of their source nodes in the

left/right path, leading to a closer-to-PDC-first order of OCE removal.

We now describe how the high-level steps described in Section 4.4.1 are performed.

For each OCE, ROCE creates a new predicate variable (predout) and an empty node

predSetter (Lines 9-10). It inserts an initialization instruction “predout=false” in the

entry node of the CFG, as well as in the OCE sink to reset predout. It inserts an

assignment instruction “predout=true” in predSetter (Lines 11- 13).

The basic ROCE technique is applied next, in an inside out manner of the PR-

PDC pairs. The corresponding while loop, called in-out loop, iterates until the OCE

source is a part of curCS. This condition becomes untrue when the OCE source is

the new PDC for npr. First, the basic ROCE technique creates new npdc and merge
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Algorithm 7: ROCE - Removing Outgoing Contending Edges in a given PR-
PDC pair

Input: PR - PDC pair. LCS is a list of all LCS nodes, arranged in order of
the path from PR to PDC, RCS is symmetric. LCE is a list
containing the OCEs on LCS nodes, arranged in reverse order of their
source nodes in the PR to PDC path. RCE is symmetric.

Output: npdc - new PDC for the PR
1 foreach dir ∈ (left, right) do // do left and right paths

2 if dir = left then
3 curCS ← LCS; OCEs ← LCEs
4 else
5 currentCS ← RCS; OCEs ← RCEs
6 foreach edge ∈ OCEs do // edge loop

7 source ← edge.getSource();
8 sink ← edge.getSink();
9 predout ← createNewVariable();

10 predSetter ← createEmptyNode();
11 CFGEntryNode.insertAtBegin(“predout ← false”);
12 sink.insertAtBegin(“predout ← false”);
13 predSetter.insertAtBegin(“predout ← true”);
14 first ← true;
15 while curCS.contains(source) do // in-out loop

16 npdc ← createEmptyNode();
17 merge ← createEmptyNode();
18 lpdc ← curCS.getNextTwoInEdgeNode(source);
19 if lpdc = null then // basic ROCE

20 lpdc ← PDC;
21 curCS.getLastNode().replaceSuccessor(lpdc, merge);
22 curCS.insertLast(merge);

23 else // inside-out ROCE

24 curCS.getNodeBefore(lpdc).replaceSuccessor(lpdc, merge);
25 curCS.insertBefore(lpdc, merge);
26 curCS.insertBefore(lpdc, npdc);

27 lpdc.redirectPredecessorsTo(npdc);
28 if first = true then
29 source.replaceSuccessor(sink, predSetter);
30 predSetter.setJumpTo(merge);
31 first ← false;

32 else
33 source.replaceSuccessor(sink, merge);
34 npdc.setJumpTo(predout, sink, lpdc);
35 source ← npdc;
36 foldBetween(PR → curCS.getFirst(), curCS.getLast() → npdc);
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nodes (Lines 15-16). Next, it finds lpdc, which is the first node after the OCE source

in curCS with two in-edges (Line 17). Presence of such a node means that there

exists an inner PR-PDC pair; otherwise, the OCE belongs to only the outer PR-PDC

pair (Lines 19-26). Next, ROCE redirects the predecessors of lpdc to npdc. ROCE

redirects the OCE source edge is to merge, except for the first iteration of the in-out

loop, where this redirection takes place via predSetter (Lines 28-33). ROCE inserts a

jump instruction in npdc, and marks it as the new OCE source (Lines 33-34). Finally,

ROCE performs a fold on the region between the first and last edges of the left/right

path currently being operated. The folding removes two in-edge nodes that belong

to a structured region.

Correctness: While removing each OCE, ROCE ensures that the original execution

order of the control flow is retained. If an OCE is taken in the modified CFG, predout is

set to true, and then through one or more npdc nodes, the OCE sink is reached. This

is ensured since all npdc nodes belonging to this OCE have predout as their condition

variable. On the other hand, if the OCE is not taken, then control traverses the

original path to reach the original PDC, since all conditions in npdc nodes would

evaluate to false.

Fig. 4.11c shows an example input sub-CFG to ROCE, on which the RICE trans-

formation is already performed. The PR-PDC pair under consideration is npr -H.

Here, LCE contains {E → ps1, B → S}. In the first iteration of the edge loop,

(Line 6), the OCE E → ps1 will be removed (Fig. 4.11d). The shaded box in the

figure represents a structured region, which is folded. Let us call this folded node G.

Note that no inside-out operation had to be performed here, since the left path from

E to H did not contain a node with two in-edges. In the second iteration, the OCE

B → S is removed (Fig. 4.11e). Since G had two in-edges, ROCE operates inside

out, inserting npdc2 and npdc3. After RICE and ROCE, the region between the first
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(a) Example left path (b) RICE output (c) ROCE output

Figure 4.12.: Ensuring structuredness of all condition nodes on the left path when
there is no crossing, i.,e., no OCE source is followed by an ICE sink: Dashed edges
are ICEs, shadowed edges are OCEs. Dotted edges and darkened nodes belong to the
left path. Nodes named sc* are short-channel nodes, m* are merge nodes, and ps*
are predSetter nodes.

and last edges of the left path becomes SESE, making npr a structured selection

condition.

4.4.4 Ensuring Structuredness of the New PR-PDC Region

RICE and ROCE ensure that all condition nodes in the new PR-PDC SESE

region are structured selection condition nodes. We start by showing that this is the

case for a single ICE or OCE. Next, we extend it to multiple CEs of the same kind

(ICEs/OCEs) on a given left/right path. Finally, we show the structuredness when

multiple CEs exist on a path, with or without “crossing”, i.e., ICE sink node(s) are

after OCE source node(s).

1. Single CE: Figure 4.9b shows the case of a single ICE. By construction, the

inserted condition node, sc1, is structured, with D being its IPDOM. Note that,

in general, on the subpath sc1→B→D of the left path, there could be additional
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(a) Two ICEs after an OCE (b) Two OCEs before an ICE

Figure 4.13.: Ensuring structuredness of all condition nodes on the left path when
there is crossing, i.e., one or more OCE sources are followed by one or more ICE sinks:
Dashed edges are ICEs, shadowed edges are OCEs. Dotted edges and darkened nodes
belong to the left path. Nodes named sc* are short-channel nodes, m* are merge
nodes, and ps* are predSetter nodes. Shaded boxes indicate structured regions.

nodes. However, since the path has a single ICE, all these nodes must have a

single in-edge and out-edge. Removing a single OCE is essentially symmetric;

ROCE constructs a merge node to be the IPDOM of the OCE source.

2. Multiple ICEs/OCEs: Since the RICE algorithm removes ICEs in closest-to-

PR-first order, the short-channel node, its body, and IPDOM could be concep-

tually folded, producing the same structure as in the original CFG but with one

ICE less. Consider the two ICEs in Fig. 4.12a. In the CFG generated by RICE

(Fig. 4.12b), sc1, B, and sc1 ’s body can be folded into a single node, wherein

sc2 would be the single short-channel node, which is proven to be structured

in the case above. A symmetric argument applies to ROCE, where the order of

OCE removal is closest-to-PDC-first. An example can be seen in Fig. 4.12c.
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3. Non-crossing ICEs and OCEs: The condition nodes introduced by RICE

and ROCE, and their bodies, would be strictly sequential and would not overlap

if no ICE sink follows any OCE source on the given left/right path. Such condi-

tion nodes, their bodies, and IPDOMs could be individually folded, indicating

structuredness of all condition nodes on the path. Fig. 4.12a shows an example

where no ICE sinks follow any OCE source; the sequential, non-overlapping

nature of the condition nodes inserted by RICE and those by ROCE can be

seen in Fig. 4.12c.

4. Crossing ICEs and OCEs : This is the case where the inside out operation

of ROCE takes place. The base case here is of a single OCE source, followed

by a single ICE sink, which was seen in Fig. 4.10b. From the output sub-CFG,

it can be seen that all condition nodes on the right path, C, npdc1, and sc1 be-

came structured selection conditions. This result is generic; it would hold even

when another node was present between sc1 -C or between C-D. The following

two cases suffice to see how structuredness is guaranteed when multiple CEs are

involved:

An OCE source is followed by two ICE sinks: Consider the example left

path in Fig. 4.13a. After RICE, and the first iteration of the in-out loop, the

OCE is removed from the inner PR-PDC pair of sc1 -C. This turns sc1 and B

into structured condition nodes. Now, the shaded region in the figure can be

folded into a single node to obtain a left path with a single ICE sink (D), fol-

lowing a single OCE source (npdc1 ), which is already proven to get structured.

Two OCE sources are followed by an ICE sink: Consider the sub-CFG in

Fig. 4.13b. After RICE, and the removal of the first OCE (on B), B and npdc1

become structured condition nodes. The nodes, their IPDOMs, and their bod-

ies, represented by shaded boxes, can be folded to obtain a left path with a



130

single ICE sink (npdc1 ), preceded by a single OCE source (A), which is already

proven to become structured.

The above two cases can be repeatedly applied to scenarios with multiple OCE

sources followed by multiple ICE sinks, to prove the structuredness of all con-

dition nodes on the left/right paths.

4.5 Unstructured to Structured CFG Conversion

This section describes an algorithm that uses RICE and ROCE transformations

to convert an unstructured CFG into a structured CFG. Section 4.5.1 introduces

a process that finds a PDC for a given PR. Section 4.5.2 describes the structuring

algorithm and its time complexity.

4.5.1 Finding a PDC

The algorithm to convert an unstructured CFG into a structured one operates on

PR-PDC pairs. It is imperative to find a PDC for a given PR. Recall that multiple

PDCs may exist for a given PR. Recall also from Lemma 3 that some PR may not have

a PDC, in which case the structuring algorithm would search for a PDC of a different

PR. The presented algorithm (Algo. 8) returns the first PDC it finds, provided the

PDC exists.

The algorithm follows descendants of the PR, starting from both the left and

right children, in a breadth-first manner until it finds a common node, which will be

the PDC. Unless the PR post-dominates one of the two paths, a PDC will be found

(Lines 11-34).

After finding the PDC, the algorithm forms the respective LCS and RCS . LeftLast

and rightLast are the left and right path predecessors of the PDC. Starting from



131

Algorithm 8: Finding a PDC for a given PR node

Input: CFG. PR - PR node.
Output: PDC - a PDC for the PR. LCS and RCS for the PR-PDC pair.

1 searchQ ← getNewQueue();
2 leftSet ← ∅; rightSet ← ∅;
3 leftSet.insert(PR.getLeftChild());
4 rightSet.insert(PR.getRightChild());
5 searchQ.push(PR.getLeftChild());
6 searchQ.push(PR.getRightChild());
7 PR.getLeftChild().setParent(PR);
8 PR.getRightChild().setParent(PR);
9 PDC ← null; currDir ← null;

10 leftLast ← null; rightLast ← null;
11 while (PDC = null ∧ !searchQ.isEmpty()) do
12 curNode ← searchQ.pop();
13 if (node ∈ leftSet) then
14 currDir ← left
15 else currDir ← right;
16 if node 6= PR then
17 foreach (child ∈ curNode.getChildren()) do
18 if PDC = null then
19 if (currDir = left) ∧ (child ∈ rightSet) then
20 leftLast ← node;
21 rightLast ← child.getParent();
22 pdc ← child;

23 else if (currDir = right) ∧ (child ∈ leftSet) then
24 leftLast ← child.getParent();
25 rightLast ← node;
26 pdc ← child;

27 else if (child 6∈ leftSet) ∧ (child 6∈ rightSet) then
28 child.setParent(curNode);
29 if (currDir = left) then
30 leftSet.insert(child)
31 else
32 rightSet.insert(child)
33 if (!child.isIPDOMOf(PR)) then
34 searchQ.push(child)

35 if PDC 6= null then // generate LCS and RCS

36 do
37 LCS.pushFront(leftLast);
38 while ( ( leftLast ← leftLast.getParent() ) 6= PR);
39 do
40 RCS.pushFront(rightLast);
41 while ( ( rightLast ← rightLast.getParent() ) 6= PR);
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these nodes, their parents are fetched until the PR is reached to form LCS and RCS

(Lines 35-40).

4.5.2 Structuring Algorithm

The structuring algorithm (Algo. 9) is the main algorithm used for converting an

unstructured CFG into a structured CFG. The structuring loop (Line 1) then executes

until the CFG is structured, i.e., the number of nodes in the folded CFG is one.

Algorithm 9: Converting an unstructured CFG into a structured CFG

Input: Arbitrary CFG
Output: Structured CFG

1 while (CFG.size() > 1) do // structuring loop

2 fold(CFG); // maximally fold the CFG

3 prList ← getPRsInDeepestFirstOrder();
4 PDC ← null; PR ← null;
5 foreach (PR ∈ prList) do
6 if (PDC ← findPDC(CFG, PR, LCS, RCS)) 6= null) then
7 break

8 (LeftICEs, RightICEs, LeftOCEs, RightOCEs) ← getCEs(CFG, PR, PDC,
LCS, RCS);

9 npr ← RICE(PR, PDC, LCS, RCS, LeftICEs, RightICEs);
10 ROCE(npr, PDC, LCS, RCS, LeftOCEs, RightOCEs);

Each iteration of the structuring loop starts by calling fold function, which max-

imally folds the CFG. Folding is a conceptual operation; it does not actually modify

the CFG. Next, the algorithm forms a list of PR nodes (prList). The list is sorted in

the descending order of the depths of PR nodes from the CFG entry node. Then the

algorithm traverses prList until it finds a PR-PDC pair. By Theorem 4.3.2, since the

CFG is not completely folded, there must be a PR for which some PDC is present.

Algo. 8 is used to find the PDC and the corresponding LCS and RCS. By Theo-

rem 4.3.3, such a PR must be an unstructured condition node. There must be CEs

for this PR-PDC pair, by Theorem 4.3.4. Function getCEs generates lists containing



133

ICEs and OCEs. The algorithm then performs the RICE transformation, which re-

turns the new PR (npr). Consequently, with npr and PDC, the algorithm performs

the ROCE transformation.

4.5.3 Termination Proof and Time Complexity of the Structuring Algo-

rithm

An invariant of the structuring algorithm (Algo. 9) is the removal of at least one

unstructured condition in each iteration of the structuring loop, owing to the con-

version into a structured selection condition. After the RICE-ROCE transformations

are applied to a given PR-PDC pair and the corresponding CS, a new PR-PDC pair

is generated. The original PR is no longer a condition node. The new PR is a struc-

tured selection condition node, and its body is a structured region (Section 4.4.4).

Therefore, the new PR-PDC SESE gets folded after the RICE-ROCE transforma-

tions are applied. All condition nodes added during the RICE transformation, i.e.,

the short-channel nodes, belong to the SESE region of the new PR-PDC pair. All

condition nodes inserted during each OCE removal, i.e., npdc nodes, belong to this

SESE region as well, except the final npdc node. The number of npdc nodes added

outside of this SESE region is equal to the number of OCEs for the original PR-PDC

pair. Let us assume that there were ‘m’ condition nodes that were the sources of the

OCEs. Once the folding following the RICE-ROCE transformations has taken place,

at least m+1 condition nodes would be folded, m for the sources of the OCEs, and

1 for the PR. And, at most m new condition nodes would remain in the CFG, the

ones added by the ROCE transformation. Hence, overall, at least one condition node

is reduced in each iteration of the structuring loop. Thus, the structuring loop can

execute for at most n iterations. Symmetrically, it can also be shown that at least

one node with two in-edges is reduced after each iteration.
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Another invariant of the structuring algorithm is that the number of edges in the

CFG reduces in each iteration. Let us define outer edges as those edges where

neither sink nor source nodes are in the PR’s selection body, after RICE and ROCE.

For each ICE removal, the RICE transformation adds at most one outer edge, from

node join to npr. The original ICE is merely redirected to join or npr. The ROCE

transformation adds no outer edge; the OCE is redirected so that npdc becomes its

new source. After each structuring loop iteration, at least two edges get folded,

corresponding to the first edges of the left and right paths. Additionally, the out-

edge of each ICE sink is folded as well, compensating for one outer edge RICE adds.

Therefore, after each iteration of the structuring loop, the number of edges in the

CFG reduces.

The algorithmic complexity of the structuring algorithm is as follows: The RICE

and ROCE transformations have no impact on single in-edge, single out-edge nodes.

In a CFG of n nodes, there can at most be 2n edges. The structuring loop can execute

at most n iterations, which is a conservative over-estimation since it assumes all n

nodes to be unstructured condition nodes. The fold function operates on each edge

in the CFG. Each iteration of the structuring loop reduces the number of edges in the

CFG. Therefore, the complexity of fold, called in Line 2, aggregated over all iterations

of the structuring loop is bounded by the number of edges in the CFG, i.e., O(n).

The getPRsInDeepestFirstOrder function is O(n), as it requires a BFS-style traversal

of the CFG. Therefore, across all iterations of the structuring loop, its complexity

is O(n2). Similarly, the findPDC function, across all iterations of the enclosing for

loop around it, traverses the entire CFG and is therefore O(n). Let ki represent the

number of nodes in the CS for the PR-PDC pair in the ith iteration of the structuring

loop. Then, the edge loop in the RICE transformation (Algo. 6), in the ith iteration

would execute for at most ki times, which is the worst case behavior assuming that
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each CS node is an ICE sink. Summing up over all iterations of the structuring loop,

the edge loop in the RICE transformation would execute at most
n∑

i=1

ki iterations.

Since every iteration of the structuring loop reduces the number of two in-edge nodes

(Section 4.5.1), ki < n. Hence, the worst-case complexity of RICE aggregated across

all iterations of the structuring loop is O(n2), conservatively assuming that each CS

node has an ICE. Similarly, the ROCE edge loop would execute at most ki times, for

the ith iteration of the structuring loop, assuming that each CS node has an OCE.

The maximum number of times the ROCE in-out loop can execute is limited by

the number of ICEs for the PR-PDC pair. Hence, it can execute at most ki times,

assuming that each CS node has an ICE. Fold (Algo. 7, Line 18) called inside ROCE

is O(ki) as well. Hence, the time complexity of ROCE called in the ith iteration is

O(k2
i ). Summed up over all iterations of the structuring loop, the complexity of the

structuring algorithm is
n∑

i=1

O(k2
i ), which in the worst-case is O(n3), conservatively

treating each CS node to have an ICE as well as an OCE.

4.6 Avoiding Exponential Blowup

This section describes how the presented structuring algorithm can convert an

irreducible CFG into a reducible CFG without incurring exponential code expansion,

known as exponential code blowup [107].

4.6.1 Removing Irreducibility with Node Splitting

The known Node Splitting technique [106, 112] duplicates nodes in the CFG so

as to remove irreducibility. Consider the irreducible CFG in Fig. 4.14, which results

from the repeated T1/T2 application to the original CFG in Fig. 4.3. Node Splitting

operates on any node with at least two predecessors. This node is duplicated, and
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Figure 4.14.: Node Splitting: D’ is a copy of D

Figure 4.15.: Blowup caused by Node Splitting: Four copies of G, two copies each of
F and H

each predecessor keeps a copy of this node. The out-edges of each copy are directed

to the same nodes as in the original graph. In Fig. 4.14, splitting just one node results

in a reducible CFG.

However, such node duplication can cause exponential code size blowup. Consider

Fig. 4.15, which contains overlapping irreducible loops (Loop1: H→E→F →H and

Loop2: H→G→H). In such a scenario, the CFG generated by Node Splitting would

contain four copies of G, and two copies each of nodes F and H. Carter et. al. [107]

proved that reducible CFGs generated by Node Splitting can get exponentially larger.
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4.6.2 How Does the Structuring Algorithm Avoid Exponential

Blowup?

The proposed CFG structuring mechanism transforms an unstructured CFG into a

structured CFG. By Corollary 1, an irreducible CFG must be unstructured, whereas a

structured CFG has to be reducible, by Theorem 4.3.1. Hence, the structuring mech-

anism also results in a conversion of an irreducible CFG into a reducible CFG. During

this process, code size increase is limited to a polynomial function of the number of

nodes in the CFG. This is possible since the mechanism requires no code duplica-

tion. The additionally inserted code comprises i) predicate variable assignments, ii)

OR and AND instructions that determine condition variables for PR nodes and iii)

additional jumps, such as during short-channelling.

Each iteration of the edge loop in the RICE transformation inserts at most eight

instructions. It adds three instructions for predicate assignments/initialization, one

for changing (logical OR/AND) the condition of the PR, and one for the jump in the

short-channel node. Two more jump instructions are added at the end of the predSet-

ter and join nodes. Furthermore, one instruction may be added during each call to

the RICE transformation; this instruction jumps from c PR to npr. As described in

Section 4.5.3, the RICE transformation is executed at most n times, and the number

of edge loop iterations is bounded by n. Therefore, the total number of RICE-added

instructions is bounded by 8n2.

Let ki be the number of nodes in the CS for the PR-PDC pair in the ith iteration

of the structuring loop. The number of edge loop iterations in the corresponding

ROCE call(Algo. 7, Line 6) is bounded by ki, as described in Section 4.5.3. In

each edge loop iteration, at least six instructions are added. These include three

initialization/assignments to the predicate variable and jumps at the end of merge,

predSetter and the last npdc nodes. In the in-out loop, each iteration inserts two
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instructions, namely, the jumps at the end of npdc and merge nodes. Since the in-out

loop executes at most ki iterations, the number of instructions inserted during the

inside out ROCE operation is 2ki. Summed up over all iterations of the structuring

loop, the total ROCE-inserted instruction count is bounded by
n∑

i=1

(6ki + (2ki)
2) ≤

6n2 + 4n3. Hence, code expansion is bounded by a degree-3 polynomial of n in the

worst case, which assumes each CFG node has an ICE and an OCE.

4.7 Related work

The term “structuredness” has often been used ambiguously, e.g., some [113–115]

consider switch statements to be a part of the structured clauses, while oth-

ers [87, 89] do not. Erosa et. al. [38] consider programs structured as long as there

are no gotos. In contrast to the source-level definitions, the precise, CFG-level for-

malizations presented in this paper eliminate the ambiguity.

Structured programming originated with a focus on the ease of program under-

standing and maintenance. Much debate ensued; Dijkstra suggested that goto state-

ments make this difficult [116], while Knuth [117] pointed scenarios where goto state-

ments make programs easier to understand. Many “structuring” proposals aimed at

removing them [38–40,102,103]. However, all of them operate on the program source,

and not on the CFG, and hence can not be used for CFG analysis.

Decompilers convert binaries into high-level program source codes. Many de-

compilers therefore propose techniques to structure CFGs [115, 118, 119]. However,

the term “structuring” is loosely interpreted; certain gotos may still remain in the

program after decompilation, and removal of irreducibility is not guaranteed.

Generic structuring approaches convert an input program into one that contains

only the base structured constructs/patterns. They can be categorized into two

classes. The first class works on program source codes. Ammarguellat [36] presents
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a normalization-based technique. Zhang et. al. [37] present a structuring mechanism

that employs both added predicates and code duplications to obtain structuring.

However, these approaches are language-syntax dependent, and can not be extended

to generic CFGs. The second class works directly on the CFGs. Williams [89] iden-

tifies unstructuredness using five base patterns and in follow-up work [104] proposes

an algorithm to convert unstructured CFGs into structured ones. Similarly, Oul-

snam [120] presented six base patterns that represent unstructuring, and proposed

six transformations to replace these patterns with structured ones. A more generic

mechanism was proposed in following work [105]. These mechanisms fail to describe

how a given large CFG can be decomposed into the base structured patterns. There-

fore, despite being CFG-based, they require sophisticated pattern matching to identify

unstructuredness.

All the above approaches, except [38, 39] perform Node Splitting to remove irre-

ducibility, and hence are susceptible to exponential blowup. These two approaches

insert predicates in the code, however, no time complexity or code size expansion

analysis for these methods has been presented. DJ graphs [101] is one approach that

has proposed optimizations to reduce the amount of duplication incurred during Node

Splitting.

4.8 Experiments

This sections compares the new structuring algorithm against classical Node Split-

ting in terms of the resulting code expansion. It also shows how obfuscation by

irreducibility-insertion is rendered ineffective by the structuring algorithm. We show

that irreducibility-inserted obfuscated CFGs are susceptible to automatic compiler

analyses after the application of the structuring algorithm.
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Figure 4.16.: Understanding code size expansion: The vertical line indicates switching
of the X-axis to a logarithmic scale. Node Splitting generated CFGs are much larger.
The size of 32-node CFGs after Node Splitting can be larger than the size of 1024-
node structured CFGs. Node Splitting did not finish in 400 hours for CFGs of 64
nodes and beyond.

4.8.1 Setup

We performed our experiments with the LLVM [121] compiler. We implemented

the structuring algorithm as an LLVM compiler (version 3.8) pass. Prior to per-

forming structuring, this pass converts the CFG into an equivalent CFG where the

in-degree and out-degree of each node is 2. All our experiments were conducted on a

workstation with Intel i7-6700K 8-core 4GHz hyperthreaded processor. The machine

hosted a 16GB RAM, running Ubuntu 14.04.

4.8.2 Code Size Expansion on Random CFGs

We present an experimental comparison of the code expansion resulting from the

presented structuring algorithm and the Node Splitting approach. We use pseudo-

randomly generated irreducible CFGs. These CFGs are generated as follows: all
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nodes except the exit node in these CFGs are condition nodes, and each node except

the entry node has two in-edges. Each condition node is an unstructured condition.

There is no code in these nodes, apart from a load instruction for fetching the

condition variable, and a jump instruction. There are no self loops. It is fairly easy

to show that all such CFGs with four or more nodes are irreducible (see Appendix

for details). Although these CFGs have no nodes with single in-edge and single out-

edge, they represent generic behavior. Single in/out-edges have no effect on code size

expansion obtained by the structuring algorithm. On the other hand, Node Splitting

technique would see larger code sizes owing to the duplication, if such nodes were to

exist. Therefore, the comparison results shown here are conservative.

Fig. 4.16 shows the added instruction count for different CFG sizes. The bars

show added instruction counts averaged over n different CFGs, each containing n

nodes. It can be clearly seen that the code size growth in the structuring mechanism

does not blow up, and is bounded by n2 as the CFGs get larger. Error bars indicate

that the variation in code growth for the different CFGs is small. For Node Splitting,

the code size growth is rapid; the size of a 32-node CFG after Node Splitting can

be larger than the size of a 1024-node structured CFG. The error bars show higher

code size variation in Node Splitting. The rapid growth in CFG sizes during Node

Splitting makes their generation and analysis extremely slow. Our experiments with

CFGs of size 64 did not finish within 400 hours, at which point we terminated the

experiments. Fig. 4.16 therefore lacks Node Splitting results for larger CFG sizes.

4.8.3 Unstructuredness in Compiler-generated CFGs

Table 4.1 shows unstructuredness in the C implementation [122] of the NAS paral-

lel benchmarks [123]. Although few functions in these applications have source-level

unstructuredness, i.e., the unstructuredness caused by constructs such as break,
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Table 4.1.: Unstructuredness of CFGs in NAS Benchmarks: Even the functions with
structured source code can have unstructuredness in the compiler front-end generated
CFG. Optimized CFGs are more likely to possess unstructuredness.

Benchmark #Functions #Functions
with un-
structured
constructs

#Functions with
unstructured
CFGs generated
from front-end

#Functions
with unstruc-
tured CFGs
after -O3

CG 16 1 3 2
FT 25 2 3 5
EP 10 1 1 1
MG 26 0 2 7
LU 27 0 3 2
SP 31 0 4 4
IS 13 2 1 1
BT 34 0 1 4

goto, continue etc., the compiler front-end generated CFGs have higher occur-

rences of unstructuredness. Applications MG, LU, SP, and BP have no source-level

unstructuredness; yet, the front-end generated CFGs for some functions in these appli-

cations are unstructured. Program source-level structuring techniques [36–40,102,103]

cannot cater to such unstructuredness. Furthermore, optimized CFGs can be seen to

contain more functions with unstructured CFGs. Benchmarks CG and LU are excep-

tions; the LLVM compiler inlined unstructured functions in the optimized versions,

leading to a reduction in the total number of unstructured functions.

4.8.4 Obfuscation by Irreducibility Insertion

Introducing irreducibility in a CFG is a well-known obfuscation technique [107,

109, 110]. Fig. 4.17 shows an example of this technique. Prior to each loop entry

node in the CFG, the technique inserts a node with an opaque predicate (condition
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variable), such as a*(a+1) % 2 == 0, and the condition false out-edge of the node

is connected to some node in the loop body, creating an additional loop entry. The

outcome of such opaque predicates is known at the obfuscation time, e.g., the above

condition is known to return true for any integer ‘a’, meaning that the additional

entry edge in the loop will never be executed at runtime. This assures functionally

correct code execution. However, a static analyzer cannot understand that the dummy

loop entry edge would never be executed at runtime, and hence fails to remove such

loop entry edges. Irreducible CFGs are known to restrict compiler analyses. Node

Splitting can deal with them but may lead to exponential code blowups. Compilers

therefore do not perform Node Splitting. Secondly, for high-level languages such as

Java, this technique disables decompilation. Although Java bytecode can represent

irreducibility, due to the lack of goto statements, Java source code can not express

irreducible control.

Figure 4.17.: Obfuscation via Irreducibility Insertion

To understand how such irreducibility insertion can impact compiler analyses,

we wrote an obfuscation pass that operates on the LLVM IR. The pass inserts irre-

ducibility using the above technique. In cases of nested loops, an irreducible edge is
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added from outside the outermost loop into the innermost loop body. Apart from

irreducibility insertion, the pass inserts loop invariant irrelevant code into the loop

body, which is a common obfuscation technique [109, 110]. In our implementation,

this irrelevant code reads a dummy array and performs some computation on it. The

generated result is used as an input to a math library call. Due to this call, compilers

fail to understand this is indeed a dead code. Our obfuscator implementation oper-

ates on the front-end (Clang) emitted LLVM IR and generates CFGs with irreducible

loops.

Figure 4.18.: Measuring analyzability of obfuscated CFGs achieved by structuring:
The structured versions run significantly faster (1.92x geometric mean) compared to
the unstructured (irreducible) counterparts.

Fig. 4.18 compares execution times of obfuscated programs from the entire NAS

benchmark suite. The CFGs were obfuscated, and then were compiled with and

without structuring, followed by LLVM -O3. The structured versions obtain better

performance in all programs, with a geometric mean speedup of 1.92x. The key

reason for this result is the inability of standard compilers, such as LLVM, to optimize

irreducible CFGs. Many optimizations, especially the loop-based ones, fail to work

on irreducible CFGs. After our new structuring pass is applied, all loops become

reducible, and the traditional compiler passes become applicable. Apart from the
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Figure 4.19.: Measuring overheads introduced by structuring: Structuring causes an
overhead of 20% (geometric mean).

loop invariant code motion of the irrelevant code added by obfuscation, we attribute

the better performance of structured versions to other optimizations such as loop

vectorization, unrolling, and strength reduction. The variation in the amount of

benefits achieved is also attributed to the factor of execution time each application

spends in the obfuscated loops. With higher execution times of such loops, the benefits

increase.

The structuring algorithm inserts additional variables and bran-ches into the pro-

gram, which is bound to introduce overheads in the execution. To measure this

overhead, we compare the execution times of obfuscated NAS applications with and

without structuring, along with LLVM -O0. Using -O0 disables most of the compiler

optimizations, and the difference between the structured and unstructured codes’

execution times represents the overheads of the structuring mechanism, as shown

in Fig. 4.19. The structured program versions execute 20% slower. We attribute

this slowdown to the additional register pressure and extra branches. Note however

that this overhead is offset by the compiler optimizations, as is evident from Fig. 4.18.
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Listing 4.1: Synthetic GPU Code Example

1 void __device__ __noinline__ devFunc(float a,
2 float* x, float* y, int c) {
3 //this loop simply increases the computation
4 for(int i=0; i<98; i++) {
5 y[threadIdx.x] = y[threadIdx.x] + 4;
6 if(y[threadIdx.x] < 9) {
7 y[threadIdx.x] *= y[threadIdx.x];
8 }
9 y[threadIdx.x] /= 3;

10 }
11 }
12

13 __global__ void kernel(float a, float* x,
14 float* y, int c) {
15 //this loop simply increases the computation
16 for(int i =0 ; i <10; i++) {
17 if(threadIdx.x < 16) {
18 devFunc(a,x,y,c);
19 if(threadIdx.x < 4) {
20 goto b;
21 }
22 } else {
23 b: devFunc(a,x,y,c+2);
24 }
25 y[threadIdx.x] = a * x[threadIdx.x];
26

27 }
28

29 }

General-purpose compilers may reduce this overhead by choosing to execute the struc-

turing pass on only those functions that contain irreducibility.

4.8.5 Case Study on a GPU Program

Listing 4.1 shows a synthetic example GPU code that benefits from the structuring

pass. Threads 0 to 15 in a warp execute the if path, while threads 16 to 31 execute
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the else path. Both these paths execute devFunc, whose execution across these two

paths gets serialized owing to the SIMD execution on GPUs. Also, threads 0-3 jump

from the if path to the else path. In the state-of-the-art compilation of this kernel,

each warp devFunc thrice – two times from the if path, and once times from the

else path. After structuring, this number goes down to two. We observed a speedup

of 1.47x on an NVIDIA Tesla K40 GPU with the structured version over the original,

unstructured code version.

4.9 Chapter Takeaways

This chapter has formalized the notion of structured CFGs by presenting formal

definitions for the three base structured patterns that compose a structured CFG. It

introduced a concept of folding, which replaces base structured patterns with single

nodes, and helps determine whether or not a given CFG is structured. A new struc-

turing algorithm was presented that converts arbitrary unstructured CFGs into struc-

tured ones. The algorithm repeatedly applies two novel transformations that remove

unstructuredness by redirecting the control flow and inserting additional predicate

variables. The time complexity of this algorithm was studied along with the caused

code expansion. The chapter proved that the algorithm limits code expansion to a

polynomial function of the number of nodes in the CFG, and presented experimental

evidence. This result is important since it overcomes the issue of exponential code

blowup of irreducible CFGs in previous Node Splitting-based techniques, which resort

to code duplication. The chapter showed that the irreducibility insertion technique

employed by software obfuscators is rendered ineffective by the proposed structuring

algorithm. Furthermore, this structuring algorithm is directly applicable to various

compiler passes [91–97] that either give up and resort to Node Splitting when faced

with irreducibility, or need special implementations [124–126] to address it.
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5. CONCLUSIONS AND FUTURE WORK

This thesis has presented approaches towards various issues faced while programming

accelerator-based systems. Chapter 1 looked at the automatic tuning mechanisms

for OpenMP-to-CUDA translators, and proposed a new tuning system that obtains

higher performing configurations faster than the previous systems. Chapter 2 pre-

sented a mechanism to automatically scale out-of-card computations to limited-sized

GPU memories. It also presented a mechanism to overlap kernel computations with

communications, and described automatic multi-GPU scalability. Chapter 3 pre-

sented a MapReduce programming system that can use both CPUs and accelerators

in a cluster with a single input source code. The chapter also presented a scheduling

mechanism that addressed the load imbalance issue across CPUs and accelerators.

Finally, Chapter 4 formalized the notion of structured control flow graphs, and pro-

posed an unstructured-to-structured CFG conversion mechanism. This mechanism

can reduce the impact of divergent code execution on accelerators with SIMD-style

execution units.

The techniques proposed in the thesis have catered to some of the fundamental

issues in accelerator programming, and have also opened up avenues for future work,

as we list below.

• Extending COSP: As was seen in chapter 2, while the COSP technique works

fine for regular applications, the splitting can not occur if the data access infor-

mation is not correctly available. Such scenarios are common in irregular appli-

cations. As the compiler can not automatically perform computation splitting,

one way to deal with irregular applications might be to obtain more informa-
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tion from the programmer, with an additional directive. The other alternative

would be to predict the access pattern at the runtime by recording the previous

accesses.

• Further work on HeteroDoop: The current HeteroDoop system does not

utilize GPUs for global reductions, primarily since the considered applications

were map-heavy. The future work should investigate applications which are

reduce-heavy and experiment with the GPU-offloading of the same. The cur-

rent tail scheduling scheme caters to intra-node heterogeneity, where all nodes

contain same CPUs and equal number of GPUs. To handle scenarios with

inter-node heterogeneity, data locality needs to be considered, as the current

tail scheduling scheme would result in the execution of excessive remote map

tasks.

• Control flow structuring: We found that conventional compilers do not

perform all their passes as dataflow algorithms. The most performance-critical

passes are performed on loops, which do not necessarily traverse the entire flow

graph. However, the interspersed nature of the loop-based and other passes

makes it difficult to decide exactly when the structuring pass should be run.

This is an avenue for future work. While this thesis has proved that compilers

can generate unstructured CFGs, it is not clear if they do generate irreducible

CFGs routinely. A study [99] evaluates the presence of irreducibility in compiler-

generated llvm bytecodes, and concludes that it is very rare, and hence can be

ignored. However, looking for irreducibility in the generated binary code is a

more appropriate way to assess whether compilers generate irreducible code or

not. We leave such a study to the future work.
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