We investigate novel protocols for entanglement purification of qubit Bell
pairs. Employing genetic algorithms for the design of the purification circuit,
we obtain shorter circuits achieving higher success rates and better final
fidelities than what is currently available in the literature. We provide a
software tool for analytical and numerical study of the generated purification
circuits, under customizable error models. These new purification protocols
pave the way to practical implementations of modular quantum computers and
quantum repeaters. Our approach is particularly attentive to the effects of
finite resources and imperfect local operations - phenomena neglected in the
usual asymptotic approach to the problem. The choice of the building blocks
permitted in the construction of the circuits is based on a thorough
enumeration of the local Clifford operations that act as permutations on the
basis of Bell states