25,651 research outputs found

    Reactions and perceptions of healthcare professional towards wireless devices in healthcare environment in the developing world: a case of Pakistan

    Get PDF
    This study explored reactions and perceptions of medical professionals in the use of wireless technology in the Pakistani healthcare setting. 300 professionals were surveyed with 97 survey forms returned. The regression analysis indicates that clinical performance and better quality of services would be the determinants in using wireless technology in Pakistani healthcare. These medical professionals felt that in order to continuously use the technology, training and technical supports are essential. They also felt that the introduction of such a technology would result in the attraction of more practitioners, save time, save effort and provide high quality information. Collectively, these factors, in the opinion of these professionals will reduce inaccuracies in data

    Lunar Glovebox Balance with Wireless Technology

    Get PDF
    The most important equipment required for processing lunar samples is a high-quality mass balance for maintaining accurate weight inventory, security, and scientific study. After careful review, a Curation Office memo by Michael Duke in 1978 chose the Mettler PL200 to be used for sample weight measurements inside the gloveboxes (Fig. 3). These commercial off-the-shelf (COTS) balances did not meet the strict accepted material requirements in the Lunar lab. As a result, each balance housing, weighing pan, and wiring was custom retrofitted to meet Lunar Operating Procedure (LOP) 54 requirements [for material construction restrictions]. The original design drawings for the custom housings, readout support stands, and wiring were done by the JSC engineering directorate. The 1977- 1978 schematics, drawings, and files are now housed in the curation Data Center. Per the design specifications, the housing was fabricated from aluminum grade 6061 T6, seamless welds, and anodized per MIL-A-8625 type I, class I. The balance feet were TFE Teflon and any required joints were sealed with Viton A gaskets. The readout display and support stands outside the glovebox were fabricated from 300 series stainless steel with #4 finish and mounted to the glovebox with welded bolts. Wire harnesses that linked the balance with the outside display and power were encapsulated with TFE Teflon and transported through custom Deutsch wire bulk head pass-through systems from inside to outside the glovebox. These Deutsch connectors were custom fabricated with 316L stainless steel bodies, Viton A O-rings, aluminum 6061 with electroless nickel plating, Teflon (replacing the silicone), and gold crimp connectors (no soldering). Many of the Deutsch connectors may have been used in the Apollo program high vacuum complex in building 37 and date to about 1968 to 1970

    Study of Future Wireless Technology: Li-Fi

    Full text link
    Since the day earth exists, human is going develop day by day. New technologies are generated as human beings are developing. Now, internet is a compulsory part of our life. We are using Wi-Fi for internet access. But it has some limitations, so there is a new wireless technology i.e. Li-Fi (Light Fidelity), which overcomes some of the shortcomings of Wi-Fi. This paper consists a study of Li-Fi basics like advantages, limitations, applications and future scope

    Wireless technology and clinical influences in healthcare setting: an Indian case study

    Get PDF
    This chapter argues that current techniques used in the domain of Information Systems is not adequate for establishing determinants of wireless technology in a clinical setting. Using data collected from India, this chapter conducted a first order regrssion modeling (factor analysis) and then a second order regression modeling (SEM) to establish the determinants of clinical influences as a result of using wireless technology in healthcare settings. As information systems professionals, the authors conducted a qualitative data collection to understand the domain prior to employing a quantitative technique, thus providing rigour as well as personal relevance. The outcomes of this study has clearly established that there are a number of influences such as the organisational factors in determining the technology acceptance and provides evidence that trivial factors such as perceived ease of use and perceived usefulness are no longer acceptable as the factors of technology acceptance

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    Internet of things security implementation using blockchain for wireless technology

    Get PDF
    Blockchain is a new security system which group many data into a block or so called classifying the data into a block. The block can have many types and each of them content data and security code. By using a decentralize mechanism, one security code protect all the data. That could happen at the server. In this research, a network of wireless sensor technology is proposed. The transmission of sensor data is via the Internet of things (Internet of Thing) technology. As many data transmitted, they have to classified and group them into a block. All the blocks are then send to the central processing unit, like a microcontroller. The block of data is then processed, identified and encrypted before send over the internet network. At the receiver, a GUI or Apps is developed to open and view the data. The Apps or GUI have an encrypted data or security code. User must key in the password before they can view the data. The password used by the end user at the Apps or GUI must be equivalent to the one encrypted at the sensor nodes. This is to satisfy the decentralized concept used in the Blockchain. To demonstrate the Blockchain technology applied to the wireless sensor network, a MATLAB Simulink function is used. The expected results should show a number of block of data in cryptography manner and chain together. The two set of data. Both have the data encrypted using hash. The black dots indicate the data has been encrypted whereas the white dot indicate indicates the data is not encrypted. The half white and half black indicates the data is in progress of encrypted. All this data should arrange in cryptography order and chain together in a vertical line. A protocol called block and chain group the data into the block and then chain then. The data appears in the blocks and send over the network. As seen in the simulation results, the yellow color represents the user data. This data has a default amplitude as 1 or 5. The data is chained and blocked to produce the Blockchain waveform Keywords: Blockchain, Internet of things, Wireless Sensor Network and MATLAB Simulin
    • …
    corecore