21 research outputs found

    A prototype system of spatial variables interpolation with thinplate spline algorithm implemented on Zigbee wireless sensor network

    Get PDF

    Development of a long range wireless sensor platform

    Get PDF
    Wireless Sensor Networks have emerged as an exciting field in recent years. There have been numerous studies on how to improve and standardise different aspects of wireless sensor networks. This paper aims to develop a wireless sensor network suitable for environmental monitoring applications. More specifically this paper aims to address the limited communication range of the existing wireless sensor technology. In order to achieve the desired objectives, we have initially developed a hardware platform and then integrated the hardware with a long range RF radio module to achieve the goals. The system is further enhanced with mesh networking capabilities to increase the communication range and overall reliability of the network. The developed wireless sensor network is composed of sensors, microcontroller, RF radio module, antenna and expansion connectors for additional sensors and peripheral devices. The developed wireless sensor network has been rigorously tested under three different scenarios to ensure the correct operation of the mesh network, communication range and effect of environmental obstacles such as vegetation and trees. The developed wireless sensor network has been proven to be a suitable platform for environmental monitoring applications and the modular design has made it very easy to optimise it for different applications

    Impact of queue buffer size awareness on single and multi service real-time routing protocols for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are increasingly used and will certainly be part of our everyday lives. Many routing protocols were designed with respect to WSNs capacities to allow the achievement of numerous applications. One of the not well investigated areas in WSNs is the queue management issue. The purpose of this paper is to present an analysis of the impact of queue buffer size awareness on the Quality of Service (QoS) of real-time (RT) routing protocols in WSNs. The studied protocols are SPEED and its extension Multipath Multi-speed (MMSPEED). SPEED protocol yields RT routing for only one class of traffic, by maintaining a desired packet’s progression speed (PS) across the WSN. On the other hand, MMSPEED protocol extends SPEED by offering multiple types of service to packets according to their class of traffic. The main contribution is that the routing decision is made on neighbors’ available queue buffer size at each level in addition to PS metric. Simulations have proved that the two metrics are compatible, the routing decision is efficient in case of single service protocol and multiservice one and improves two QoS domains namely timeliness and reliability

    Deadline-Aware Scheduling Perspectives in Industrial Wireless Networks: A Comparison between IEEE 802.15.4 and Bluetooth

    Get PDF
    In industrial contexts, most of process control applications use wired communication networks. The reliability of wired networks is indisputable and extensively demonstrated by several studies in the literature. However, it is important to consider several disadvantages provided by the use of wired technologies, like high deployment and maintenance costs and low network scalability. Although it is difficult to fully replace wired networks, wireless communication protocols have features which could undeniably affect in positive way the production mechanisms in factories. The wireless networks (WNs) are effectively used to detect and exchange information. The main communication protocols, currently available for WNs, however, do not support real-time periodic traffic flows which, as known, mainly characterize industrial networks. In this paper, we will analyze a real-time scheduling algorithm for both periodic and aperiodic traffic management, applied to networks based on IEEE 802.15.4 and Bluetooth, respectively. The main purpose of this research is to reduce, as much as possible, the packet loss on the channel, increasing at the same time the reliability of the wireless technology. Furthermore, the comparison between IEEE 802.15.4 and Bluetooth will allow to identify the more suitable communication protocol for industrial process control systems

    Coordinated provisioning in a dual-foraging pelagic seabird

    Get PDF
    In long-lived species, care-giving parents are expected to balance their own condition with that of their offspring. Many species of seabirds display a unique behavioural adaptation for managing these conflicting demands known as dual foraging, in which long trips, largely for self-maintenance, are alternated with short trips, which are primarily for offspring care. While dual foraging is a widely studied behaviour, it entails a complication that is seldom discussed: if parents independently employ a dual-foraging strategy, chicks might be abandoned for extended periods when the long trips of both partners coincide. Whether partners coordinate their dual-foraging strategies, however, is largely unknown. To investigate this possibility, we used radiofrequency identification readers coupled with passive integrated transponder tags to record extended sequences of foraging trips for breeding Manx shearwaters, Puffinus puffinus. Our results show a pattern of foraging trips that indicates a high level of coordination between parents, which facilitates consistent provisioning. Additionally, we show that the propensity for pairs to coordinate declines across the chick-rearing period. Given the potential costs of not coordinating, we expect this behaviour to be widely spread among dual-foraging species

    Concept and design of the hybrid distributed embedded systems testbed

    Get PDF
    Wireless mesh networks are an emerging and versatile communication technology. The most common application of these networks is to provide access of any number of users to the world wide Internet. They can be set up by Internet service providers or even individuals joined in communities. Due to the wireless medium that is shared by all participants, effects like short-time fading, or the multi-hop property of the network topology many issues are still in the focus of research. Testbeds are a powerful tool to study wireless mesh networks as close as possible to real world application scenarios. In this technical report we describe the design, architecture, and implementation of our work-in-progress wireless testbed at Freie UniversitÃĪt Berlin consisting of 100 mesh routers that span multiple buildings. The testbed is hybrid as it combines wireless mesh network routers with a wireless sensor network

    Reliable many-to-many routing in wireless sensor networks using ant colony optimisation

    Get PDF
    A wireless Sensor Network (WSN) consists of many simple sensor nodes gathering information, such as air temperature or pollution. Nodes have limited energy resources and computational power. Generally, a WSN consists of source nodes that sense data and sink nodes that require data to be delivered to them; nodes communicate wirelessly to deliver data between them. Reliability is a concern as, due to energy constraints and adverse environments, it is expected that nodes will become faulty. Thus, it is essential to create fault-tolerant routing protocols that can recover from faults and deliver sensed data efficiently. Often studied are networks with a single sink. However, as applications become increasingly sophisticated, WSNs with multiple sources and multiple sinks become increasingly prevalent but the problem is much less studied. Unfortunately, current solutions for such networks are heuristics based on specific network properties, such as number of sources and sinks. It is beneficial to develop efficient (fault-tolerant) routing protocols, independent of network architecture. As such, the use of meta heuristics are advocated. Presented is a solution for efficient many-to-many routing using the meta heuristic Ant Colony Optimisation (ACO). The contributions are: (i) a distributed ACObased many-many routing protocol, (ii) using the novel concept of beacon ants, a fault-tolerant ACO-based routing protocol for many-many WSNs and (iii) demonstrations of how the same framework can be used to generate a routing protocol based on minimum Steiner tree. Results show that, generally, few message packets are sent, so nodes deplete energy slower, leading to longer network lifetimes. The protocol is scalable, becoming more efficient with increasing nodes as routes are proportionally shorter compared to network size. The fault-tolerant variant is shown to recover from failures while remaining efficient, and successful at continuously delivering data. The ACO-based framework is used to create Steiner Trees in WSNs, an NP-hard problem with many potential applications. The ACO concept provides the basis for a framework that enables the generation of efficient routing protocols that can solve numerous problems without changing the ACO concept. Results show the protocols are scalable, efficient, and can successfully deliver data in numerous different topologies

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol
    corecore