
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/166567

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/166567
mailto:wrap@warwick.ac.uk

Reliable Many-to-Many Routing in

Wireless Sensor Networks using Ant

Colony Optimisation

by

Jasmine Grosso

Thesis

Submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

October 2021

Contents

List of Tables iv

List of Figures v

Acknowledgments vii

Declarations viii

1 Publications . viii

2 Sponsorships and Grants . viii

Abstract ix

Acronyms x

Chapter 1 Introduction 1

1.1 Wireless Sensor Networks . 1

1.2 Data Routing in WSN . 3

1.3 Application Areas . 8

1.3.1 Environmental Monitoring 8

1.3.2 Structural Monitoring 10

1.3.3 Habitat Monitoring . 12

1.3.4 Industrial Monitoring 13

1.4 Contributions . 14

1.4.1 Many-to-Many Routing in Wireless Sensor Networks

using ACO . 14

1.5 Fault Tolerant Many-to-Many Routing in Wireless Sensor Networks 16

1.6 Generating Steiner trees in Wireless Sensor Networks 17

1.7 Protocol Performance . 18

1.8 Organisation . 19

Chapter 2 Background 20

2.1 Routing in Wireless Sensor Networks 21

2.1.1 One-to-One Routing . 23

2.1.2 One-to-Many Routing 25

i

2.1.3 Many-to-One Routing 25

2.1.4 Many-to-Many Routing 32

2.2 Meta Heuristics . 34

2.2.1 Ant Colony Optimsation 34

2.2.2 Bee Colony Algorithms 42

2.2.3 Other Particle Swarm Algorithms 43

2.3 Fault Tolerance in Wireless Sensor Networks 43

2.3.1 Fault Prevention and Robustness 44

2.3.2 Fault Detection . 46

2.3.3 Fault Recovery in WSN 48

2.3.4 Fault Tolerance with ACO in WSN 52

2.4 Steiner Trees . 55

2.4.1 Using and Generating Steiner Trees in WSN 55

2.4.2 Steiner Trees using ACO 58

2.4.3 Fault Tolerant Steiner Trees 60

2.5 Summary of Routing Protocols 60

2.6 Summary of Fault Tolerance Protocols 65

2.7 Summary of Protocols relating to Steiner Trees in WSN 68

2.8 Summary . 69

Chapter 3 Problem Statement and Experimental Setup 72

3.1 Objectives . 73

3.2 General Network Characteristics 74

3.3 Experimental Setup . 75

3.4 Performance Metrics . 76

Chapter 4 Routing in Many-to-Many Wireless Sensor Networks

using Ant Colony Optimisation 79

4.1 Problem Specification . 81

4.2 Description of Protocol . 82

4.2.1 ACO for Many-to-Many Routing 84

4.2.2 ACO Protocol with no Ant Memory 88

4.3 Distributed Implementation . 91

4.4 Simulation Setup . 91

4.4.1 Network Configuration 92

4.4.2 Parameters . 92

4.5 Results . 94

4.5.1 Base ACO Protocol . 94

4.5.2 ACO with No Ant Memory 99

4.6 Conclusion . 103

ii

Chapter 5 Fault Tolerant ACO Routing in Many-to-Many Wire-

less Sensor Networks 106

5.1 Problem Specification . 108

5.2 Description of the Fault Tolerant ACO Protocol 109

5.2.1 Changes to Base ACO protocol 115

5.3 Experimental Setup . 115

5.3.1 Network Configuration 116

5.3.2 Failure Model . 117

5.4 Results . 117

5.4.1 Parameters . 119

5.4.2 Experimental Results 120

5.4.3 Patterned Failures . 130

5.4.4 Passive Fault Recovery 133

5.5 Conclusion . 133

Chapter 6 ACO Based Routing in Wireless Sensor Networks for

Generating Minimal Steiner Trees 136

6.1 Problem Specification . 138

6.2 Description of Protocol . 138

6.2.1 Steiner Trees using ACO 139

6.2.2 Fault Tolerant Steiner Trees using ACO 148

6.2.3 Additions from base ACO protocol 148

6.3 Simulation Setup . 149

6.3.1 Network Configuration 149

6.3.2 Failure Model . 149

6.3.3 Parameters . 150

6.4 Results . 150

6.4.1 Fault Tolerant Steiner Trees using ACO 166

6.5 Conclusion . 170

Chapter 7 Discussion, Evaluation, and Future Work 172

7.1 Observations . 173

7.2 Limitations . 175

7.3 Evaluation . 176

7.3.1 Conclusion . 176

7.3.2 Future Work . 180

iii

List of Tables

2.1 Summary of Routing Literature Reviewed 60

2.2 Summary of Fault Tolerance Literature Reviewed 65

2.3 Summary of WSN Steiner Trees Literature Reviewed 68

4.2 Simulation parameters for ACO based Routing in Many-to-Many

WSN . 93

5.2 Simulation parameters for Fault Tolerant ACO based Protocol 120

6.2 Simulation parameters for the ACO based protocols for Steiner

Trees in Many-to-Many WSN 150

iv

List of Figures

1.1 Examples of a one-to-one, many-to-one, one-to-many, and many-

to-many Wireless Sensor Networks 5

1.2 Example of a route from sources to sinks using a shared backbone. 15

2.1 Example process of Directed Diffusion 26

2.2 Example grid formed by GAF 30

2.3 Ant bridge experiment . 35

4.1 Example of a network with 2 sources and 2 sinks with a backbone

formed. 82

4.2 Delivery Ratio and Nodes Involved for the ACO based protocol 95

4.3 Backbone Analysis of the protocol 97

4.4 Further Backbone Analysis . 98

4.5 Number of Experiments following the converged backbone as a

percentage of total experiments. 99

4.6 Delivery Ratio for the ACO based protocol with no ant memory 100

4.7 Nodes Involved for the ACO based protocol with no ant memory100

4.8 Mean Backbone Length No Ant Memory ACO 101

4.9 Comparison of Backbone Length for no ant memory ACO protocol102

4.10 Analysis of Backbone Creation for no ant memory ACO protocol103

4.11 Convergence of no ant memory routes 104

5.1 Delivery Ratio with increasing node failures for FT-ACO . . . 122

5.2 Delivery Ratio of FT-ACO with no failures and 1% failures . . 123

5.3 Comparing original ACO protocol with Fault Tolerant variant . 124

5.4 Nodes involved in Fault Tolerant ACO Routing Protocol 125

5.5 Packets sent per cycle in Fault Tolerant ACO Routing Protocol 126

5.6 Comparing the mean packets sent per cycle using both fault

detection methods . 127

5.7 Mean Packets Sent On Route in Fault Tolerant ACO Routing

Protocol . 127

5.8 Recovery Analysis for FT-ACO 129

5.9 False Detection of Faults . 130

v

5.10 Patterned Failure on the backbone and an example route. . . . 131

5.11 Pattern Failure on a ant after the backbone has split. 132

5.12 Pattern Failure on nodes note usually on a route. 132

5.13 Summary of passive fault tolerance results 134

6.1 Delivery ratio of network of size 121 nodes with 2 sources and 2

sinks. 152

6.2 Comparison of delivery ratio of network of size 121 nodes with

2 sources and 2 sinks with other versions of the ACO protocol. 153

6.3 Nodes Involved in Steiner Tree Routing 154

6.4 Backbone Analysis in Steiner Tree Routing 155

6.5 Analysis of Backbone Convergence in Steiner Tree Routing . . 156

6.6 Packets Sent in Steiner Tree Routing 158

6.7 Network of 121 nodes with 2 sources and 2 sinks 159

6.8 Network of 121 nodes with 3 sources and 2 sinks 160

6.9 Network of 121 nodes with 4 sources and 2 sinks 161

6.10 Network of 121 nodes with 5 sources and 2 sinks 162

6.12 Network of 121 nodes with 2 sources and 3 sinks 164

6.13 Network of 121 nodes with 2 sources and 4 sinks 164

6.14 Routes for 5 and 6 sinks . 165

6.15 A comparison of delivery ratios when varying sources and sinks 166

6.16 Delivery Ratio for Fault Tolerant Steiner Trees 167

6.17 Delivery Ratio for 3% node failures 168

6.18 Patterned Failure on the backbone and an example route. . . . 169

6.19 Patterned Failure after the backbone split and an example route.169

6.20 Patterned Failure not on the main route and an example route. 170

vi

Acknowledgments

Firstly, I would like to thank my supervisor, Arshad Jhumka, for his support

and guidance in pursuing this work, without whom it would not be possible.

I would also like to thank Matthew Bradbury, who gave excellent advice and

help throughout the course of this work.

Thank you to my fellow PhD students, Liam, Melissa, and Katherine, for

making times spend in the office (when we were allowed in an office) a whole

lot more fun.

I would also like to thank all of those involved in the maintenance of the Flux

and the other resources in the Department of Computer Science.

Finally I would like to thank my boyfriend Chris for his love and support, I

wouldn’t have made it through without him.

vii

Declarations

This thesis is the authors own work. The thesis has not been submitted for a

degree at another university.

1 Publications

Parts of this thesis have been previously published by the author in the

following:

[48] J. Grosso, A. Jhumka, and M. Bradbury. Reliable many-to-many routing

in wireless sensor networks using ant colony optimisation. In 2019 15th

European Dependable Computing Conference (EDCC), pages 111–118,

2019. doi: 10.1109/EDCC.2019.00030

[49] Jasmine Grosso and Arshad Jhumka. Fault-tolerant ant colony based-

routing in many-to-many iot sensor networks. pages 1–10, 11 2021. doi:

10.1109/NCA53618.2021.9685935

2 Sponsorships and Grants

This research was funded by the Engineering and Physical Sciences Research

Council (EPSRC).

viii

Abstract

A wireless Sensor Network (WSN) consists of many simple sensor nodes
gathering information, such as air temperature or pollution. Nodes have limited
energy resources and computational power. Generally, a WSN consists of source
nodes that sense data and sink nodes that require data to be delivered to them;
nodes communicate wirelessly to deliver data between them. Reliability is a
concern as, due to energy constraints and adverse environments, it is expected
that nodes will become faulty. Thus, it is essential to create fault-tolerant
routing protocols that can recover from faults and deliver sensed data efficiently.
Often studied are networks with a single sink. However, as applications become
increasingly sophisticated, WSNs with multiple sources and multiple sinks
become increasingly prevalent but the problem is much less studied.

Unfortunately, current solutions for such networks are heuristics based on
specific network properties, such as number of sources and sinks. It is beneficial
to develop efficient (fault-tolerant) routing protocols, independent of network
architecture. As such, the use of meta heuristics are advocated. Presented
is a solution for efficient many-to-many routing using the meta heuristic Ant
Colony Optimisation (ACO). The contributions are: (i) a distributed ACO-
based many-many routing protocol, (ii) using the novel concept of beacon ants,
a fault-tolerant ACO-based routing protocol for many-many WSNs and (iii)
demonstrations of how the same framework can be used to generate a routing
protocol based on minimum Steiner tree. Results show that, generally, few
message packets are sent, so nodes deplete energy slower, leading to longer
network lifetimes. The protocol is scalable, becoming more efficient with
increasing nodes as routes are proportionally shorter compared to network size.
The fault-tolerant variant is shown to recover from failures while remaining
efficient, and successful at continuously delivering data. The ACO-based
framework is used to create Steiner Trees in WSNs, an NP-hard problem
with many potential applications. The ACO concept provides the basis for
a framework that enables the generation of efficient routing protocols that
can solve numerous problems without changing the ACO concept. Results
show the protocols are scalable, efficient, and can successfully deliver data in
numerous different topologies.

ix

Acronyms

ABC Artificial Bee Colony.

ACO Ant Colony Optimisation.

ACO-QoSR ACO-based quality-of-service routing.

ACS Ant Colony System.

CCP Coverage Configuration Protocol.

CTP Collection Tree Protocol.

DD Directed Diffusion.

EEABR Energy-Efficient Ant-based Routing Algorithm.

ETX Expected Tranmissions.

GAF Geographical Adaptive Fidelity.

GEAR Geographic and Energy Aware Routing.

GPS Global Positioning System.

GRAB GRAdient Broadcast.

GSO Glowworm Swarm Optimisation.

HVAC Heating, Ventilating, and Air Conditioning.

k-LCA K-restricted Loss-Contracting Algorithm.

LEACH Low Energy Adaptive Clustering Hierarchy.

x

MANET Mobile Ad Hoc Networks.

MCFA Minimum Cost Forwarding Algorithm.

MECN Minimum Energy Communication Network.

MMAS MAX-MIN Ant System.

MMSPEED Multipath Multispeed Protocol.

MRMS Multipath Routing in large scale sensor networks with Multiple Sink

nodes.

MUSTER Multisource Multisink Trees for Energy-Efficient Routing.

PEGASIS Power-efficient GAthering in Sensor Information Systems.

PSO Particle Swarm Optimisation.

Q-MST Quadratic Minimum Spanning Tree.

QoS Quality of Service.

REAR Reliable Energy Aware Routing.

ReInForm Reliable Information Forwarding.

SMECN Small Minimum Energy Communication Network.

SPIN Sensor Protocols for Information via Negotiation.

STP Steiner Tree Problem.

TTDD Two-Tier Data Dissemination.

WSN Wireless Sensor Networks.

xi

Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSN) are networks formed of multiple sensor nodes

placed or scattered in an area in order to measure environmental factors, such

as temperature, sound, or pollution levels [4][5]. The sensor nodes vary in

characteristics depending on the application and goals of the WSN, however

they usually share a number of common characteristics. Though they vary in

size, sensor nodes are often relatively small, and usually are inexpensive in

order to allow networks of large numbers of nodes [4]. Sensor nodes will have

limited energy resources, often being powered by ordinary batteries, and usually

will not be able to harvest energy from the environment (though some sensor

nodes do have this ability and this forms another branch of research [111])

hence power available to them is limited [4]. Computational resources are also

constrained, with sensor nodes often requiring specialised minimal operating

systems like Contiki OS [35] or Riot [9]. Sensor nodes in a network are able to

communicate wirelessly over limited distances using a radio transceiver [10],

and much research has been carried out in routing for these communications.

WSN have many advantages; their simplicity, flexibility and robustness allow

them to be placed in environments where traditional networks are not possible.

Often wireless sensor networks are placed in dangerous or difficult to reach

1

locations and left to run without human intervention. Additionally they are

often a cheap solution to many varied problems due to their low equipment

and maintenance costs. However, they come with a number of limitations,

particularly arising from their limited energy resources and computational

power, requiring novel, efficient solutions for routing messages[4] [5].

Sensor nodes measure and monitor a large range of environmental condi-

tions, including temperature, air quality, sound, and humidity [4][5]. WSN

setups may include several types of nodes [4][7]:

• Source nodes, which are the sensing nodes that detect an aspect of the

environment. Often these form the majority of the sensor nodes in a

network. They will usually then pass on this information to another node

in the network using wireless communication.

• Sink nodes, towards which this sensing data needs to be sent towards.

The sink node may be an actuator, that could then act on the data that

has been sensed. For instance, if a decrease in temperature is detected,

an actuator may be to increase heating to a room [3]. A sink node could

also be, or be in communication with, a computer with higher processing

power to in some way deal with the data further. For example, the data

may be passed to a different network, or processing may be performed

with higher computational power. These types of sink nodes are often

referred to as a base station [5].

• Relay nodes pass information from source to sink nodes using a radio

broadcast medium. A node may be some combination of all three of

these types of nodes in a sensor network, acting as both a source and a

relay node at the same time, or a sink and a relay node. [77].

Wireless Sensor Networks have a number of advantages over traditional wired

networks. As the sensor nodes themselves are generally simple, small, and

limited in computing resources, wireless sensor networks can be inexpensive

2

to produce and set up. A WSN requires less precision in the placement of

nodes, not requiring it to be close to the object or phenomenon that is being

monitored. Sometimes sensor nodes are placed randomly, which is an advantage

in dangerous or inaccessible areas. Additionally, a wireless sensor network

can be created quickly without need for detailed topology plans. They are

flexible for a number of environments as the topologies do not always need to

be planned in advance [4] [5].

1.2 Data Routing in WSN

Sensor nodes communicate with each other wirelessly using a radio [10]. This

communication is used to route sensed data from source nodes to sink nodes.

In some scenarios, routing protocols assume that all source nodes are able

to communicate with the sink or base station in a single message, known as

one-hop or single-hop communication. Other networks will require what is

known as “multihop communication” where sensor nodes can communicate

with their closest neighbours only. This could be by necessity due to radio

range, and so requiring several messages or hops to send data to the sink [5].

Multihop communication allows a much greater range of possible application

areas, as the network no longer requires every node to globally communicate

with every other node in the network. Multihop routing problems are a large

area of research in the field of wireless sensor networks, as many problems arise

in minimising the number of messages sent in order to reduce energy used in

sending packets, and so increasing the lifetime of the network [109] [1].

Sensor networks may be placed in a great variety of environments, with

varied topologies each with different limitations. This leads to the necessity

for flexible routing protocols that may be used in many different scenarios.

For example, in some networks, the sensor nodes may be mobile, adding an

additional layer of complexity in developing protocols [8]. A major form of

variation between sensor network setups is whether the WSN is centralised or

3

distributed. Distributed networks mean that each individual sensor node is

unaware of the overall network topology, and can only communicated locally

with its immediately reachable neighbours. Centralised networks operate with

overall knowledge of the network, either with each node being aware of global

topology, or a single base station having this knowledge and directing routing

accordingly. Each type of network presents different challenges in terms of

developing routing protocols [133]. For instance, centralised networks tend to

lead to more efficient routes being formed, however this is at the expense of

additional computational complexity of algorithms, as well as the tendency of

suffering more from node failures. Distributed networks may have less efficient

overall routes, however are more robust and scaleable.

WSN consist of both source nodes that sense data about the environment, such

as temperature or sound, and sink nodes that need to receive that data. Simple

WSN may consist of a single source directing the data that it senses to a single

sink, a situation with limited application areas. WSN with multiple sources

needing to send data to a single sink (many-to-one) is a research area that

is well explored, and often assumes many sensing nodes reporting data to a

single base station for further data processing. One-to-Many networks are less

common, and so fewer routing protocols have been developed for this scenario,

however there are some applications where, for example, multiple actuators

would need to respond to the same environmental change detected by a single

source. Example topologies of one-to-one, many-to-one, and one-to-many

wireless sensor networks are illustrated in figure 1.1.

WSN with both multiple sources and multiple sinks (many-to-many) are a

infrequently studied topology type, despite their potential in a number of

different application areas as WSN become more sophisticated. Many-to-Many

networks have a number of advantages, as they are able to fully utilise a

network of sensor nodes. Often a sensor network will have a large proportion of

nodes with the ability to sense and act as sources, which may also potentially

4

Figure 1.1: Examples of a one-to-one, many-to-one, one-to-many, and many-
to-many Wireless Sensor Networks

need to send messages to different sinks in the network. For instance, actuator

networks which require data to many actuators from multiple regions are a

potential application. Many-to-Many networks also increase the ability for

fault tolerance, as additional sinks could introduce alternative strategies and

flexibility for dealing with node failures. Generally a many-to-many network

allows greater flexibility in the application of a WSN, allowing sensed data

from multiple sources to be delivered else were, for either further computation

or immediate action by the network.

Though there are a large number of exciting opportunities, it is challeng-

ing to develop routing protocols for many-to-many networks. More sinks may

require each node to store more information about the network in memory,

which in a resource limited sensor node could be problematic. This often

means that routing protocols with the requirement for each node to have global

knowledge of the network an unsustainable starting condition, leading to the

necessity of distributed protocols. It may be hard to scale routing protocols for

larger networks, for instance tree based protocols may create a tree routed at

the sink, but with multiple sinks this may become too complex as multiple trees

5

would be required. Existing solutions for many-to-many routing are often not

scaleable, either requiring a centralised view of the network, or requiring large

scale recalculation of routes for each sink. Many existing solutions consist of

routing protocols developed for many-to-one networks simply repeated for each

sink, an inefficient way of developing routes. Creating an efficient route that

minimises the number of messages sent between nodes, a desired characteristic

as it will deplete the battery less and increase the lifetime of the nodes, is

challenging, as increasing the number of sources and sinks in many routing

protocol will increase the number of messages required.

Many routing protocols developed for WSN require a specific set of network

conditions to be successful. For instance, many required each node to have

some level of global knowledge of the network, which limits the scaleability.

Protocols are also often designed for topologies with a single sink, limiting

applications. There is a necessity for routing protocols that do not require such

specific conditions in order to operate successfully, while also being scaleable

and efficient in delivering data. Existing solutions often make use of heuristics

dependent on the problem, however meta heuristics independent of problem

starting conditions may form a more effective solution.

In addition to efficient routing under normal conditions, it is often required

that wireless sensor networks are to be resilient to faulty sensor nodes and

harsh environments. The nature of the sensor node devices are such that

they often run out of energy, or may fail in other ways due to their low cost.

Additionally, the networks are often placed in dangerous areas where they

may be destroyed [7]. An advantage of the WSN is that they are placed in

these dangerous areas or hard to reach places to minimise human interac-

tion, though this means that the nodes are not easily fixed or replaced when

they fail. As such, it is necessary to build fault tolerant routing protocols

to deal with node failures. As the sensors are inexpensive, a large amount

of redundancy can be built into the network in case of sensor failure or de-

6

struction. The flexibility in topology also adds to this resilience [7][131], as

routes could be recalculated. However, there is still a need for fault tolerant

protocols that are able to efficiently recover from faults when they occur. Such

protocols may be challenging in distributed networks, as there is no way of

determining which nodes in the network have failed due to the lack of global

knowledge. Many existing solutions rerun the initial route finding protocol

when node failures occur, an inefficient solution. For this reason it is impera-

tive to develop scaleable fault tolerant protocols that deal with faults efficiently.

Routing problems in WSN often take the form of NP-complete problems,

for instance, routing can be considered to be a variant of the vehicle routing

problem, an NP-hard problem [70], or a variant of the Steiner Tree problem [57].

Traditional route finding algorithms are often inefficient for such problems,

and heuristic based solutions will be problem specific, and often greedy, which

is not efficient for WSN. Meta heuristics present many potential solutions for

routing in WSN, as they are adaptable to the situation.

WSN have many advantages in their flexibility, however present challenges

in the necessity for fault tolerance and distributed routing. As applications

become more complicated and sophisticated, the necessity for many-to-many

routing protocols becomes more obvious, however little work has been carried

out in this area. Existing work will often use heuristics that require specific

starting conditions, and so meta heuristics present an elegant way of generat-

ing routing protocols with less dependence on starting conditions the specific

problems. These challenges and problem areas form the basis of this work, and

addressing these issues will allow WSN to be deployed more successfully in

many application areas.

7

1.3 Application Areas

Wireless Sensor Networks can be used in a large number of varied environments

to monitor a wide range of conditions, due to their flexibility and resilience to

problems. This section explores some of these application areas, and examples

of previous works that use them in these areas. This indicates the advantages

of this type of network, but also illustrates some of the challenges in developing

protocols.

1.3.1 Environmental Monitoring

Environmental monitoring is the observation of various environmental vari-

ables, such as temperature, humidity, light, and air pressure [94]. Often, these

variables need to be measured over a large region and therefore may require

a large number of sensors [92]. Environment monitoring applications include

detection and monitoring of natural disasters such as earthquakes or floods,

monitoring of agriculture, and weather forecasting [92].

For many environmental monitoring applications, a network must be reli-

able in variable conditions, such as harsh or difficult to predict weather, as well

as robust in the case of total node failure or changing topologies, caused by,

for instance, a drop in connectivity. Flexibility in the network is an advantage

when used for environmental monitoring, as often the environments themselves

change, or the requirements of monitoring changes. A level of autonomy of

the network is also useful, as a reducing the need to interact with the network

lessens the chance of humans changing the environment being monitored acci-

dentally, in addition to reducing danger to people. [94]

Wireless Sensor Networks are particularly suited in the field of environmental

monitoring, due to the fact that they do not need frequent human intervention

to continue running. The sensor nodes are battery powered and many protocols

aim to allow the longest possible network lifetime by reducing energy usage.

8

They allow real time monitoring of the environment, without risking human

maintenance affecting the environment being monitored [94]. Additionally, they

may be spread out over a large area to monitor large regions, a feature that is

often impractical for more traditional devices. Generally, sensor networks can

be designed to be fault tolerant, and so will be better able to survive harsh con-

ditions. Again, the low cost of the sensor nodes is an advantage in this scenario.

An example use of wireless sensor networks for environmental monitoring

can be seen in the work presented in [120], where a wireless sensor network is

used to monitor redwood trees in California. As the trees are so large, they

experience a variation of weather conditions from top to bottom, with changes

in humidity, light, and temperature moving around the tree. Previous solutions

were unwieldy, involving a researcher climbing the tree to place environmental

monitoring equipment to the top of the tree, which is then attached by cable

to a battery at the bottom of the tree. This setup was not able to monitor

the changes in climate for the tree in any real detail. A WSN would present

many advantages in this situation, as no cables are required to connect them

to batteries or each other. They should allow higher resolution data on the

climate factors around the tree, and also do not require a person to go to

the sensors to collect the data gathered. In this study, a sensor network was

setup that would sample all the sensors every 5 minutes, with sensors placed

at various places within the tree. This study showed that despite some issues

with installation, the network was able to gather data to validate biological

theories that previous methods were inadequate to enable. There were some

issues in installation as well as problems in inadequate fault detection and

tolerance within the network, which shows the importance of such factors in

designing a WSN. It was found that a WSN is able to provide dense spatial

and temporal monitoring in real world environments.

Other examples of environmental monitoring include:

9

• [50] An automated irrigation system for efficient water usage in irrigating

crops. Sensors are placed nearby plants in order to monitor soil mois-

ture levels and temperature, triggering actuators for watering. It was

found that this lead to 90% water savings. This is an example where a

multiple sink, multiple source network may be advantageous, as multiple

source sensors could be used to sent information to sinks associated with

irrigation systems throughout the crops.

• [125] A WSN was deployed in an active volcano, collecting data via

multihop to an observatory. Compared to traditional approaches, the

sensors were smaller and had lower energy consumption, requiring far

smaller batteries and less human interaction in a potential dangerous

environment.

• [11] SensorScope is an environmental monitoring system, in this case

deployed in a glacier in Switzerland for various goals including creating

precise maps of an area where environmental conditions make tradi-

tional wired network inadequate for gathering the detail required. Such

measurements are useful in flood monitoring and prediction.

1.3.2 Structural Monitoring

In addition to more natural environments, WSNs are also used in the moni-

toring of buildings and urban areas. The advantages of a WSN in this setting

include the low cost of the network, the ability to place sensors in locations that

may be too dangerous or otherwise inaccessible for people to access frequently,

such as in ceilings, and the lack of wires makes the network both safer for people

using the building in terms of trip hazards, as well as being more aesthetically

pleasing [61]. Common uses of WSN in buildings include monitoring lighting,

heating, ventilating, and air conditioning (HVAC) [61].

In [66], Kintner-Meyer et al. used wireless sensor networks for HVAC in

commercial buildings. Wiring can cost being 20%-80% of a HVAC system [66],

10

and so using a wireless sensor network can represent a significant amount

of savings. Two implementations are carried out, with one setup using the

network in a large high rise commercial building to monitor temperature and

reduce energy usage, and in the other setup a smaller building with rooftop

units. Though there were some uncertainties in the cost analysis of the systems,

it was found that the wireless sensor networks represented a decrease in cost,

as well as being easier to be extended than wired networks. HVAC is a scenario

where many-to-many networks could be implemented with success, as having

the heating and air conditioning respond to conditions throughout a building

could improve efficiency.

Wireless sensor network is used to monitor the structural integrity of both

historic and modern buildings. In case of historic buildings, such as [16], WSNs

are prefered over a traditional wired network as the smaller sensor nodes can

be deployed with less visual impact to the artwork and architecture of these

buildings without need for access to power outlets. In this case, nodes were

placed over four floors and throughout the course of monitoring the tower was

accessible to the public. The building itself posed challenges in the fact that the

stone walls were very thick. The goal of the network was to alert for potential

structural issues with the building. The network had a low loss rate (loss rate

indicating the reliability of delivery of data), however a single faulty node led

to a spike in the loss of packets. This indicates that a protocol that can deal

with faulty nodes would be advantageous in such real-world implementations of

WSN. For structural monitoring, it is necessary to identify structural damage

as early as possible, to prevent further damage and maintain safety standards,

with particular importance placed on the monitoring of structures such as

bridges in locations prone to seismic activity. As such, wireless sensor networks

are increasingly used in such scenarios, due to their robustness, flexibility,

and low cost. In [79], wireless sensors were installed in the Alamosa Canyon

Bridge in New Mexico and found the network to be reliable and accurate in

comparison to a wired network when measuring forced vibrations of the bridge.

11

A drawback of the wireless network was the limited energy resources of the

sensors, showing a need to conserve energy usage in order to maximise network

lifetime, or perhaps make use of energy harvesting. However in general wireless

sensor networks show great potential in this area as the technology develops.

1.3.3 Habitat Monitoring

Wireless Sensor Networks have been extensively applied in the field of habitat

monitoring [81]. WSNs in particular are useful in this area, due to the fact that

they can usually be left alone to run without human intervention. The small

size of the sensors mean that they are less invasive in an environment than a

traditional wired network, allowing accurate monitoring of the area without

influencing the habitat. The habitats being monitored may be harsh, meaning

that repeated in person studies could lead to dangerous situations for the

people carrying them out. A WSN would also reduce the cost of monitoring,

with lower setup and maintenance costs. Additionally, with a WSN, sensor

nodes may be placed in previously inaccessible areas, increasing the range of

habitats that can be studied [81].

In [81], a case study is described where the habitats of ducks are monitored

in the Great Duck Island in Maine, USA. A wireless sensor network is put

in place on several small islands in order to monitor the ducks, including the

nesting habits of breeding pairs. 32 sensor nodes are placed on the duck island,

including 9 underground. Readings indicate that recorded information matches

previously seen patterns in humidity, showing the accuracy of the system.

Wireless Sensor Networks have been implemented in [90] in order to mon-

itor seabirds on Skomer Island, a UK nature reserve. Monitoring seabirds in

such an environment enables researchers to track the overall ecological health

of the island. Prior to the implementation of a wireless sensor networks, birds

were tracked using GPS loggers, which needed frequent replacement of batteries

as well as manual downloading of data. A WSN was setup with a single sink

12

to monitor the activities of the birds as well as conditions in their burrows.

The reliability of measurements of the network was found to be good, and

additionally it was found that deploying the network did not lead to a change

in the behaviour of the birds. Problems were found in that the configuration

of the network needed to be changed with changing conditions in the fields.

This suggests that protocols that can adapt to changes in the environment, for

instance a change in node location due to environmental conditions, would be

advantageous.

1.3.4 Industrial Monitoring

Wireless Sensor Networks have a place in industrial monitoring of equipment

and production. For instance, machinery condition-based maintenance in-

volves continuously monitoring the state of equipment in real time, performing

maintenance only when necessary. This method of maintenance optimises

resources, ensuring costs and downtime is minimal. Wireless Sensor Networks

are particularly suited to this task as due to their small size, they are able

to be placed within small spaces in machinery that would be impractical or

completely inaccessible for a traditional wired network, such as moveable parts.

As WSNs are often distributed, the sensor nodes could be easily moved around

the machinery where the need arises. WSNs are quick to install and can usually

be left unattended, reducing the cost involved in setting up and maintaining

the network [119].

In [119], a wireless sensor network is used to monitor a Heating and Air-

conditioning Plant. In this case, the set up time was indeed minimal, taking

only 30 minutes. The network was successfully used in the real time monitoring

of equipment.

13

1.4 Contributions

The main contributions of this work focuses on wireless sensor networks with

multiple sources and multiple sinks, or many-to-many WSN. This is an area

of research that is little studied, with solutions often involving the inefficient

calculation of separate routes for each sink, despite the usefulness of a network

that is able to sent data to multiple locations.

Current solutions often make use of heuristics for routing problems, requiring

a specific set of starting conditions. Meta heuristics form the basis of the

work here, as they do not require a particular set of starting conditions for

the network but are adaptable to different scenarios. They are able generate

efficient solutions of NP hard problems that are raised by the constrained

conditions of energy limited sensor nodes in a many-to-many WSN.

A framework based on the Ant Colony Optimisation [29] meta heuristic is

presented, from which many routing protocols can be developed from applying

to a number of scenarios and problems relating to many-to-many WSN. The

ACO based routing protocol does not need a certain set of conditions to be

successful, instead the input parameters of the framework can be changed to

suit the topology and the environment the network is placed in. The same

concepts of the protocol are used with some extensions or variations in order

to be applied to different topologies, making the framework adaptable to a

number of different scenarios. A summary of the contributions are explored in

this section.

1.4.1 Many-to-Many Routing in Wireless Sensor Networks

using ACO

Many-to-Many routing in WSN is the problem of ensuring that sensing data

from multiple sources s1, . . . , sk is delivered to multiple sinks ∆1, . . . ,∆l, while

sending a minimal number of packets with a minimal number of nodes. In this

14

way, fewer messages will be sent overall and so network lifetime is increased

as less energy is expended. To solve this problem, a distributed ACO based

routing protocol has been developed that utilises the concept of a shared route,

or backbone, of nodes that aggregates messages from many sources before

directing messages towards many sinks. This backbone has the advantage of

scaleability, meaning that overall fewer messages are sent due to the effects of

aggregation.

Source 1 Source 2

Sink 1 Sink 2

Figure 1.2: Example of a route from sources to sinks using a shared backbone.

The concept of the shared backbone of nodes is illustrated in figure 1.2. The

main advantage of this backbone is to reduce the overall number of nodes

involved in routing, and also to reduce the number of messages sent. This

increases network lifetime, and also leads to a more scaleable protocol that is

still efficient as network size increases. This backbone also has the advantage

of allowing the aggregation of data, potentially reducing the size of the payload

to be sent. To form a backbone, multiple messages originating from different

sources receive on the same node. From this node, a single aggregated message

will be forwarded for as long as possible, before splitting into multiple mes-

sages again to be forwarded to multiple sinks. The backbone concept can be

related to the concept of a backbone mesh in Mesh networks, formed of many

routers. However, this is quite different to what is proposed here, as in WSN

15

energy concerns are much greater and form much of the challenge in routing.

Additionally, there is greater homogeneity of nodes in WSN, with any node

possibly forming the backbone, not just routers as in mesh networks.

The protocol that has been developed is distributed, which is often a ne-

cessity in large networks where nodes cannot hold information about the whole

network, or where there is no power base station that can have a centralised

view of the network. Outside of necessity, a distributed protocol is very ad-

vantageous in WSN as it simplifies the amount of information each individual

node needs to deal with, with each node only requiring knowledge of localised

information about its neighbours. This has the effect of making the protocol

more scaleable to increased network size. Additionally, when only local infor-

mation is necessary to make routing choices, the protocol is more resistant to

changes in the network, allowing greater flexibility.

1.5 Fault Tolerant Many-to-Many Routing in Wire-

less Sensor Networks

The ACO meta heuristic is extended to create a Fault Tolerance routing proto-

col for many-to-many WSN, specifically the scenario where nodes fail during

the running of the protocol. The ACO meta heuristic based routing protocol

is still able to efficiently generate routes in a many-to-many WSN efficiently

while dealing with faulty nodes.

The fault tolerant version of the ACO based routing protocol aims to solve

the problem of given multiple sources s1, . . . , sk and multiple sinks ∆1, . . . ,∆l,

a path should be found between them such that the protocol is tolerant to

an arbitrary number of node failures. WSN often are placed in inaccessible

environments where humans are not able to access and repair nodes frequently,

however node failures are still likely to occur through energy depletion or other

adverse conditions. This makes maintaining successful operation of routing

16

from sources to sinks without outside intervention important. This means that

it is necessary to develop a routing protocol that is able to recover from faults

in the network while still being able to route from multiple sources to multiple

sinks. A fault tolerant variant of the ACO based protocol is developed to solve

this problem.

The many-to-many ACO routing protocol is adapted in the fault tolerant

variant, however an additional type of ant is introduced to detect faults. Bea-

con ants are sent from every node that track which neighbours may be faulty.

ACO can be adaptive to node failures, as only local decisions are made by

each ant. This means no network wide updates are required, or wholesale

recalculation of routes that take the node failure in account. Instead, only the

local decision of whether to travel to a node is required to be considered. As

ACO minimises the number of nodes involved, often failed nodes are not on

the route at all, leading to resistance to many node failures. To recover from

faults that are on the main route followed by the ants, targeted evaporation of

the pheromone trail is used to encourage ants to choose different nodes that

have not been detected as faulty. Pheromone trail is evaporated more on nodes

that are more likely to have failed.

1.6 Generating Steiner trees in Wireless Sensor Net-

works

The final contribution is an exploration of the ability of the ACO meta heuris-

tic framework to create Steiner Trees in a many-to-many WSN, with varied

number of sources and sinks. A Steiner Tree is a popular and useful structure

to form in a network due its ability to efficiently connect sensor nodes, and

using the ACO meta heuristic these can be build efficiently in a distributed

fashion, only changing the inputs to deal with different input problems. This

investigation also shows the ability of the ACO based framework to be applied

to different problems, in this case making some changes to the start up phase

17

of the algorithm and how it decides when to split and combine into a backbone.

The terminal nodes of the Steiner tree generated by the protocol will be

the sources and sinks in the network, which are connected by any number

of additional sensor nodes that act as Steiner points. The use of a shared

backbone is also utilised here, as it enables the generation of minimal Steiner

Trees in certain topologies. In order to connect an arbitrary number of sources

and sinks in a Steiner Tree, the concept of a preliminary pheromone trail in

introduced. This attempts to solve the problem by initialising the pheromone

trail between nodes in such as way as to encourage the formation of Steiner

Trees. A fault tolerant variant that also makes use of beacon ants is also

developed to solve the problem of node failures in the network.

1.7 Protocol Performance

Initial results show that the ACO meta heuristic based routing protocol for

many-to-many WSN is effective in building efficient routes from all sources

to all sinks for a wide range of network sizes and scenarios. The protocol is

successful in delivering data, having a high delivery ratio of packets sent. The

initial protocol developed had a delivery ratio of 94.8% for a network of 121

nodes with two sources and two sinks, compared with a figure of 69.2% for

flooding in the same network. Across multiple network sizes ranging from

25 to 169 nodes, the mean delivery ratio was 93.3%. The number of packets

sent is minimised, with the protocol becoming more efficient as the network

becomes larger. When considering the initial protocol with 121 and two sources

and two sinks, there are 31.5% of the nodes involved to route, compared with

flooding at 43.7%. The fault tolerant variant of the protocol is able to detect

and respond to faults, routing messages around failures in the network to still

maintain a high delivery ratio and short routes. With 5% of nodes failures,

the Fault Tolerant variant of ACO maintained a delivery ratio of 87.6% in a

network with 121 nodes. The Steiner Tree variant is able to build Steiner Trees

18

between a range of sources and sinks in a distributed fashion, and the fault

tolerant variant for building Steiner Trees shows some promise.

1.8 Organisation

This chapter has introduced wireless sensor networks, their applications areas,

and the challenges that arise from their limitations. A number of real world

applications have been explored showing the usefulness of WSN. These use

cases emphasises the necessity for robust and flexible wireless sensor nodes,

with elegant solutions for routing protocols. The rest of this work is organised

as follows:

• Chapter Two presents and review of existing literature in the field of

WSNs.

• Chapter Three describes the problem statement to be solved and experi-

mental setup followed.

• Chapters Four to Six present the technical contributions.

• Chapter Seven presents some discussion of the work and processes learnt.

• Chapter Eight concludes and discusses future work directions.

19

Chapter 2

Background

Wireless Sensor Networks (WSN), made up of large numbers of simple, low cost,

and low power sensor nodes, have the potential to solve problems in a number

of applications areas in science and industry. Due to their power constraints

and the extreme environments they may be placed in, protocols developed

for the devices must conform to a number of constraints. Challenges arise in

limited power resources for the nodes, leading to the necessity to reduce the

number of messages sent in order to increase network lifetime. Additionally,

node failures may be common in a WSN, due to the potential for nodes to

run out of energy, or to be destroyed by the environment they are in, and

so routing protocols need to deal with node failures when they occur. Many

existing routing protocols assume a network of a single source and a single

sink, or a network with multiple sources and a single sink. Such solutions

may be useful in limited circumstances, however are often not adaptable to

different situations. Limited solutions with both multiple sources and multiple

sinks exist, however these are not common and generally do not scale well, in

many cases requiring a particular starting setup. An efficient solution that

does not require specific network conditions can be provided with the use of

meta heuristics such as Ant Colony Optimisation. Steiner Trees in WSN are a

useful form of providing routing solutions, as they are able to connect together

a generic number of nodes with minimal cost, and so the research that has

been carried out in this area is also discussed.

20

A review of these existing technologies for wireless sensor networks is pre-

sented in this chapter. The topics covered are broadly; routing in wireless

sensor networks, separated into the categories of one-to-one, many-to-one, and

many-to-many routing, the use of Ant Colony Optimisation in WSN, fault tol-

erant protocols for WSNs, including fault tolerant routing, and finally, existing

work relating to the formation of Steiner Trees in WSNs is described.

2.1 Routing in Wireless Sensor Networks

Routing in Wireless Sensor Networks is a widely studied problem with large

numbers of existing solutions. Routing is the process of directing sensing data,

for instance environmental information like temperature or pressure, from

source sensor nodes towards the sinks or the base station of the network. In

smaller WSN, nodes are close enough to the sink or base station such that all

nodes can communicate with it directly, this is known as single hop communica-

tion. However, more often sensor nodes are only able to communicate with close

neighbours, and so to send data to the sink nodes multi-hop communication is

required. This is where nodes send messages to neighbouring nodes they can

communicate with until the sink is reached. Routing is the process of finding

multi-hop paths from sources to sinks [109].

A number of challenges present themselves when developing routing protocols

for WSN. In general, a large amount of energy that is expended by sensor nodes

originates from communication using a radio [37]. As a consequence of this, the

goal of many routing protocols is to send as few messages as possible, in order

to reduce energy expended to increase network lifetime. As wireless sensor

networks are usually more constrained in power than typical wired networks,

energy efficient routing protocols is of particular value [1]. In addition to the

low power resources, sensor nodes also have low computational resources, and

so complicated routing protocols are often not possible. Other problems arise

21

from the need for distributed protocols. Many protocols assume a centralised

approach is possible, for instance if all nodes have a global knowledge of topol-

ogy or if a base station has a centralised view of the network. However, often

in real world scenarios this is not possible to implement and so it is necessary

to develop distributed protocols where each node has no global knowledge

of the rest of the network. Though routing protocols have some similarity

to classical path finding algorithms, creating efficient paths in a distributed

network with no overall knowledge of topology makes these algorithms difficult

to implement, so a large research area is finding efficient routing protocols under

these conditions. Routing protocols should be scaleable, remaining efficient in

networks with hundreds of sensor nodes. Solutions for routing should also have

a level of robustness, as due to the nature of wireless sensor networks and the

locations they are often installed, failures of transmission will occur often. It

is generally desireable for routing protocols to have a level of robustness and

reliability when failures occur. [109] [1] [5] [83] [2]

When classifying protocols, it is often helpful to categorise based on the topol-

ogy of the network they are used in. The number of sources and sinks is an

important feature, and allows the categorisation of how routes are formed.

These types of routing are:

• One-to-One: Routing from a single source to a single sink, this is the

most simplistic form of routing. This is often not scaleable, as most

networks will have multiple nodes sensing information acting as sources,

and as such, the protocol will simply be repeated for each source node.

This will lead to more messages than necessary being sent.

• Many-to-One: This type of routing will direct many messages from

multiple sources to a single sink. This type of setup may be useful

where the network has a single base station that deals with all messages,

however this scenario is not applicable to every WSN. Often hierarchical

protocols are considered to be many-to-one, as many sensor nodes report

to a single cluster head.

22

• One-to-Many : This network topology is less common, and as such is not

well investigated.

• Many-to-Many : Routing from multiple sources to multiple sinks is the

most flexible of WSN routing, as it allows a large range of network setups

and conditions.

It should be noted that there may be overlap between the categories, as for

instance, a one-to-one protocol could be repeated in the same network for a

different source to also deliver messages to the sink. This could be considered

many-to-one, however as the protocol in this scenario is naively repeated it will

likely be inefficient and not scaleable. For the sake of this review, a routing

protocol that can be repeated in order to deliver from multiple sources to one

or multiple sinks will still be considered to be one-to-one, as each instance of

the protocol is only performing a single routing path.

2.1.1 One-to-One Routing

This section investigates existing one-to-one solutions for routing in wireless

sensor networks. These are often the simplest and earliest protocols, simple to

implement but often inefficient and not scaleable.

A classic and simplistic form of routing in WSN is flooding [54]. Flood-

ing consists of nodes, on receiving a message, broadcasting that message to

all of its neighbours repeatedly until the destination node is reached. The

technique is simple, does not require expensive setup processes, or expensive

updates in the case of topology changes like node failures. However, three main

issues arise with this technique. ’Implosion’ is where nodes receive duplicate

messages where multiple neighbouring nodes broadcast the same message.

’Overlap’ is where multiple nodes sense the same data and each broadcasts

to its neighbour, leading to more duplicated messages. Additionally there is

the problem of ’resource blindness’, where energy resources of nodes are not

23

taken into account [54][2]. Flooding is generally not very scaleable and will

end up sending a lot of messages, becoming inefficient. Flooding could also

be used in a many-to-one or a many-to-many manner by simply repeating the

flood for each node, however this would lead to an incredibly large number

of messages sent, potentially leading to many collisions and is not practical.

Additionally the routing protocol is not creating a route between multiple

sources and multiple sinks, but instead repeating the same routing protocol

multiple times.

Another classic routing technique is gossiping [53]. This technique is sim-

ilar to flooding, however instead of broadcasting too all neighbours a single

neighbour is randomly selected to forward a message to. This avoids the

inefficiency involved in flooding, however gossiping may take a long time to

deliver messages to the desired destination.

Sensor Protocols for Information via Negotiation (SPIN) [54] is a set of pro-

tocols that improves upon flooding as a routing technique. SPIN is based on

the concept of data-centric routing, where nodes broadcast an advertisement

message of the type of data it has access to. A sink may respond to this broad-

cast, initiating the process of routing from the sensing node. To improve upon

flooding, SPIN introduces three types of message; ADV, REQ, and DATA. A

node will first send a ADV message that contains meta data about the message.

If a neighbour would like to receive the message, it sends back a REQ message,

and the original node will then send the DATA message containing the sensed

data. SPIN has the advantage that only relevant data is sent between nodes;

there are fewer problems with implosions or overlap. There is also some level

of resource awareness, as SPIN-2 has nodes only participating in the three

stage message sending protocol if it has sufficient energy to do so. SPIN is

limited in that to deliver multiple messages to multiple sinks, it will need to

developed multiple different routes throughout the network. Additionally there

is no guarantee that a particular path will exist towards a sink, as nodes may

24

not request the data.

2.1.2 One-to-Many Routing

Flooding, as mentioned in the previous section, could also be used in a One-to-

Many manner. If a source floods the entire network, it will likely be able to

deliver to multiple sinks from a single source. This, though likely inefficient, is

a simple way of delivering from one source to multiple sinks.

2.1.3 Many-to-One Routing

Directed Diffusion (DD) [59] is a data-centric routing protocol that is widely

studied and from which many other routing protocols are based on. In Directed

Diffusion, a sink node sends out an “interest” too all nodes in the form of

attribute-values pairs, which has the effect of requesting data. The interest is

propagated throughout the network whilst also initiating “gradients”. When a

source node has the requested data for a sink, it will send that data to follow

the gradient path towards the sink. Several paths may be created from the

source to the sink, and so the sink will send further interest messages out in

order to reinforce better routes. In this way better paths will be followed often,

and worse paths followed less. An example of this process is shown in figure

2.1. Directed Diffusion has the ability to recover from failures in the network

by reinforcing a different path, should a failure occur on the one currently

being used. An advantage of Directed Diffusion is that all decisions are made

locally by the nodes, with no need for maintaining a centralised view of the

network topology. As it is an on demand protocol, meaning that the sinks only

request data when required, the protocol is able to conserve energy by reducing

the number of unnecessary messages sent. This is different to SPIN where

all source nodes will advertise the data they have at all times. The method

used by Directed Diffusion, where a sink makes a request to the network for

a specific piece of data, limits the protocols effectiveness in scenarios where

continuous data is required. An example of this kind of application is habitat

monitoring, where the same piece of data may be required to be delivered to

25

Figure 2.1: Example process of Directed Diffusion

the sinks constantly. Directed Diffusion is able to deliver messages to multiple

sinks, however this is through the setup of multiple paths throughout the

network leading to each sink, a setup which may lead to more messages sent

than necessary if aggregation took place. The refreshing of paths with flooding

of interests from the sink could affect scaelability of the protocol, requiring a

large amount of messages to be sent to maintain routes. There may also be

some inefficiencies as alternate routes must be maintained at a low rate if a

different path needs to be used in the case of node failures.

Rumor Routing [13] is a variation on Directed Diffusion [59]. In rumor routing,

if a sink requires data, it routes its request to the sensor nodes that have

observed that data, as opposed to DD where the sink floods the network with

an interest. When a node observes a sensing event, Rumor Routing uses long

lived agents that propagate information about the event to nodes, which then

store information about the event in tables. When a node then requests data

on that event, nodes in the network will be able to know where to forward

the request to in the network. Unlike Directed Diffusion, Rumor Routing only

maintains one path from source to sink. There is an overhead in the storing of

information in local tables on every node, and as well as maintaining agents

for each event throughout the network. This could mean that the protocol

is suited best to scenarios where the number of events or sources is small, in

order to avoid large amounts of overhead.

26

Energy Aware Routing aims to increase overall network lifetime by storing

a set of good, but not necessarily optimal, paths from sources to sink [110].

The paths are found in a similar method to Directed Diffusion, with initial

flooding to set up multiple paths and routing tables, however in this case an

energy cost is maintained and high cost paths discarded. Routing tables are

used to choose the path from source the sink, with each node being assigned a

probability based on the cost of travelling to it. Infrequent flooding is required

to maintain paths. Storing a number of routes can involve a large amount of

data stored on the memory of nodes, in addition to the flooding, limits the

scaleability of the protocol.

Gradient Based Routing [108] is another protocol based on the concepts

presented in Directed Diffusion with a focus on energy efficiency. The goal of

this scheme is to enable the longest possible network lifetime. The protocol

starts with flooding interests through the network to set up gradients. The

gradients here are based on the difference between the nodes “height” and the

height of its neighbour, with the height being the number of hops to the sink.

Following this, techniques are applied to reduce energy consumption. “Data

Combining Entities” combines data from different nodes, reducing the amount

of data needing to be sent in the packet header, increasing efficiency. A series

of data spreading schemes are also presented with the goal of distributed traffic

among different nodes, balancing the overall load to the network across different

paths. Three schemes are described, a stochastic scheme where a random next

hop is chosen when the gradient is the same, an energy based scheme that

discourages choosing nodes below and energy threshold, and a stream based

scheme which discourages choosing nodes that are already in another stream.

These techniques for reducing energy consumption are effective at increasing

network lifetime overall, however has some limitations in terms of network

attributes. For instance, the work assumes that all network nodes are of equal

importance, which may not always be the case. Additionally the limitations of

Directed Diffusion apply, such as it not being well suited to continuous data

27

delivery.

Hierachical protocols use a clustering based model in order to route from

sources to sink. In general, this involves a number of sensors being designated

as cluster heads that perform some data aggregation, with other sensors being

assigned to send messages to a particular cluster head. It is arguable that

this form of routing could be many-to-many, as there are multiple sources and

multiple sinks in the form of cluster heads. However, each source will only

ever deliver data to a single sink, which may then coordinate with the other

cluster heads, sometimes to send aggregated data to a single sink or basestation.

This review will generally consider this to be many-to-one communication, as

a source node will only ever need to route to one sink, however it could be

scenario dependent. In general, this style of routing has good scaleability but

at the cost of increased overhead in terms of cluster setup and updates [83].

Low Energy Adaptive Clustering Hierarchy (LEACH) is a highly referenced

protocol that makes use of the clustering method [51]. In LEACH, clusters are

formed based on signal strength, and local cluster heads are selected within

each cluster to forward messages to the sink. No global knowledge of the net-

work is required for the protocol, however the overhead involved in repeatedly

selecting cluster heads may be high. The cluster heads will aggregate the data

it receives from the other nodes in the cluster before forwarding to the sink,

in order to reduce energy consumption by sending multiple messages. Cluster

heads are routinely rotated such that energy consumption of nodes is balanced.

LEACH is dependent on each node in a cluster being within a one hop distance

to the cluster head, making it unsuitable for sensor networks where this is not

possible, for instance those over a large area.

Power-efficient GAthering in Sensor Information Systems (PEGASIS) is a

protocol whereby nodes organise themselves into chains [74]. Each chain will

have a cluster head node assigned, and this node will forward messages to the

28

sink. The nodes on the chain will communicate with one neighbour towards the

cluster head in order to minimise energy useage. PEGASIS relies on each node

having global knowledge of the network to form the chain, with the furthest

node from the sink starting the chain before nodes are added in a greedy man-

ner to the chain. During operation, data is aggregated along the chain as it is

gathered before being sent to the next node along in the chain. The nodes take

turns to broadcast to the sink in order to reduce energy consumption. In case

of node failures, the chain will reconstruct around the failed node. PEGASIS

represents an improvement on LEACH in terms of energy savings, with nodes

running out of energy later in compared with LEACH. The protocol is limited

in its requirement that each node has global knowledge of the network, and

also requires all nodes along the chain to send a message in each round, which

may not be necessary. Nodes further from the cluster head will lead to a longer

delay in sending messages to sink, as it must travel along the entire chain.

There is also the requirement for all nodes to be within a one hop distance to

the sink, which may not be possible in many scenarios.

Location based routing protocols rely upon the locations of each sensor node

being known, for instance to calculate distance between nodes. Locations may

be provided using Global Positioning System (GPS), or through exchanging

information with neighbours [109]. This requirement will limit the potential

applications such networks can be used in, as location information may not be

possible. However, this does enable efficient routing in the sensor network. An

example of a location based routing protocol is Minimum Energy Communica-

tion Network (MECN) [105], which makes use of a low power GPS to generate

an optimal spanning tree routed at the sink containing paths between source

and sink that consume the least power, which is referred to as the minimum

power topology of the network. The distributed protocol involves each node

broadcasting its location information in order to build a graph of communica-

tion links between nodes such that the graph represents the minimal power

consumption to the sink. The protocol then uses the distributed Bellman-Ford

29

Figure 2.2: Example grid formed by GAF

shortest path algorithm [80] with power consumption as the cost metric to find

the most efficient path to the sink. The protocol assumes every node in the

network can communicate with each other, which may not always be possible.

MECN is then extended to SMECN (Small Minimum Energy Communica-

tion Network) [72], which is able to create a smaller minimum power topology

and is able to deal with obstacles in the network, however with higher overhead.

An example of an energy aware location based routing protocol is Geographical

Adaptive Fidelity (GAF) [127]. GAF generates a virtual grid of nodes based

on location data and aims to reduce energy consumption by keeping a number

of nodes in the same grid square asleep at all times, and alternating which

node in a square is awake. Using their location awareness, nodes will associate

themselves with a virtual grid, and then collaborate within the grid zones to

elect a master node that is awake and communicates with the sink. Other

nodes in the grid zone will then sleep in order to save energy. The protocol

may be limited in that each node in a grid is considered to be equivalent in

routing costs, which may not be the case. An example of the type of grid

formed by GAF is shown in figure 2.2, where nodes 3, 4, and 5 are equivalent

in which nodes they can communicate with. This means that two of the three

can be asleep while maintaining the same connectivity.

30

Geographic and Energy Aware Routing (GEAR) [132] is a location aware

routing protocol that is also based on the concepts introduced in Directed

Diffusion. Interests are disseminated throughout the network directed towards

a targeted location in the network rather than flooding the whole network as

in Directed Diffusion. Each node is assumed to know its location with GPS, in

addition to its energy level, as well as its neighbours location and energy level.

Using this knowledge, interests are directed through the network by nodes

working out if a neighbour is closer to the target location than itself. If all

neighbours are further away, a node is chosen to minimise estimated cost. Once

the interest reaches the targeted region, data is diffused through the network

using either recursive geographic forwarding (recursively flooding regions) or

restricted flooding.

Another common method of routing involves setting up trees in the network.

The Collection Tree Protocol (CTP) builds trees routed at the sink, where

data from a source travels up the tree to reach that sink [46]. CTP uses a

cost metric called expected transmissions (ETX), where ETX is the expected

number of transmissions required to send a message to the root of the tree.

ETX is used by nodes to select the next node to send a message to upwards

through the tree, with each node selecting the next node based on lowest ETX.

ETX as a metric has advantages in that is should lead to short routes with

smaller number of packets sent, but also comes with some limitations. To

maintain accurate ETX figures, nodes will periodically broadcast its ETX value

to is neighbours, an expensive process. There are also likely scenarios where it

is not possible for nodes to accurately report ETX, as this could reasonably

require some level of network wide knowledge. CTP could be used to route to

multiple sinks by repeating the algorithm to construct multiple trees rooted at

each sink. This however may lead to each node having to store a large amount

of routing information, as well as inefficient routes when a source needs to

send the same data to multiple sinks. Additionally, a node will not choose

a particular sink to travel to, just its closest sink, which may limit potential

31

applications.

2.1.4 Many-to-Many Routing

Wireless Sensor Networks with multiple sinks have a number of advantages.

Often, the nodes surrounding a sink will use energy more quickly than other

nodes in the networks, as they will be required to route to that sink. Multiple

sinks may lead to some load balancing network wide, with more nodes taking

the strain to routing to sinks. Also, multiple sinks are useful in applications

such as actuator networks, or in very large networks where it is helpful to have

many sinks covering the area. In terms of fault tolerance where it is often

helpful to have multiple sinks in case of sink failure, or sensor node failures that

lead to partitioning of the network. For this reason, many-to-many-routing is

an advantageous area to investigate, though solutions are not as common as

many-to-route routing.

An example of a hierarchical routing protocol that can be considered to be

many-to-many is Two-Tier Data Dissemination (TTDD) [78], an approach

that aims to deliver data to multiple mobile sinks. Source nodes build a grid

of nodes preemptively, with dissemination points being set as the nodes at the

crossing points of the grid, and nodes closest to these points being assigned

dissemination nodes using recursively data announcements. The process of

creating the grid does not rely on each node having global topology knowledge

only localised information. Each source will build different grids, and so may

have different sets of dissemination nodes associated with their grids, which

has the potential to lead to overlapping grids. When a sink requires data, it

will flood a query in a grid cell sizes area until it reaches a dissemination node,

which then forwards the message via dissemination nodes until it reaches a

source. This method has the advantage of only needing to flood a small area, as

well as the potential to aggregate multiple queries within the cell. On receiving

a query, the sources forwards data via the dissemination nodes back through

the network to the sink. If there are multiple sinks, it is possible to forward

32

this message to all of them. TTDD relies on the sensor nodes being location

aware, i.e. they know their own location.

Multisource Multisink Trees for Energy-Efficient Routing (MUSTER) is a

distributed many-to-many routing protocol that merges independently built

trees from source to sink [89]. The result of this process is a shared path,

or backbone, between the merged trees. This backbone will split at the last

possible node in order to send packets to both sinks. The trees are built with

a “flooding-and-reverse-path” scheme, MUSTER deploys a load balancing

mechanism that relocates this backbone in order to reduce overall energy

consumption and increase network lifetime. MUSTER is distributed and used

in many-to-many networks with multiple sources and multiple sinks. A require-

ment of this protocol is periodic network wide broadcasts to refresh the trees

that are built to account for topology changes, which will increase the over all

number of packets sent and lead to decreased lifetime, as well as reducing the

scaleability of the protocol.

In [95], the problem of sink placement in a cluster based network is investigated.

Three problems are considered; the problem of Best Sink Locations where

number of sinks is known and it is required to find where to place them, the

problem of minimising the number of sinks for a given operational period,

and the problem of minimising the number of sinks whilst increasing network

lifetime.

Multipath Routing in large scale sensor networks with Multiple Sink nodes

(MRMS) [18] finds routes in networks with multiple sinks and can be divided

in three parts; topology discovery, cluster maintenance, and path switching.

Topology discovery is based on the TopDisk algorithm [22], a greedy algorithm

for finding the set cover, and once this has completed the network is divided

into clusters, though it is not made clear how this occurs. Cluster heads are

updated if the energy of the head node falls below a threshold value by sending

33

a message out to its neighbours, which then report their energy levels to the

head so that it can inform a node to be a new head. Path switching occurs

when a path to a sink has been used for a long time, leading to a path to

another sink being used instead. When clusters decide a new cluster head, it

is also decided whether path switching should occur. The protocol may be

limited in that there is overhead in the process of cluster maintenance and path

switching. Also the protocol does not account for scenarios where multiple

sinks require to receive the data simultaneously and only uses multiple sinks

as a fault tolerance measure.

2.2 Meta Heuristics

Routing protocols for many-to-one topologies are much researched, however

many-to-many routing protocols are far less common, despite there many

possible applications and advantages. Many algorithms require a specific set

of network conditions for an efficient solution for routing, for instance many

require global knowledge of the network, or location based methods such as

GPS. For this reason, a more generic perspective is required in order to develop

a routing protocol that is flexible, and able to route from multiple sources to

multiple sinks in a wide variety of situation with little if any modifications.

Meta heuristics present great opportunities in this area, as they are adaptable

to a number of starting conditions while still being able to efficiently come up

with solutions. This section explores some existing solutions that use meta

heuristics in WSN, particularly Ant Colony Optimisation [31] [32].

2.2.1 Ant Colony Optimsation

Ant Colony Optimisation (ACO) was originally defined by M. Dorigo, V.

Maniezzo, and A. Colorni [31][32]. The heuristic approach can be used to

provide near optimal solutions to NP-hard problems, with the advantage

of being versatile and robust. The algorithm is based upon the observed

behaviours of ants in nature as they travel towards food sources. Ants drop

34

Figure 2.3: Ant bridge experiment

a pheromone trail as they travel, which subsequent ants will follow, and so

adding further to the pheromone trail. The pheromone trail will evaporate

over time, which means that shorter, more successful routes will eventually be

preferred, as the trail on shorter routes receives pheromone on the whole path

quicker, enabling the pheromone to build up quicker before it evaporates. Goss

et al [47] shows this with an experiment called the double bridge experiment,

illustrated in figure2.3. If the bridges where the same length, then over time

the ants tended towards a single bridge due to random fluctuations leading

to more ants choosing that bridge at a particular point in time. If one bridge

is short, in this case bridge a, the ants will converge upon that bridge. This

is because the pheromone trail laid by the ants will build up more quickly

compared with the longer route, as more ants could complete the route before

evaporation completes.

ACO has been applied to many types of problems, such as the travelling

salesman problem [33] [30] [116], vehicle routing [41] [102], graph colouring

[20], and set covering [71]. In the case of finding solutions to the Travelling

Salesman Problem, Ant Colony Optimisation as first presented by Dorigo et

al. would be applied by simulating ants moving throughout a graph. The

ants move between vertices, and the pheromone trail is represented by a value

associated with each edge. Ants will travel between nodes, choosing the next

node stochastically favouring nodes with higher pheromone levels and not

35

repeating nodes. Once the ants have finished finding a path, the quality of the

solutions found are evaluated and the pheromone values are updated according

to the quality of these solutions. This process will be repeated until some end

condition is met, iteratively improving upon the solutions found. The ACO

meta heuristic is defined by Dorigo et al. in [29] and can be summarised by

Algorithm 1, presented in [32].

Algorithm 1 Description of ACO Metaheuristic

1: procedure ACO-metaheuristic
2: Set parameters and initialise pheromone trails
3: while termination condition not met do
4: Construct Ant Solutions
5: Apply Local Search (optimal)
6: Update Pheromones

The meta heuristic repeatedly carries out three steps:

• Construct Ant Solutions: A set of ants generates solutions to a

optimisation problem. Each solution starts as an empty partial solution,

which is extended at each step by adding a component, for instance

adding a vertex in the graph.

• Apply Local Search: An optional step that may improve paths found

by ants before updating pheromone values.

• Update Pheromones: Update pheromone values such that good so-

lutions have increased pheromone and bad solutions have decreased

pheromone, usually through pheromone evaporation.

Ant System is the first algorithm that uses the concept of Ant Colony Optimi-

sation presented in literature [31], and is the basis of many future works. The

implementation is described in this section, with all equations coming from

this seminal work. Let τi,j(t) be the intensity of pheromone trail on the edge

between node i and node j at time t. Every ant in the network will choose the

next node to travel to by time t+1, referred to as an iteration of the algorithm,

or a cycle. After sufficient iterations, in the case of travelling salesman this

will be equal to the number of nodes, the ants have completed their solutions

and will updated the pheromone trail with

36

τi,j(t+ n) = ρ · τi,j(t) + ∆τi,j (2.1)

where ρ is the evaporation coefficient. ∆τi,j is calculated using:

∆τi,j =
m∑
k=1

∆τki,j (2.2)

where m is the number of ants and ∆τki,j is

∆τki,j =


Q
Lk

if kth ant uses edge (i,j) in its solution between time t and (t + n)

0 otherwise

(2.3)

where Q is a predetermined constant and Lk is the length of the solution

found by the kth ant. In the Ant System algorithm, each ant keeps track of

the solution found so far using a data structure known as the tabu list. The

tabu list is a list of partial solutions, and further solutions may not contain

elements of the tabu list. In this case, the tabu list saves the nodes visited so

far in order to both avoid repeat visits, which each ant carrying a list of nodes

that it has visited, so that no two solutions are the same. It is also used to

evaluate the solution found.

At each iteration of the algorithm, a set of m ants choose a node to travel to

with probability

pki,j(t) =


[τi,j(t)]

α·ηi,j]β∑
k∈allowedk

[τi,j(t)]α·ηi,j]β
ifj ∈ allowedk

0 otherwise

(2.4)

where allowedk is the set of nodes not contained within the tabu list of

the ant, η is the visibility, a value denoted by 1/di,j where di,j is the distance

between node i and node j, and α, β are weights denoting the important of

pheromone trail and visibility.

37

Ant System has been shown to be both versatile and robust, and has the

potential to be applied to a number of different problems. A number of works

have been produced based upon the concepts introduced in Ant System.

MAX-MIN Ant System (MMAS) [115] is an ACO based algorithm that is

an improvement on Ant System. In MMAS, pheromone updates are limited

to only the ant that has performed the best each round. The best ant is

often considered to be the ant that has travelled the shortest route. Also, the

pheromone amounts have upper and lower limits, usually found empirically.

Another variation of the ACO algorithm is Ant Colony System (ACS) [40],

which introduces the concept of the “local pheromone update”. In the ACS

algorithm, all ants update the pheromone trail along the edge it just travelled

along decreasing the pheromone. This has the effect of encouraging other ants

to choose different edges, leading to a more diverse set of solutions found. A

pheromone update is also performed at the end of each round, and similarly to

MMAS only one ant will perform the update; either the best ant that round

or the best ant so far, with the best ant being the ant that has travelled the

shortest route.

ACO in Networks

Though many of the routing algorithms discussed in the previous sections are

successful, many of them depend on a particular set of starting conditions in

order to achieve good performance. For instance, many are not distributed, and

require some level of global knowledge of the network. Often they will only work

with a singular sink, and to be applied in a network in multiple sinks they are

simply repeated, a likely expensive process. In order to apply to a large range

of potential networks, meta heuristics such as ACO are an interesting path

of research. Due to its suitability to solving shortest path problems, finding

solutions to NP-hard problems, and the potential of developing distributed

38

version of the meta heuristic, ACO has been applied in the context of both

traditional wired networks and wireless sensor networks in previous works.

Examples of these solutions are presented here.

An early example of the use of ACO in networks is AntNet [24], a distributed

protocol for routing in communications networks. The protocol builds routing

tables for each node, which are used to direct messages towards the next node

in the network. The entries of the routing tables contain probabilistic values

used to direct ants, similar to information provided by equation 2.4. Ants are

periodically launched from source nodes towards destination nodes, choosing

nodes to travel to using the routing tables such that the path is minimal cost.

Once at the destination, the ants travel back to the sources in the reverse of

the original path updating routing tables, known as backward ants.

AntNet was developed for use in wired networks, however other works have

adapted it for use in wireless sensor networks. Zhang et al. extends this

work to apply the protocol to wireless networks, as well as introducing three

variations upon this adaptation [134]. It was found that the base version of

the algorithm was not very successful, as the ants had no idea where the sinks

were and relied only on pheromone trail. To deal with this, the first variation

on the base protocol is Sensor-Driven Cost-Aware Ant Routing, where each

ant is aware of the cost from each node to the source and uses it to choose

where to travel to. Flooded Forward Ant Routing is the second variation, and

involves close neighbours of the source also launching ants towards the sink.

Flooded Piggybacked Ant Routing has the ants also carrying data to the sink,

in addition to finding shortest paths. These variations on the AntNet routing

protocol do not take into account multiple sinks.

In [15], Camilo et al. apply ACO to wireless sensor networks with the goal of

finding short paths from source to sink, while also minimising the amount of

energy expended. The protocol, Energy-Efficient Ant-Based Routing Algorithm

39

(EEABR), periodically launches ants from every node in the network. The

ants choose the next node to travel through with probability based on 2.4 but

the visibility is now related to energy level remaining on the sensor nodes. In a

similar fashion to AntNet and [134], on receiving a forward ant, the destination

node launches a backward ant to travel back through the network updating

pheromone. This process runs for a number of iterations before each node will

be aware of the best node to travel to next by storing a routing table. The

work is limited in that it requires each node to have knowledge of the energy

levels of its neighbours, which will change over time, as well as a potentially

large setup time as ants are not aware of how close the sinks are. Though

efforts have been made to minimise the amount of data required to be stored

in routing tables, these still may scale large with many sources, many sinks or

larger networks.

ACO-based quality-of-service routing (ACO-QoSR) [14] is a protocol that

aims to find a route that satisfies time delay constrains while conserving energy.

This protocol also makes used of routing tables for nodes to decide where to

forwarded to next. The visibility value here is the proportion of energy of

the potential next node to the total energy remaining of all the neighbour-

ing nodes. Backward ants are also used here, with pheromone values being

updated according to residual energy and hop count of the route. Entries

in the routing table will expire after a set time, and be removed. Periodic

HELLO messages are sent by all nodes, and if a link has failed the pheromone

value is set to 0. A technique is developed to avoid stagnation; pheromone

limiting sets a maximum pheromone amount, prevent one path from becom-

ing too dominant. The protocol may be limited in its scaleability through

its use of routing tables, and also is only targeted at networks with a single sink.

An example of a centralised ant based routing protocol is put forward with

the AntChain algorithm [26]. Assuming that every node can communicate

with the sink, AntChain uses ACO to form a chain from sensors to the sink,

40

similar to LEACH and PEGASIS. It also assumes that all nodes are able to

communicate with the sink and are location aware, however, unlike PEGASIS,

does not require each node to have prior global knowledge of topology. In

AntChain, all sensor nodes send their location information to the base station

(sink), which then performs the MMAS algorithm to form the chain structure.

The head of the chain, furthest from the base station, starts data gathering

and sending the data to its neighbour. The data is passed along the chain

being aggregated as it travels, with the head of the chain, the node closest to

the base station, finally sending the data to the sink. A bidirectional variant

is also described to deal with failures, where the direction of travel along the

chain is alternated, and if a node does not receive data from a neighbour it

sends directly to the base station instead. The centralised aspect of AntChain,

as well as the requirement for all nodes to be within range of the sink, will

greatly limit its possible applications.

In [67] a clustering based protocol for data gathering that makes use of ACO

is presented. The protocol aims to improve reliability by introducing multiple

sinks, with nodes using a different sink in the case of failure of the original sink.

The network is divided into clusters, each associated with a sink, with nodes

sending messages to the sink in its cluster. The clusters formed dynamically

change in size using ACO, in order to adapt to failures in the network. In this

protocol, sink nodes start ACO by flooding backward ants through the net-

work to establish pheromone values between nodes in tables, with pheromone

depending on residual energy levels of nodes along the path. Pheromone tables

are periodically updated with the broadcast of more backward ants through the

network, known as “hello” ants. To allow ants to build clusters, a concept called

“cluster pheromone” is introduced, which is representative of the attractiveness

of joining that cluster. The hello ants are then used to build the clusters.

Failures are detected through the use of an expiry time; if no hello ants are

received in the time, the node is removed from neighbour tables. The protocol

may be limited by the amount of “hello” ants that need to be sent as they

41

are used for both network formation and fault detection. Additionally, upon

failure detection, the node is removed completely from tables, possibly making

the protocol vulnerable to false positives.

Singh et al. present a method for using ACO in wireless sensor networks

for computing minimum Steiner trees [113]. First, an offline centralised method

is described, then an online distributed version. The algorithm forms a mini-

mum Steiner tree that is rooted at the sink, and this tree can then be used for

routing from sources to the sink. The tree is formed when two ants launched

from source nodes towards the sink meet and combine to form a single ant. The

testing of the algorithm is focused on a single sink node, though it claims to be

easily adapted to multiple sinks. An issue with the algorithm is that it could

be difficult to implement in practice as it is susceptible to node failures and

topology changes; if an ant is lost, the tree may not form correctly. Additionally,

applying the same algorithm multiple times for each sink is not scaleable for

larger networks with many sinks.

2.2.2 Bee Colony Algorithms

The Artificial Bee Colony algorithm (ABC) [62] has been developed based on

the foraging behaviour of bees in a honey bee swarm. The algorithm consists of

three types of bee; employed bees go to food sources, onlookers are bees waiting

to make a decision, and scouts go on random searches. Employed bees and

onlooker bees are repeatedly placed on the food sources, while scouts search

the area for new food sources. Bees gather information about the “nectar”

amount on the food sources in order to decide where to go. Bees will switch

between being onlooker bees and employed bees as food sources are found.

Bee based algorithms have been applied in the context of routing in wire-

less sensor networks. BeeSensor [107] is an energy aware routing protocol

inspired by bees. It uses different types of bees to perform different roles.

Forward scouting bees are launched from the sources and stochastically broad-

42

casted by nodes as they receive them, with nodes dropping scouts if they have

already received a copy. Sinks interested in events launch backward scouting

ants to the source. When the scouts have found a route, foraging bees are then

sent to deliver data to the sinks. BeeSensor aims to maintain a single path to

avoid overhead, however for continuous data delivery multiple paths can be

maintained with additional overhead.

A protocol for cluster based routing in WSNs using an artificial bee colony

algorithm is presented in [63]. ABC performs the cluster head selection, with

employed bees being associated with each head. The protocol is limited by the

requirement for a centralised base station that runs the algorithm.

2.2.3 Other Particle Swarm Algorithms

A scheme for sensor deployment based on Glowworm Swarm Optimisation

(GSO) is presented in [73]. In the scheme, sensor nodes are considered as glow-

worms emitting a luminescent substance, with the intensity being proportional

to the distance between the node and its neighbours. Sensors are attracted to

areas with less brightness, leading to a well covered network of sensor nodes.

2.3 Fault Tolerance in Wireless Sensor Networks

Fault tolerance in wireless sensor networks is the ability for a network to

continue operation when faults occur. The nature of WSN means that they

are often unpredictable in terms of faults, being deployed in areas where node

failures are both possible and common [135]. These node failures could come

in the form of nodes running out of energy, being moved out of range of other

nodes through environmental factors such as wind, or being destroyed by

adverse environmental conditions such as fire or extreme temperatures. Links

between nodes in particular may fail if the environment changes around them,

leading to links being blocked. Any of these scenarios or more could lead to the

failure of delivery of sensing data to the network sinks. Often in networks where

43

multihop communication is required, the effects of node failure is exacerbated

as recovery is more difficult when a new route from source to sink needs to be

discovered [96].

In cases of node failure, the remaining nodes in the network will often need to

detect that a failure has occurred before taking actions to ensure that data is

still routed through the network to the sinks without compromising efficiency

or significantly decreasing network lifetime even further. WSN bring specific

challenges due to their often distributed nature, the requirement for energy

efficiency, and the fact that failures are common. This section investigates

existing solutions to provide fault tolerance in wireless sensor networks. It is

largely divided into three main concepts of fault tolerance, fault prevention,

fault detection, and fault recovery, though most fault tolerant schemes will use

a combination of these methods in order to provide protection against faults.

2.3.1 Fault Prevention and Robustness

Fault prevention and robustness in wireless sensor networks is the concept of

either preventing failures from occurring, or setting up protocols such that they

are largely unaffected by failures that occur. Fault prevention in wireless sensor

networks tend to be provided through one of three main mechanisms [96]:

• Providing full network connectivity and/or full coverage at deployment.

• Monitoring network in order to take action to prevent failures.

• Redundancy through building multiple paths (or multipath)

A Coverage Configuration Protocol (CCP) is presented in [121], which

aims to provide minimum coverage and connectivity in the network in order to

provide robustness against node failures. The protocol only requires each node

to have localised knowledge, not global topology information, in order to self

configure. Another coverage calculation is presented in [85], where both best

and worst case coverage are found. Paths are generated to either maximise

44

or minimise the distance to the closest sensor, with the best case scenario

minimising distance. However, this method may not be possible for all network

setups where full coverage is not an option.

A technique for providing both coverage and connectivity in WSN using

the least number of sensors is shown in [60]. The minimum number of nodes

required to provide a good chance of coverage is found, and also a incremental

deployment scheme is presented where random sampling without replacement

is used.

The work in [136] is a network wide scan that reports on approximate en-

ergy levels of each node using in-network aggregation. Each node does a local

scan of its energy level, with aggregation occurring if local nodes have similar

levels of energy. This process enables a user of the network a view of the

remaining energy in order to make preventative actions. Another work that

attempts to create a map of residual energy is presented in [88], however this

uses a prediction based approach. Nodes will send limited information and a

predictive model is used to create an energy map. This method means that

there is less overhead in monitoring energy, however this comes at the expense

at less accurate reporting. Fault prevention based on monitoring network health

may be limited, as it requires further action following identification of potential

problem nodes, which may not be possible in inaccessible environments.

Multipath routing can be used for both fault prevention and fault recov-

ery. It is the technique of creating multiple paths between sources and sinks, in

order to provide redundancy in the network. For the case of fault prevention,

multipath routing has the advantage of load balancing; nodes share the load of

routing data leading to energy be spent more evenly throughout the network,

meaning that each node uses less energy. The GRAdient Broadcast [128]

protocol builds a “mesh” of nodes that indicates the cost of routing from source

to sink. Nodes only continue forwarding data if it has a lower cost than the

45

node it received from. Using this method, multiple paths may be followed,

leading to a protocol that is reliable and robust to node failures. There is also

the concept of “credit”, a value assigned by the source, which widens the mesh

and allows more routes to be taken, as long as the cost is allowed by some

credit value. GRAB works well in dense networks, however may not scale well

with multiple sinks. Multipath routing will be discussed further in section

2.3.3, as often alternative paths are only used in the case of node failure as a

reactive method, as opposed to being used to prevent errors from occurring.

2.3.2 Fault Detection

Fault detection is essential in many applications of WSNs, due to the adverse

conditions they are placed in, and so a large variety of schemes have been

developed [7][131]. Fault detection is the process of finding where faults have

occurred in the network, for example nodes ascertaining if a neighbour is no

longer reachable. Fault detection comes in many forms and varying levels of

complexity, and are explored in this section[17].

Many existing protocols utilise a centralised approach to fault detection. Often

this involves a central controller or sink detecting faults for the entire network.

[100] is an example of this, taking a centralised approach with a sink gathering

and analysing distributed data in order to detect faults. The sink must contin-

ually monitor network traffic in order to detect changes in expected traffic that

could indicate a fault, which limits its use in networks with a single powerful

sink node. In [114], the sink has knowledge of the topology of the network,

enabling it to deal with failures using normal routing messages. The sink node

then makes routing changes in order to trace where faults occur, with a number

of different tracing schemes described in order to locate faults.

Centralised approaches often lead to successful failure detection and recovery,

however this often comes at the cost of increased overhead in both messages sent

and initial setup costs to learn the topology. Additionally, for many networks a

46

centralised approach is not feasible, for instance where there are multiple sinks,

or where a powerful central node does not exist in the network. This approach

also does not scale well with larger networks, due to the increasing message and

computational costs. Distributed approaches to fault detection involve nodes

making local decisions to deal with faults in the network, often requiring fewer

overall messages sent at some cost to other performance metrics such as recovery

time. A number of approaches have been developed, which will be explored here.

In [25], a protocol is presented with the aim to identify faulty sensors lo-

cally in order to keep overhead low. Faults are detected by finding sensors with

readings that differ largely with that of its neighbours. The algorithm works

well for large networks but accuracy decreases when there are a large amount

of faults. [126] also provides localised fault detection but is an improvement

upon [25] as it works well with a large amount of faults. Good sensors are

chosen within an area, and results are compared to these sensors in order to

find faulty ones. There are some issues with scaleability due to the number of

messages sent between neighbours.

[84] provides a watchdog that identifies failing nodes and a “pathrater” that

routes around them. The watchdog keeps track of sent packets, comparing

them with packets it overhears being sent from other nodes. If there are incon-

sistencies between sent and heard packets, for instance if the packet is never

resent to another node, it is assumed a failure has occurred. Disadvantages of

this technique are they it may miss failing nodes due to collisions, and it also

has a lot of overhead as each node must monitor its neighbours.

[118] implements a heartbeat-style failure detection scheme where nodes within

a cluster periodically broadcast a “heartbeat” message to the cluster head. In

addition to these heartbeat messages, nodes also send messages containing all

the nodes that they have received heartbeat messages from. The cluster head

determines which nodes have failed using these messages and a failure rule.

47

This may lead to high overheard in terms of messages sent. [55] has each node

actively monitor its neighbours in order to detect faults. [19] is an example of

passive neighbour monitoring, where it is assumed that faulty nodes send data

inconsistent with other nodes.

Directed Diffusion [58] is able to detect faults that occur along the routes

from sources and sinks. Nodes expect a certain rate of reporting from its neigh-

bours, and when this lowers unexpected it assumes a link has degraded. This

initialises a fault recovery mechanism where alternative routes are reinforced.

The work in [114] traces the location of the failed nodes by sending net-

work topology information to the base station. Nodes send information about

their local neighbours to the base station so that the base station knows

the network topology. Tracing of faulty nodes is then performed, with two

methods described. In the first, the base station broadcasts a route update

to the network, and is able to work out which nodes are faulty by waiting for

measurements to be sent back. In the second, the network is subdivided in

order to send route updates. The method of fault tolerance presented here

relies upon specific network circumstances, a power base station, and routing

updates being periodically sent, and so may make it not applicable to many

scenarios.

2.3.3 Fault Recovery in WSN

Following the detection of a network fault, the role of a fault recovery protocol

is to handle that fault. Early work often assumed constant flooding of the

network in order to route around node failures. Other simple fault recovery

mechanisms may just involve rerunning the whole route discovery protocols

with the failing nodes excluded [42] [96]. Techniques such as these are expensive,

involving a large amount of messages sent decreasing overall network lifetime,

and would become inefficient with multiple failures. Therefore, protocols are

developed to recover from faults quickly and efficiently in a way that will

48

extend network lifetime. Fault recovery comes in several forms, which can be

categorised into retransmission based and replication based schemes, which

will be discussed in this section.

Retransmission

Retransmission based schemes often rely upon a sink node sending acknowl-

edgement messages on receiving a message. If the sending node never receives

an acknowledgement, it retransmits the message. Such schemes have the ad-

vantage of increasing reliability at the cost of higher resource consumption in

the form of increased messages sent [7].

A fault tolerant scheme for wireless ad-hoc networks is presented in [84],

consisting of both a “watchdog” and a “pathrater”. The watchdog, previously

discussed in the fault detection section, detects faulty nodes by listening to

network traffic. A buffer of recently sent packets is maintained on the watchdog,

and if a packet is received matching that in the buffer, it is removed from

the buffer. When packet information remains in the buffer for a while, this

may indicate a failure. The watchdog may not detect certain types of failure,

for instance those due to certain collisions. The pathrater chooses routes to

follow using reliability information to calculate a path rating. In the case of

faulty nodes, the pathrater attempts to find a path without them; if this is

not possible to routing algorithm is run again. This method of route tolerance

therefore monitors for node failures and recalculates routes to follow. It may

be limited in that recalculation of full routes could be expensive.

The fault tolerant mechanism used in Directed Diffusion [58] is based upon

the principle of retransmission. The sink node continually sends reinforcement

messages throughout the network in order to reinforce the best path. In the

case of node failures, the sink node will no longer receive data, and so will decide

to reinforce a different path. A balance must be struck with the frequency of

reinforcement messages; higher frequency means a quicker response however

49

higher overhead. The main drawback of this method of fault tolerance is the

requirement of periodic flooding of events to maintain paths.

The work presented in [42] is based upon the concept of Directed Diffusion

while introducing the additional concept of braided multipaths. A braided

multipath is several possible paths between nodes with all paths having some

nodes in common, allowing each path to be a relatively efficient route while

also having the chance of avoiding faulty nodes. A “best” path according to

some metric is found, with a number of alternate paths also being found ahead

of time and maintained in order to recover from failure. This enables the

network to quickly switch to an alternate path without the need for periodic

flooding, though flooding may still be required if all of the previously found

routes fail. An advantage of braided paths is that the overhead for maintain-

ing the paths is lower, however the paths do still require reinforcement messages.

Reliable Energy Aware Routing (REAR) [52] is a distributed routing pro-

tocol where both a primary path and a disjoint backup path to the sink is setup

whenever an interest is received from a source. If a node failure on the primary

path occurs, the data packet is sent both back to the source and towards the

sink, removing the routing information from routing tables switching to the

backup path.

Replication

Replication based schemes will generally send the same message more than

once through the network from source to sink. Often these schemes come in

the form of multipath schemes, where multiple paths are followed from sources

to sinks. Disjoint multipaths will consist of multiple paths with no nodes in

common, whereas braided multipaths will have some shared nodes between

paths. Disjoint paths may have worse latency outcomes, however unlike braided

multipaths will not fail if a particular common node between paths fail[7].

50

Reliable Information Forwarding (ReInForm) [21] sends multiple copies of

the same message over many paths. It requires the sink node to periodically

broadcast to all other nodes in the network update information about its

neighbouring nodes and its hop count to the sink, which may lead to large

overheads. The protocol has each node calculate a Dynamic Packet State, a

figure based on reliability and hops to the sink, to decide how many packets to

forward and where to send them until the packets reach the sink. ReInForm

achieves fault tolerance through sending multiple copies of packets to the sink,

assuming that at least one path will be successful. This protocol may have

high overhead, and relies upon the sink node being powerful enough to send

information to all other nodes.

Erasure coding is a technique that provides redundancy whereby data is

split into m fragments and then recoded into n fragments where n > m [122].

It has been used in multipath routing techniques to enable fault tolerance.

The fragments are sent over multiple paths, with a minimum number of frag-

ments that is less than the total number of fragments being required to fully

reconstruct the data [7]. An example of the use of erasure coding in WSN is

presented in [34], where fault tolerance is provided through the redundancy

of sending packets along multiple paths while reducing the increase of traffic

involved in traditional multipath routing.

The work in [27] also makes use of erasure coding, through the concept

of “prongs”; nodes that are connected to the sink by reliable, high band-

width links. Multiple prongs means there are multiple disjoint paths through

which erasure coding can be applied. The work in [28] also uses a similar

prong based method, also with erasure coding. Reed-Solomon erasure coding

[103], a type of erasure coding with good overhead factors, with prongs is

used in [6], with the number and size of fragments being adapted to network

requirements. These methods that use prongs may be limited in the types

of networks they can be used in, and are sensitive to failures in the prong nodes.

51

The N-to-1 Multipath Routing Protocol [123] finds multiple disjoint paths

from every source to the sink and sends data to the sink when requested.

Routes are found with a simple flooding technique that constructs a spanning

tree, and an extended flooding method to create multiple paths. Source nodes

split their sensed data between the multiple disjoint paths, which leads to the

scheme to be able to deliver messages in the presence of faults. Additionally,

nodes are able to make local decisions of next hop choices in order to deal with

faults.

H-SPREAD [124] is a hybrid multipath scheme based on the N-to-1 path

discovery protocol with the goal of improving both security and reliability of

the network. A secret sharing scheme is used to split a secret message into

multiple shares, which is sent sent to the sink via multiple paths, with the

advantage of the data remaining secret if less than a threshold of shares are

found. Both N-to-1 and H-SPREAD are applicable to networks with a single

sink.

A protocol with the goal of providing Quality of Service (QoS) constraints is

Multipath Multispeed Protocol (MMSPEED) [39]. The forms of QoS to be de-

livered are timeliness and reliability. To improve reliability, the QoS constraint

most applicable to fault tolerance, MMSPEED makes use of probabilistic

multipath forwarding, where multiple copies of the data is sent over many

paths. Next hop decisions are made locally in order to improve scaleability,

however the protocol does assume that the sensor nodes are location aware,

and periodic location updates are sent to the neighbours which limits network

lifetime.

2.3.4 Fault Tolerance with ACO in WSN

Though Ant Colony Optimisation has been implemented for WSNs with success

in other works, the technique being applied with a focus on fault tolerance

52

is less common. This is surprising as ACO naturally lends itself well to fault

tolerance. The evaporation of pheromone trail over time should eventually lead

to unsuccessful routes, such as those routes affected by node failures, being

abandoned by the ants as there will eventually be no pheromone trail leading

to such nodes. Additionally, it has been shown that ants in nature are able

to divert around blocked routes [101], a process which could be considered

analogous to a route failing due to a faulty node. This section considers the ex-

isting work that uses ACO in a fault tolerant context in wireless sensor networks.

ACO-based quality-of-service routing (ACO-QoSR) [14] has a simplistic level

of fault tolerance. Nodes send out periodic HELLO messages, and if a link has

potentially failed the pheromone trail is set to 0. This may be vulnerable to

false positives, as it will discount the node entirely.

In [23], ACO is used to construct tours of the network ahead of time, be-

fore a Local Search Procedure improves upon routes found, and pheromone

is then updated (the evaporation step). Here, it was found that using ACO,

routes could be found that met with minimum levels of reliability with minimal

deployment costs. In this work, reliability is provided by finding unconnected

minimal covers of a region of interest in a sensor network. At any one time, a

single cover will be used by the network to deliver messages to the sink, until

a node failure occurs and the network switches to another cover. In this work

all routes are found by ACO ahead of time, and it is not explicitly distributed.

If nodes fail over multiple different covers, there is no online recovery of the

network and the whole algorithm must be run again.

[86] uses ACO to create a minimum spanning tree in the network. Following

this, a Quadratic Minimum Spanning Tree or Q-MST is found using the Artifi-

cial Bee Colony algorithm (ABC). If a node fails, edges are deleted and ABC

is rerun. In this case, fault tolerance is provided using ABC to find substitute

edges for failed edges rather than using ACO.

53

Another work that uses ACO to develop routes and manage faults is de-

scribed in [38]. Here, ACO is used to develop multiple routes in the network

in a similar manner as described in other protocols. Faults are detected when

no acknowledgement is received from a receiving node. Following this, the

pheromone value of that node is set to 0 and a new path is followed. If there

are no other available paths, the route discovery phase is started again. This

protocol relies more upon discovering multiple potential routes ahead of time,

as opposed to an online algorithm. If there are no alternate routes available,

there is the potential of running the more expensive process of rerunning

route discovery completely. The protocol may also be sensitive with regards

to acknowledgement messages, as if one fails the entire pheromone is set to

zero, which means an alive node may be completely removed from the route

unnecessarily. This could mean that the protocol is very sensitive to false

positives, or temporary failures of nodes.

In [117], ACO is used to provide fault tolerance in Mobile Ad Hoc Networks

(MANETs). In the initial route discovery phase, ACO is used to initialise

pheromone values between nodes. Route selection then takes place, where a

route is chosen based on the highest pheromone value. The fault tolerance of

the protocol is reinforced through the use of QoS metrics; the sink node will

calculate whether a path meets a QoS threshold, and only send backward ants

to reinforce pheromone values along those paths according to how well the

path met the QoS requirements. The protocol had packet delivery ratios of

around 80% when 10% faulty nodes, with delivery ratio decreasing when the

faulty nodes increased. The testing of the protocol is limited to at most 40

nodes, and to having a single sink node.

54

2.4 Steiner Trees

The Steiner Tree Problem (STP) in graphs is defined as follows; given a graph

with a given set of points, also known as terminals, the Steiner Tree Problem

is to find a graph of minimal weight that connects the terminals, and that may

include additional nodes called Steiner Points. Steiner Tree problems in graphs

have been shown to be NP-complete [64] [57] [45] [43].

Successfully finding Steiner Trees has the potential of favourable outcomes

in many application areas, for instance they are particularly advantageous in

integrated circuit design [82]. Steiner Trees are also useful in both wired and

wireless networks in many environments including healthcare, environmental

modelling, transport, and internet of things due to their ability to minimally

connect multiple nodes. This can lead to efficient algorithms for finding ideal

setups for both wired and wireless sensor networks, as well as being applied in

routing problems. Steiner Trees have useful applications in WSN, due to their

ability to connect together a set of points.

2.4.1 Using and Generating Steiner Trees in WSN

A Steiner Tree has the outcome of connecting a set of points in a graph with a

minimal weight, and so the formation of Steiner Trees in WSNs often leads to

more efficient utilisation of resources. For instance, a Steiner Tree connecting

nodes will lead to optimal routes between the nodes. A Steiner Tree is a prefer-

able data structure to, for example, spanning trees, as it is able to connect

a subset of nodes as opposed to requiring all nodes to be connected. Steiner

Trees are particularly suited to multisink WSN as it allows all sinks to be

connected in single route, rather than creating multiple trees for data delivery.

For these reasons, previous work has been carried out with the goal of creating

minimal Steiner Trees between sensor nodes in wireless sensor networks. In

addition to the problem being NP-complete, finding minimal Steiner Trees

in wireless sensor networks has the additional difficultly of often requiring a

55

distributed implementation [91]. This means that often previous works have

used heuristic approaches to solve this problem. This section will review works

that attempt to find and use Steiner Trees in WSNs.

Much work that aims to find Steiner Trees in WSN is aimed at creating

protocols for multicast, where multiple destinations must be reached simul-

taneously. Multicast is often used in video conferencing, where time delay

should be kept to a minimum [68]. A common approach for this is to treat

the problem as a minimum spanning tree, with the tree rooted at a particular

source or sink node. The work in [44] presents an algorithm for finding minimal

Steiner Trees that involves finding minimal spanning trees of the network and

then deleting edges such that a Steiner Tree is formed. The distributed version

of the algorithm builds a “shortest path forest”, where all nodes know the

shortest path from itself to each Steiner points. The limitations of this is that

each individual node is required to store a lot of information about the network.

The authors of [106] proposes a distributed algorithm for constructing Steiner

Trees based on the Cheapest Insertion algorithm [97], an extension of Prim’s

algorithm for Minimum Spanning Trees. The process starts with a single tree

with the nearest terminal nodes being added to the tree iteratively. Adding

a neighbour to a tree is a relatively expensive process, as information waves

from nodes in the network must all be sent to the root node before it makes a

decision about which node to add next. The root node makes a global decision

which must be spread throughout the network in a wave like process, which

may lead to many packets sent during the process of setting up the tree.

A distributed protocol for generating Steiner Trees for multicast is presented in

[112]. Each node creates a subtree, or fragment, which are then incrementally

combined to form larger fragments eventually forming a single large fragment.

Each node has a routing table containing the shortest distance to all other nodes

in order to form the fragments. Nodes within the fragment sends messages to

56

the root node in order to determine nodes to add to the subtree, as well as

nodes between subtrees sending connect messages in order to connect subtrees.

Generally the protocol involves flooding of messages in order to build the tree.

Similar to [106] and [44], the process of creating the tree requires each node to

know a reasonably large amount of information about the network, as well as

some level of flooding the network with messages in order to create the tree.

Particle swarm optimization (PSO) is used to solve the Steiner Tree problem

for multicast networks in [99]. PSO [65] is a meta heuristic where multiple

potential solutions, or particles, are moved around a search space in order to

move the swarm to better locations. In this case, a swarm of potential trees

are randomly created, with the particles moving (replacing paths in the trees)

to find the optimal solution. The protocol is not explicitly distributed.

In [87], a method for constructing connected dominating sets in wireless

sensor networks using Steiner Trees is presented. A dominating set is a subset

of vertices of a graph such that all vertices are either in the dominating set,

or adjacent to a vertex in the dominating set. A connected dominating set

has all the vertices in the dominating set connected. In [87], a Steiner Tree

is used to take a dominating set and ensure it is connected. The distributed

algorithm starts with a maximal independent set marked in black, with other

nodes in grey. Grey nodes are changed to black based on how many black

nodes it is adjacent to, with the final set of black nodes forming the Steiner

Tree. This work is limited as no results of an implementation were shown, and

the distributed implementation has the potential to lead to many messages

sent while not being particularly adaptive to changes.

In [75], Steiner Trees are used to create a wireless sensor network such that the

number of sensor nodes are minimal whilst also covering maximal sensing area

based on an importance weighting for each area. Three heuristics are presented

to find Steiner Trees to cover the network; a greedy algorithm starting with a

57

high value node and merging further nodes greedily, a group based algorithm

that merges groups, and a profit based algorithm that adds nodes based on a

profit measure.

A biology inspired protocol based on slime mould to find Steiner Trees in

networks is presented in [76]. The protocol is based upon fluid flow through

tubes of differing widths, with the flow in and out of each vertex being bal-

anced. Using this technique, the protocol creates Steiner Trees in wireless

sensor networks to solve the minimum exposure problem; the path between

points of interest with least observability.

2.4.2 Steiner Trees using ACO

There is a limited number of previous works that aim to create Steiner Trees

using Ant Colony Optimisation. [98] uses ACO as part of a two stage process to

form Steiner Trees in large graphs representing real world topologies. Clustering

is used to divide the large graphs into smaller subgraphs before ACO is used

to find Steiner Trees on these subgraphs. These subgraphs are then combined

to form one larger Steiner Tree of the total graph in a divide-and-conquer

approach. A variation of ACO is used where multiple subcolonies are generated

on each subgraph, and each forming a tour on the subgraph. Where there are

common vertices between subcolonies, these subcolonies are merged until only

one remains. This method is a centralised approach, not aimed at working in

a distributed way on sensor networks.

Another centralised approach to finding Steiner Trees using ACO is presented

in [56]. This protocol attempts to solve the Rectilinear Steiner Tree variant of

the problem. A Hanan grid of the terminals is created and ants placed on each

terminal nodes. Ants choose where to travel to next out of the edges of the

Hanan grid, remembering where it has travelled with a tabu list. When two

ants meet these lists are combined and only one ant continues. After moving,

ants leave a pheromone trail between nodes. Ants choose a node to travel to

58

next based on the cost to travel to that node as well as the distance to the

other ants routes, in order to encourage ants meeting.

Singh et al. present a method for using ACO in wireless sensor networks

to compute minimum Steiner trees [113]. An offline centralised version of the

algorithm is described where an ant is placed at each terminal node in the

network. The ants then subsequently choose which node to travel to next based

on information about the potential of each node. Each ant keeps track of where

it has been to prevent repeat visits and is drawn towards routes formed by

other ants, merging when it meets either another ant or another path formed

by another ant. After this has taken place, pheromone trails between nodes

are updated based on the success of the tree created. In addition to an offline

algorithm, an online distributed version of the protocol is also presented. This

version of the protocol has the goal of providing data centric routing in wireless

sensor networks. The distributed algorithm is similar to the centralised one,

however ants have less information about the shortest paths between nodes

and the sink. Additionally, the concept of backward ants are introduced that

have the function of updating pheromone trail. The protocol is limited as

creates a tree routed at a single sink, and doesn’t take into account multiple

sinks. There is the potential to run the protocol multiple times for each sink

if there are more than one, however this could be an expensive process and

will lead to multiple trees rather than one tree that can route from sources to

many sinks simultaneously.

Quality-of-Service multicast routing is reduced to a Steiner Tree problem

in the work presented in [129], where ACO is used to create routing trees that

satisfy QoS constraints. It considers networks with a single source travelling

to multiple destinations. Multiple ants equal to the number of destinations

each create a routing tree constrained by QoS requirements, and pheromone is

updated based on the overall success of each tree.

59

2.4.3 Fault Tolerant Steiner Trees

Some previous works that use Steiner Trees to provide fault tolerance in wireless

sensor networks exist, particularly attempting to solve the problem of restoring

connectivity of the network. In this problem case, multiple sensor nodes fail

leading to a segment of the network being cut off from the rest of the network.

One solution to this problem is proposed in [69], where Steiner Trees are

used for minimal placement of mobile relay nodes to reconnect a partitioned

network. The Steiner tree is approximated using an approximation algorithm,

k-restricted loss-contracting algorithm (k-LCA) [104], limited to 3 terminals.

The work presented in [130] also attempts to restore connectivity using Steiner

Trees by rearranging network topology avoiding the location of the failed node.

This work also makes used of k-LCA with 3 terminals in order to connect

partitions with a small Steiner Tree. There is little work in developing Steiner

Trees that are fault tolerant in themselves, i.e. recovering from a faulty node

that forms the tree.

2.5 Summary of Routing Protocols

A summary of the routing protocols discussed in this chapter is shown in the

table below. A brief description of their strengths and weaknesses is included.

Table 2.1: Summary of Routing Literature Reviewed

Protocol Strengths Weaknesses

Flooding [54] Easy to Implement Many messages sent

so inefficient, collisions

need to repeat for every

source

continues on next page

60

Gossiping [53] Easy to implement,

fewer collisions

Potentially long routes,

need to repeat for each

source and sink, no

guarantee of delivery

Sensor Protocols for In-

formation via Negotia-

tion (SPIN) [54]

Reduced redundancy

and fewer collisions

compared with flooding

No guarantee of deliv-

ery, separate routes for

each source sink pair

Directed Diffusion [59] Works with multiple

sources and multiple

sinks, each node only

needs to know about lo-

cal neighbours

Initial flooding is ex-

pensive, continuous re-

inforcement of multiple

routes required, essen-

tially repeating for each

sink so many nodes in-

volved and not much ag-

gregation

Rumor Routing [13] Advantages of DD but

with less flooding, main-

tains only one path

Can have less efficient

routes, no aggregation

for paths to multiple

sinks, only maintains

one path so may be

slower to recover from

faults

Energy Aware Routing

[110]

Based on DD so advan-

tages are similar, and

maintains only energy

efficient routes

Flooding required to

maintain paths, rout-

ing tables for each path

need to be stored on

each node

continues on next page

61

Gradient Based Rout-

ing [108]

Based on DD so advan-

tages are similar, also

aggregation of data to

reduce packet size, load

balance scheme to in-

crease life time

Limitations of DD

Low Energy Adaptive

Clustering Hierarchy

(LEACH) [51]

No global knowledge

of topology required,

Data aggregation in

each cluster

Overhead of selecting

cluster heads, nodes

can only communicate

with cluster head so not

many-to-many, depen-

dent on nodes being a 1

hop distance to cluster

head

Power-efficient GAther-

ing in Sensor Informa-

tion Systems (PEGA-

SIS) [74]

No global knowledge

of topology required,

Data aggregation in

each cluster

Relies on each node hav-

ing global knowledge of

network topology, re-

quires nodes all the way

along the chain to send

messages every round,

longer delays in receiv-

ing messages from the

ends of the chain

Minimum Energy Com-

munication Network

(MECN) [105]

Spanning tree created is

optimal, so fewer mes-

sages need to be send,

takes power consumed

into account

Requires GPS for each

node, assumes all nodes

can communicate with

every other node in net-

work, doesn’t cover

continues on next page

62

Small Minimum En-

ergy Communication

Network (SMECN) [72]

Same as MECN but can

also deal with obstacles

Same as MECN and

Higher overhead

Geographical Adaptive

Fidelity (GAF) [127]

Cycles which nodes are

awake to save energy

Requires location

awareness, assumes all

nodes the same cost,

minimal aggregation

Geographic and En-

ergy Aware Routing

(GEAR) [132]

Based on DD but uses

location awareness to

direct interests rather

than flooding

Requires flooding to

find routes, constant

cost of route mainte-

nance, no aggregation

for multiple sinks

Collection Tree Proto-

col (CTP) [46]

Creates low cost trees

from multiple sources to

sink at root

Multiple sinks would

require multiple trees

to be built, which

means maintaining a

lot of information and

lots of repeat transmis-

sions, need to period-

ically broadcast ETX

value to neighbours

Two-Tier Data Dissem-

ination (TTDD) [78]

Can delivery to multi-

ple mobile sinks, nodes

don’t need global topol-

ogy

Requires location

awareness, sinks need

to flood to request data

continues on next page

63

Multisource Multisink

Trees for Energy-

Efficient Routing

(MUSTER) [89]

Creates efficient trees

to route from multi-

ple sources to multiple

sinks with data aggre-

gation, element of load

balancing

Periodic network wide

broadcasts to refresh

trees, trees built using

flooding

Multiple Sink Place-

ment [95]

Finds best placement

for sinks to increase net-

work lifetime

Not a routing protocol

Multipath Routing

in large scale sen-

sor networks with

Multiple Sink nodes

(MRMS) [18]

Path switching for in-

creased network life-

time

Costly to maintain and

switch cluster heads,

doesn’t deliver to all

sinks, nodes only deliv-

ery to one of many sinks

AntNet [24] Distributed, one of the

first adaptations of

ACO in networks

Designed for wired net-

works, single destina-

tion, requires storage of

routing tables

ACO protocols by

Zhang et al. [134]

Adaptation for WSN,

cost aware to find

shorter paths

Only single sink, uses

flooding

Energy-Efficient

Ant-Based Routing Al-

gorithm (EEABR) [15]

Energy aware to in-

crease network lifetime

Only single sink, may

have long setup time,

neighbours need to be

aware of energy levels

of neighbours which will

change

continues on next page

64

ACO-based quality-of-

service routing (ACO-

QoSR) [14]

Satifies time delay con-

straints, some fault tol-

erance

Only single sink, fault

tolerance sensitive to

false positives

AntChain algo-

rithm [26]

Doesn’t require knowl-

edge of global topology

Only single sink, cen-

tralised, requires lo-

cation awareness, all

nodes need to be in

range of the sink

ACO clustering proto-

col [67]

Forms clusters dynam-

ically with ACO to

adapt to failures in the

network, fault tolerance

using ’hello’ ants

Additional cost in form

of ’hello’ ants, sensitive

to false positives, peri-

odic updates required

ACO for Steiner

Trees [113]

Creates minimal costs

Steiner trees

Needs to be repeated

for each sink in the net-

work, which is costly

BeeSensor [107] Energy aware, can

maintain a single path

for efficiency

Need to maintain multi-

ple paths for continuous

data delivery

Cluster based routing

in WSNs using artifi-

cial bee colony algo-

rithm [63]

Forms clusters Requires centralised

network

Glowworm Swarm Op-

timisation (GSO) [73]

Creates a well covered

network of sensor nodes

Sensor deployment not

routing

2.6 Summary of Fault Tolerance Protocols

A summary of the fault tolerance protocols discussed in this chapter is shown

in the table below. A brief description of their strengths and weaknesses is

65

included.

Table 2.2: Summary of Fault Tolerance Literature Reviewed

Protocol Strengths Weaknesses

Coverage Configuration

Protocol (CCP) [121]

Provides minimum cov-

erage in the network,

only local knowledge

needed

Minimum coverage may

not be possible, no re-

covery from failures in

coverage found

Coverage using least

number of sensors [60]

Minimum number of

nodes required to pro-

vide a good chance of

coverage is found

Minimum coverage may

not be possible, no re-

covery from failures in

coverage found

Energy level reporting

[136]

Network wide scan for

energy levels

Requires human inter-

vention to then act on

energy levels

Predicting residual en-

ergy [88]

Less overhead than ac-

tually measuring energy

Less accurate, requires

intervention to act on

energy levels

GRAdient Broad-

cast [128]

Multiple paths followed

to be robust to failures

on any one path

May not scale well with

multiple sinks

Sink detection of

faults [100]

Sink finds faults Requires powerful sink

to constantly monitor

Sink detection of

faults using routing

messages [114]

Sink uses normal mes-

sages to detect faults

Still requires powerful

sink to constantly mon-

itor

continues on next page

65

[25] and [126] Localised fault detec-

tion of neighbours, finds

inaccurate results

No recovery process

Watchdog and

Pathrater [84]

Uses packets it sees to

find faults and then find

alternative route

May miss collisions,

overhead in listening to

neighbours, may need

to recalculate routes

from scratch

Heartbeat failure detec-

tion [118]

Only send heartbeat to

cluster head

Still overhead in heart-

beat messages, only de-

tection

[55] and [19] Comparing with neigh-

bours to detect faults

Overhead, may miss col-

lisions

Directed Diffusion [58] Detects faults of paths

and finds alternative

route

Requires maintenance

of alternative routes,

must monitor reporting

from neighbours con-

stantly

Tracing failed

nodes [114]

Traces failed nodes Requires powerful base

station with knowledge

of network topology

Highly-resilient, energy-

efficient multipath rout-

ing [42]

Uses braided multi-

paths so all paths

remain relatively

short, overhead in

maintenance is lower

More chance of multi-

ple paths failing, still

requires reinforcement

messages

Reliable Energy Aware

Routing (REAR) [52]

Distributed, backup

path for recovery

Only two paths so if

both fail have to restart

continues on next page

66

Reliable Information

Forwarding (ReIn-

Form) [21]

Uses redundancy for

fault tolerance

Requires periodic

broadcasts to all nodes

from the sink, high

overhead as need to

send multiple packets

Erasure coding in

WSN [34]

Don’t need all packets

to arrive to deliver all

data

Can still fail if don’t re-

ceive enough packets

The N-to-1 Multipath

Routing Protocol [123]

Local decisions to deal

with faults

Routes may not be effi-

cient as found via flood-

ing , single sink

H-SPREAD [124] Improves both security

and reliability by secret

sharing scheme

Multipaths may be in-

efficient as found via

flooding, single sink

Multipath Multispeed

Protocol (MMSPEED)

[39]

Locally made decisions,

multipath for fault tol-

erance

Periodic updates re-

quired and location

awareness required

ACO-based quality-of-

service routing (ACO-

QoSR) [14]

Fault tolerance with

hello messages

Sensitive to false posi-

tives, overhead in send-

ing hello messages

ACO approach[23] Uses ACO to find effi-

cient routes and switch

between them in case of

failure

All routes must be

stored ahead of time,

no guarantee that there

will be a route without

failures

ACO based spanning

tree with ABC[86]

ACO creates spanning

tree and edges deleted

if node failures

Needs to rerun parts

of protocol whenever a

failure occurs

continues on next page

67

ACO based routing [38] ACO sets up multiple

routes ahead of time

and a different route

is switched to ahead of

time

Need to store multiple

routes, may have to re-

run again if failure on

multiple routes

ACO look ahead

approach[117]

ACO based uses

pheromone only to

reinforce good QoS

routes

Needs powerful sink to

calculate QoS and de-

cide which route to re-

inforce

2.7 Summary of Protocols relating to Steiner Trees

in WSN

A summary of protocols related to Steiner Trees discussed in this chapter is

shown in the table below. A brief description of their strengths and weaknesses

is included.

Table 2.3: Summary of WSN Steiner Trees Literature Reviewed

Protocol Strengths Weaknesses

Steiner Tree problem in

distributed computing

systems [44]

Distributed, finds ST Each node needs to

store a lot of informa-

tion

Distributed multicast

routing[106]

Distributed, finds ST Need to inform root ev-

ery time a node is added

to the tree, expensive

setup

continues on next page

68

Distributed protocol for

multicast [112]

Distributed, finds ST Flooding and lots of in-

formation needed to be

stored on each node, ex-

pensive setup

Dominating sets using

ST [87]

Distributed Large amounts of mes-

sages sent, not very

adaptive to changes

ST to to cover maxi-

mum weighted critical

square grids [75]

Minimises nodes re-

quired in network

No focus on routing

Physarum optimiza-

tion [76]

Uses slime mould in-

spired method to find

ST

Quite complicated to

implement

ACO for rectilinear

STs [56]

Finds ST successful Centralised, on rectilin-

ear ST

ACO for ST [113] Finds minimal ST for a

range of networks

Needs to be repeated

for each sink, takes a

reasonably long time to

find ST

QoS multicast rout-

ing [129]

Creates ST satisfying

QoS constraints

Single source

Recovery from simul-

taneous failures using

ST [69] [130]

Successful at restor-

ing connectivity in net-

works

Relies on mobile sensor

nodes to do so

2.8 Summary

The summary of routing literature reviewed in this chapter shows that often

existing state-of-the-art protocols have similar disadvantages. Many only con-

sider a single sink, and where protocols do consider more than one sink, this is

69

through repeating the routing protocol for each sink. This is both expensive in

terms of set up, for instance requiring many more messages being sent using

more energy, as well as the amount of information each node needs to store

in for routing tables. Additionally, routing to multiple sinks in this manner

means that there are multiple disjoint routes for each sink, when these could be

aggregated to form a more efficient route, again a cost in energy for messages

sent. The work in this these improves upon this by developing a protocol that

is specifically designed for use with multiple sinks. The routing protocol only

needs to be run once regardless of the number of sinks, additionally the amount

of information needed to be stored for more than one sink will not significantly

increase. The route itself formed will be a single route, that will minimise the

total number of nodes involved and messages sent for delivery to all sinks from

all sources.

Fault tolerant protocols often rely upon setting up multiple routes ahead

of time, and then if a failure occurs switching to a different route. This has

higher overhead in terms of the information that nodes need to store, and also

will fail if a failure occurs on all the routes that are found ahead of time. There

is a need for a fault tolerant routing protocol that is able to route around

failures online, reacting to failures that occur as they happen. The work in

this thesis addresses this, developing a fault tolerant protocol using ACO that

recovers from faults without needed to set up routes ahead of time, or reruning

the protocol. Existing work that does this is minimal, or is often requires

periodic network updates flooded to all nodes in the network, so the routing

protocol developed here avoids this energy expensive process.

Existent work for finding Steiner Trees in WSN is minimal, with much work

in the context of multicast which only considers a single source. Additionally,

much work requires each node to store information about the Steiner Tree in

order to build the tree. The work here aims to create Steiner Trees without

needing to store large amounts of information on each node, as well as being

70

effective in networks with multiple sources and multiple sinks.

71

Chapter 3

Problem Statement and

Experimental Setup

The goal of this work is to solve a number of problems associating with routing

in grid based wireless sensor networks using Ant Colony Optimisation. As an

overview, the problems that will be investigated are as follows:

• Routing messages from multiple sources to multiple sinks (many-to-many

routing) efficiently, minimising packets sent and nodes involved.

• Creating scaleable protocols that do not become less efficient in terms

of messages sent and nodes involved as network size increases. Existing

literature requires repeating the protocol for each sink, which can be

inefficient and energy expensive, the work presented here aims to avoid

this.

• Providing fault tolerance for many-to-many routing in the case of node

failures in the network.

• Generating Steiner Trees in wireless sensor networks in order to connect

arbitrary sources and sinks.

To solve these problems, the metaheuristic of Ant Colony Optimisation

(ACO) is used. ACO has many advantages, largely that it can be used to

find optimal solutions to NP-hard problems including various path finding

72

problems in graphs. For instance, ACO is often used in travelling salesman and

its variants. ACO is particularly useful for the the problem contexts explored

in this work, as routing problems in WSN can be thought of as path finding

problems. The same ACO based framework for routing in many-to-many WSN

can be applied to all three problem areas using the same basic ideas of the

protocol without having to make large changes, showing the advantage of

this approach in its ability to solve varied problems in differing circumstances

without the need for a specific set of starting conditions.

This chapter will describe in detail the specification of the problems that

are to be solved, and the motivations behind design decisions taken to solve

them. The assumptions about network topologies and abilities are also de-

scribed. In addition, the metrics used to measure performance over the course

of the work are also described in detail. For each problem, appropriate per-

formance metrics will be chosen to evaluate success for each solution, though

many metrics being common between problems. Finally, an overview of the

experimental setup used to test solutions will be described. The experimental

setup will remain largely consistent between experiments.

3.1 Objectives

The overall objective of this work is to develop a framework based on Ant

Colony Optimisation in order to solve a number of problems in wireless sensor

networks with multiple sources and multiple sinks. A key advantage of the

ACO based framework is that is able to solve different problems without large

changes to the protocol, indicating that it could be adapted to solve further

problems in varying network circumstances without needing highly specific

network starting conditions.

The first objective is to develop an ACO based routing protocol that is able to

deliver messages from multiple sources to multiple sinks. The protocol should

73

be efficient, minimising the use of network resources in order to increase overall

network lifetime. Additionally it should have success in delivering messages

from all sources to all sinks, such that the advantages of many-to-many com-

munication is maximised. An element of this objective is scalebility, which

means that the protocol should not use more resources in terms of messages

sent and nodes involved disproportionately to increases in network size. The

benefits of aggregation should remain when the network gets larger, without

increasing amounts of information needed to be stored on each node. The

protocol should not need to be repeated for each sink in the network, as is the

case in existing literature.

The second objective is to extend the ACO based routing protocol for fault

tolerance, and so expanding the framework of many-to-many routing. The pro-

tocol should react to and recover from faults whilst also maintaining successful

communication between sources and sinks. Again, the process should be ef-

ficient, minimising the number of messages sent and increasing network lifetime.

The final objective is to take the developed ACO based routing protocol

and investigate its ability to form Minimal Steiner Trees in a many-to-many

WSN. The structure is an efficient way of connecting sources and sinks in the

network, and shows the adaptability of the protocol to solve different problems.

In this case, the basics of the algorithm is maintained with some changes to

the start up phase and how the backbone is combined and split. Additionally,

the protocol should be scaleable with multiple sinks, and not require rerunning

the protocol for each sink in the network.

3.2 General Network Characteristics

The network taken into consideration for the protocol developed has a number

of assumed characteristics. All nodes are considered to be capable of both

sensing data about the environment as well as forwarding data throughout the

74

network from sources to sinks. In this sense, all nodes may be sensing nodes

or relay nodes. Similarly, any node could also potentially be a sink node for

routing purposes. For each network, sources and sinks are chosen from the

nodes in the network. It is assumed that the sources in the network will want

to continuously deliver sensed data towards the sinks. This work only takes

into consideration grid based networks.

The protocols developed are aimed at a sensor network where nodes in the

network do not have complete knowledge of the network topology. This means

that there is no sink nodes or base station with a centralised view of the net-

work, and as such distributed protocols are required. Though some networks

will have such a base station or will have each node aware of its location within

the network, this work assumes this is not possible. The networks considered

also assume that few nodes will be able to communicate directly with the sink,

relying upon multihop communication.

3.3 Experimental Setup

All versions of the ACO based protocol for routing in many-to-many wireless

sensor networks were implemented in Contiki OS for simulation on the COOJA

network simulator [35]. Contiki OS is a lightweight OS designed for devices for

the internet of things, and is commonly used in WSNs. COOJA is a simulator

used with Contiki OS that is able to simulate a wide variety of network types.

For all simulations performed, emulated Sky motes are used, with the UDGM

radio medium, CSMA MAC driver, and the null RDC driver for transmission.

These choices where made as it allowed consisting delivery between nodes and

few failures of delivery, such that faults usually only occurred when added on

purpose to test fault recovery.

The network topologies tested varied in size, but always consisted of a square

grid of sensor nodes spaced equally apart. All transmission ranges were set such

that each node could only communicate with its most immediate horizontal

75

and vertical neighbours. The choice for the grid was taken as this is often

a realistic setting for WSN, for instance in large buildings. Additionally, it

would enable the benefits of the backbone to be most obvious, allowing a large

amount of data aggregation through shared routes. The grid of nodes was of

length n× n, where n ∈ {5, 7, 9, 11, 13}. When not comparing sizes, a network

of size 11 x 11 was used by default. The network of 121 was chosen as it was

large enough to feasibly represent a realistic large sensor network, but also the

computing resources available could simulate the network size in a reasonable

amount of time for a large number of repeat experiment. Generally sources

will be placed in the lower half of the grid and sinks in the top half, varying

where appropriate.

3.4 Performance Metrics

A number of performance metrics are calculated in order to determine the

success of the protocol. Some of these metrics will be common for all versions

of the protocol for each problem specification, such as delivery ratio. This is

because some particular metrics are used to determine common success factors,

such as ability to delivery messages to the sinks. Others are more specific, for

instance fault tolerant related measures. Performance metrics that will be used

to measure success are described in this section.

• Delivery Ratio: The ratio of messages sent from the sources to those

received on the sinks. This metric has the goal of measuring how successful

the protocol was in delivering sensing data to the sources. Where sources

and sinks are varied, the delivery ratio measure is changed to take into

account where the unequal number of sources and sinks. For instance, if

there are 2 sources but 4 sinks, it is expected that 4 messages are received

on the sinks for each 2 sent, and the ratio is changed accordingly to

reflect this. In addition to the base delivery ratio, there is also the “All

Sinks” measure, which aims to only count cycles where the backbone is

formed of ants originating from all sources and all sinks receive messages.

76

This is used to determine how often all sinks received from all sources.

• Number of Nodes involved per cycle: This is how many nodes are

involved in forming the route from the sources to the sinks, and is a

measure of how efficient the route formed has been. The goal is to have

as lower number of nodes involved in forming the route as possible. Some

variations of the protocol will have more nodes involved than there are

on the final route in the process of finding that route, and this metric

includes these nodes too. This metrics also has an “All Sinks” measure,

which only looks at cycles where all sinks receive from all sources. The

goal is to have as fewer nodes involved as possible, as this implies short

routes, and so less energy expended and a longer network lifetime.

• Number of Nodes involved on route per cycle: This metric only

counts the number of nodes involved on the final route from sources to

sinks. This is required as in some variations of the protocol multiple

routes will form, but only one is considered to be the final route. This

number should also be low in order to reduce over all energy use and

increase network lifetime.

• Packets sent per cycle: Packets sent includes the forward, backward,

and beacon ants. A lower number of packets sent is more successful, as

this leads to a longer network lifetime with less energy being expended

on sending packets.

• Backbone Length: The number of nodes that form the backbone.

This metric should ideally be a higher proportion of the total route

from sources to sinks as possible, as this indicates that the benefits of

aggregation are greater. Also, a route that has a higher proportion of it

consisting of the backbone would imply fewer nodes involved and fewer

messages sent overall.

• Fault Recovery Time: This metric is investigated when measuring

the success of fault tolerant variants of the protocol, and is the time to

77

recover from a faulty node in cycles. Recovery is defined to be the time

from the fault occurring to the first cycle where all sinks receive from all

sources via a backbone. A lower fault recovery time is considered to be a

better performance, as less time is spent unsuccessfully delivering from

sources to sinks.

• Fault Detection Time: The time from a fault occurring to its neigh-

bours recognising the failed node as faulty. This should also be low, as

this means that faults can be recovered from more quickly as recovery

will start after the fault is detected.

78

Chapter 4

Routing in Many-to-Many

Wireless Sensor Networks

using Ant Colony

Optimisation

Wireless Sensor Networks consist of multiple sensor nodes communicating with

each other using radio messages. Routing protocols directing messages from

nodes that have sensed data (source nodes) to nodes that require the data

(sink nodes) is a highly researched area. The sink node will then act upon this

data in some way, be that forwarding it to a base computer, sending it to a

larger computer network, or initiating an actuator. Some routing protocols

assume that all nodes are able to communicate directly with the sink node in a

single hop, however, due to limitations with radio power or range, particularly

in networks with large distances between nodes, this is not always possible.

Such circumstances require multiple hops to route data from source to sink, or

multihop routing.

Many protocols consider a single sink, however a less studied routing problem

is where a network has multiple sinks, all requiring data from the sources.

79

This is can be referred to as many-to-many routing. A many-to-many network

may be useful in situations where sink nodes are some form of actuator, or for

reliability purposes where it is helpful to have multiple sinks in case of failure.

Often existing solutions for many-to-many routing are simply many-to-one

routing protocols run for each sink in the network. This is inefficient and

not a scaleable solution as the number of sinks increases. Other solutions

involve a centralised view of the network, or require a flooding the network

with messages, leading to a large number of messages being sent, reducing

network lifetime. As a solution to the problem of routing from multiple sources

to multiple sinks, this chapter introduces a distributed protocol based on ant

colony optimisation (ACO) that successfully delivers messages from all sources

to all sinks while remaining scaleable and efficient.

Ant Colony Optimisation was chosen as a solution to many-to-many rout-

ing for its ability to solve complex routing problems using simple agents

making local decisions. This makes it well suited to the context of distributed

routing protocols for sensor networks, as global topology knowledge is not

required. As a meta heuristic, it is able to create optimised solutions to hard

problems, and improve upon the solution found over time. The heuristic

works on the basis of individual agents being sent from sources and choos-

ing a sensor node to travel to based on local information. In this case, the

agents are the Ants, which are represented as messages being sent between

nodes. Ants will eventually reach a sink node, where they are transformed

into backward ants that travel back through the network following the original

route to the source. These backward ants update a value between nodes called

“pheromone trail” proportionally to the success of the route taken by the ant.

This pheromone trail is used by subsequent ants to decide which node to travel

to, and is also evaporated periodically in order to encourage route improvement.

The ACO protocol that is described in this chapter makes use of data ag-

gregation through a shared backbone of nodes. This is a process where ants

80

meet and combine on the same node. From this point, a single ant continues

travelling, reducing the total number of messages sent. The backbone enables

the protocol to delivery messages from all sources to all sinks while also min-

imising both the total number of nodes involved as well as the total packets sent.

To summarise, the solution proposed to the problem of scaleable many-to-many

routing in wireless sensor networks is a distributed protocol based on ACO.

Results show that the protocol is able to successfully deliver messages from

multiple sources to multiple sinks through the used of a shared backbone of

messages, enabling scalebility. The contributions made in this chapter are:

• The protocol for many-to-many wireless sensor networks using ant colony

optimisation.

• A distributed implementation of the protocol that is scaleable with

network size.

• A novel distributed implementation of ACO that does not use tabu lists

or ant memory (a common feature of ACO based routing protocols in

WSN), to reduce packet size.

• Simulations of the distributed protocol on the COOJA network simulator

with the implementation written in Contiki OS.

4.1 Problem Specification

The problem to be solved in this chapter is stated to be: Given a WSN, a

number of sources s and a number of sinks S, find a minimal set of edges

such that data can be routed from multiple sources s1, . . . , sk to multiple sinks

∆1, . . . ,∆l and that the number of nodes involved is minimal. This scenario

is considered to be NP-hard, as it is a variant of the vehicle routing problem

which is known to also be NP-hard [70].

Many existing solutions build a routing data structure over the network,

81

often one structure per sink node. This type of solution is not scaleable, often

requiring large routing tables or periodic network flooding. To avoid these

issues, the population-based metaheuristic Ant Colony Optimisation (ACO) is

used for routing. Metaheuristics are generally problem independent and so can

be applied to many different types of problems, and can be adapted to this

routing problem. An advantage of a distributed ACO protocol is that decisions

are made locally within the network; each node makes local decisions about

where to send messages to next, without requiring network wide knowledge of

topology, or any knowledge about which route to take in advance. Through the

use of pheromone evaporation, good routes are reinforced, while also making

the metaheuristic adaptable to changes.

4.2 Description of Protocol

Ant Colony Optimisation is a heuristic algorithm based on the movements

of ants in a colony. In nature, ants will travel towards a desired destination,

such as a food source, while dropping a pheromone on the ground. Subsequent

ants will then follow the pheromone trails left by ants, preferring routes with a

higher level of pheromone. As the pheromone will evaporate over time, shorter

routes are reinforced more, and so ants tend to follow these routes [31].

Source 1 Source 2

Sink 1 Sink 2

Figure 4.1: Example of a network with 2 sources and 2 sinks with a backbone
formed.

82

The protocol developed represents ants as packets being sent through the

network, travelling on a multihop basis from the sources to the sinks. Every

node will keep track of its neighbours using a linked list which also contains a

pheromone value associated with each neighbour. Each ant chooses the next

node to travel to using a probability function. The ants keep a memory of the

route which is used to prevent repeat visits to the same node, referred to here

as “ant memory”. When the ant reaches a sink, it is converted into a backward

ant, which then uses the ant memory to travel backwards through the network

to the original sources following the same route as the forward ants, updating

the variable ∆τ that is used for pheromone updates as it passes through each

node. The update value depends on the success metrics of the forward route

and is used to increase the pheromone values between nodes. The pheromone

value is also periodically reduced to account for evaporation. Forward ants

are launched periodically from the sources, with the time between each launch

referred to as a cycle. The cycles are timed such that backward ants will have

completed their update of pheromone trail before more forward ants are sent.

In addition to the base ACO implementation, the protocol also aims to combine

ants in order to aggregate data. When the multiple forward ants meet on the

same node (within some time period s), these ants are combined into a single

ant. This combined ant then travels along a shared path, or backbone, for a

long as possible, before splitting into several ants again such that all sinks

are visited. An example network with such a backbone is shown in figure 4.1.

Through this aggregation of messages, the total number of packets sent will be

less, thus improving network lifetime.

The ACO based protocol presented in this chapter has two main variations:

• A base ACO protocol that is able to form a backbone to send messages

from sources to sinks.

83

• An extension of the base protocol with no ant memory, a feature of ACO

based protocols often used in previous ACO based protocols. Without this,

packets sent are much smaller with very little reduction in performance,

making the protocol more scaleable as long routes no longer need to be

recorded.

4.2.1 ACO for Many-to-Many Routing

The ACO protocol starts with a set up phase, where neighbour lists are ini-

tialised. This involves each node discovering which nodes are in communication

distance, referred to as neighbouring nodes, as well as working out the hop

counts of all neighbouring nodes to the sinks.

Set Up Phase

1. Each node periodically sends local broadcasts containing an node identi-

fication number to identify neighbours. Each node, i, keeps track of its

neighbours in a list, denoted N(i), which also stores other information

about each neighbouring node, including the pheromone values to the

neighbours updating throughout the main algorithm.

2. Hop counts to sinks are also established and stored in N(i). Each node

maintains this knowledge of hop counts for itself and its neighbours

throughout. To ascertain hop counts, the sink nodes initiate flooding

with hop count of value 0.

3. On first receiving a broadcast, nodes note their own hop count to that

sink by incrementing the received hop count by 1. It also updates N(i)

with the hop count of the neighbour it received from. The node then

broadcasts their own hop count to its neighbours.

4. On receiving further broadcasts, nodes will update their hop count if

there is an improvement, i.e. if they receive a hop count that would lead

to their calculated hop count being smaller than the current recorded

84

value. This step is required as broadcasts may not be received in order

i.e. the most direct route with the actual hop count to the sink doesn’t

necessarily reach the node first. Similarly, if it has received a hop count

that represents an improvement on the currently recorded value for a

neighbour, it will also update this value.

5. When a non sink node changes its hop count, either for the first time or

on an improvement, it will announce this figure to its neighbours.

6. This process continues for a set amount of time appropriate to fully

populate neighbour lists.

Following this set up phase, the main running of the protocol begins. This

consists of continuous delivery of data from the sources to the sinks.

Data Delivery

1. Initially set all pheromone values to neighbours to be some constant c.

Set a time variable t to be 1 and cycle count variable to be 1. A cycle is

defined to be the time between each periodic broadcast of ants and is a

constant value known to all nodes.

2. Forward ants are periodically launched from the source nodes in the form

of a packet sent. Each ant, a, has a stored ant memory containing the

route, denoted routea, in its payload.

3. The forward ant chooses the next node to travel to with the probability

shown in equation 4.1, below. This probability is based on that posed in

Ant System, an early ACO algorithm, [31]. The original probability uses

both pheromone trail amount between nodes, and visibility, a measure of

distance to bring ants closer to a solution. Here, pheromone trail is used

in order to encourage following successfully followed routes. The visibility

measure present here is the use of average hop count, which brings

the ants closer to the sinks by preferring nodes with lower hop counts.

Additionally, hop range is used in order to encourage the formation of a

85

backbone, as encouraging ants towards nodes with smaller ranges means

getting closer to a backbone that is equal distance between all sinks. The

probability equation is therefore

pi,j =


[τi,j]

α· 1
ηj

β · 1
εj

γ

∑
k∈N(i)/∈routea

[τi,k]α· 1
ηk

β · 1
εk

γ ∀j /∈ routea

0 otherwise

(4.1)

where pi,j is the probability that the ant a will travel from node i to

node j, τi,j is the pheromone value between node i and node j, ηj is the

average hop count to the sinks for node j, εj is the hop range to the

sinks for node j. α, β, and γ indicate the weight of these parameters.

routea indicates the memory of ant a and N(i) represents the neighbours

of node i.

4. When a node has received messages from multiple ants within time

s of each other, the data is aggregated and a single ant is forwarded,

forming the backbone. This ant continues choosing nodes to travel to

with equation 4.1.

5. The backbone ant will travel until it reaches a node where there are

no possible neighbours to travel to that will decrease the hop counts

for all sinks. At this point, the backbone ant will split into individual

forward ants again through a broadcast. Neighbouring nodes that are

not already part of the forward path, that is those that are not in routea,

will continue travelling towards the sinks. After the backbone is split, the

probability of travelling to a neighbouring node becomes the equation

shown in 4.2, taking into account the smallest hop count to any sink as

the visibility measure. This will direct the ant to its closest sink. Hop

range is no longer considered as there is no need to form the backbone.

Pheromone trail is still considered as ants still need to try to follow

86

previously successful routes. The probability is

pi,j =


[τi,j]

α· 1
hj

β

∑
k∈N(i)̸=prevnode

[τi,k]α· 1
hk

β ∀j ̸∈ routea

0 otherwise

(4.2)

where pi,j is the probability that the ant a will travel from node i to

node j, τi,j is the pheromone value between node i and node j, and hj

is the smallest hop count to any sink for node j. α and β indicate the

weights of these parameters. routea indicates the memory of ant a and

N(i) represents the neighbours of node i.

6. Once the ants reach the sinks, they are transformed into backward ants.

If a forward ant has reached a sink without having formed a backbone,

backward ants are not generated, so that only paths where a backbone

is formed are reinforced. Backward ants follow the reverse of routea,

travelling back to the source nodes. The first backward ant to reach the

backbone continues along it, such that only one backward ant traverses

the backbone, with subsequent ants halting at the backbone. At the

end of the backbone the backward ant is split and continues towards the

sources using a broadcast. As the backward ants travel, they update a

value in the neighbours list, ∆τ , for the neighbour it has travelled from,

which represents the change in pheromone value, using:

∆τt = ∆τt−1 +
1

lr
+ (lb ·B) (4.3)

where ∆τt indicates the change in pheromone value at current time t, lr

represents the total forward route length, including the multiple routes

to and from the backbone, lb is the length of the backbone, and B is the

weight of the backbone length.

7. At the end of each cycle the pheromone trail between all nodes is evapo-

rated using equation 4.4. Each node independently updates the values in

87

their neighbours list. The pheromone update is

τt = (ρ · τt−1) + ∆τt (4.4)

where τt represents the pheromone value at time t, ρ ∈ 01 indicates the

rate of evaporation, and ∆τ is the trail change value.

8. Increment the cycle count by 1, t by 1, and launch one ant from each

source node to start the next cycle.

9. This process will be repeated indefinitely, or until some stop condition is

met adapted to the circumstances of the particular WSN.

The protocol is described further in Algorithms 2, 3, and 4. Algorithm 2 is

continually ran by all nodes in the network, with the current node represented

as node. If a forward ant is received, then Algorithm 3 is used; similarly

Algorithm 4 is called when a backward ant is received on a node.

Algorithm 2 Description of ACO Protocol for Many-to-Many Routing

1: procedure ACO-protocol
2: cycle ← 0
3: t ← 0
4: cyclemax ← C
5: while cycle < cyclemax do
6: messages ← 0 ▷ The number of messages received by this node
7: if node ∈ sources then
8: Choose next node n ∈ neighbours with Eqn (4.1)
9: Initiate forward ant memory, routea ▷ A list of visited nodes
10: routea ← node
11: Send message from node towards n, with packetbuf routea

12: if node receives a forward ant then
13: ForwardAntReceived()
14: else if node receives a backward ant then
15: BackwardAntReceived()

16: Evaporate pheromone between node and n with eq:pheromone-update

17:

4.2.2 ACO Protocol with no Ant Memory

The ACO protocol was then extended remove the use of ant memory, which is

analogous to the tabu list in traditional ACO algorithms. Ants no longer travel

with a memory consisting of all the visited nodes, instead each node keeps track

88

Algorithm 3 Description of Forward Ant Protocol

1: procedure ForwardAntReceived
2: Add node to ant memory
3: routea ← node
4: messages ← messages+ 1
5: if node ∈ sinks then
6: Reverse routec to form backward ant memory routebw
7: Choose next node n, the node in routea after node
8: Launch backward ant; send message from node towards n, with packetbuf routebw
9: else
10: if Backbone has not been formed then
11: if messages ̸= |sources| then
12: Store routea internally
13: Set a timer for s seconds.
14: while Timer is not yet finished do
15: Wait
16: if messages ̸= |sources| then
17: messages ← 0
18: Choose next node n with probability (4.1)
19: Send message towards n, with packetbuf routea

20: else ▷ Form the backbone
21: Combine routea with other stored routes to form routec.
22: Choose next node n with probability (4.1)
23: Send message towards n, with packetbuf routec

24: else
25: if Backbone has been split then
26: Choose next node n with probability (4.2)
27: Send message towards n, with packetbuf routec
28: else if ∃n ∈ N(n)→ (∀i ∈ sinks→ hn,i < hnode,i) then
29: Choose next node n with probability (4.1)
30: Send message towards n, with packetbuf routec
31: else ▷ Split the backbone
32: Send |sinks| messages from node to the neighbours with the smallest hn,i

for any sink, with packetbuf routec

33:

Algorithm 4 Description of Backward Ant Protocol

1: procedure BackwardAntReceived
2: bwmessages ← bwmessages+ 1
3: Update change in pheromone with equation 4.3
4: if node ∈ sources then ▷ Backward ant route complete
5: Stop ant, send no more messages.
6: else
7: if node is the first node of the backbone in routebw then
8: if bwmessages > 1 then
9: Stop ant, send no more messages

10: else if node is the last node of the backbone in routebw then
11: Broadcast messages to node ∈ N(n) where node ∈ routebw
12: else
13: Choose n the next node in routebw
14: Send message towards n with packetbuf routebw

89

of the previous node, i.e. the node it received an ant from, and the next node,

i.e. the node it chooses to send an ant too. When choosing a node to send

an ant to, the immediately previous node is the only node to be discounted,

rather than all the nodes in the ant memory. Using this method, there is no

guarantee that the ant will not loop back round and repeat a particular node

more than once. However, in practice it will be shown that this is unlikely to

happen. This can be seen through the high delivery ratios and similar number

of nodes involved to the version of the ACO protocol with ant memory. This

shows that loops cannot be occurring often, or the nodes involved value would

be high. Despite the lack of ant memory, loops won’t form due to the use of

hop counts and pheromone trail to guide the ants in the correct direction. This

leads to changes of the probability for choosing a node to be

pi,j =


[τi,j]

α· 1
ηj

β · 1
εj

γ

∑
k∈(N(i)−prevnode)

[τi,k]α· 1
ηk

β · 1
εk

γ ∀j ̸= prevnode

0 otherwise

(4.5)

where pi,j is the probability that the ant a will travel from node i to node j,

τi,j is the pheromone value between node i and node j, ηj is the average hop

count to the sinks for node j, εj is the hop range to the sinks for node j. α, β,

and γ indicate the weight of these parameters. prevnode indicates the noted

previous node and N(i) represents the neighbours of node i.

This change of removing ant memory has the advantage of reducing the

required packet size to be sent between nodes. This is because the packet size

included the ant memory, and without this the packet size will be reduced by

the size of the ant memory, which could be as long as all the nodes in the net-

work, depending on network size. This should help reduce energy requirements

and leads to better reliability.

The other change made for this version of the protocol is that backward

ants now choose which node to travel to using each nodes previous node, and

90

not by scanning through the ant memory. This has the advantage of being

quicker, as well as reducing the amount of data that each backward ant needs

to carry.

4.3 Distributed Implementation

The ACO algorithm described in the previous section was implemented as a

distributed protocol for wireless sensor networks. Each node requires local

information about its neighbours but no knowledge of global topology in order

to make routing decisions. The local information held about neighbouring

nodes is held in a linked list data structure, which is limited in size to the

number of neighbours the node has. The information required for each neigh-

bour is the pheromone trail, and its hop counts to each sink. The distributed

implementation has the advantage of requiring the same amount of information

regardless of network size, and only relies upon the number of neighbours,

helping the scaleability of the protocol.

Each choice of the next node to travel to is probabilistic, so no routing

tables are required, reducing the amount of information needing to be stored.

Evaporation occurs periodically, with each node evaporating the pheromone

trail amounts stored in its neighbours list at equal intervals.

4.4 Simulation Setup

The protocol has been developed using ContikiOS, an open source operating

system for the internet of things [36]. Simulations were performed using

COOJA [93], a network simulator for Contiki, using emulated Sky motes with

UDGM radio medium. The protocol is compared with flooding as a base line,

which was also implemented in ContikiOS and simulations performed with

COOJA. Flooding was chosen as it is commonly used, simple protocol that the

ACO based protocol should at least improve upon in order to be successful. A

more efficient approach from literature was not chosen, as these are often not

91

made available in ContikiOS to directly compare with.

4.4.1 Network Configuration

All experiments were performed using a square grid of nodes of size n × n,

where n ∈ {5, 7, 9, 11, 13}. The distance between nodes and transmission range

is set up such that only horizontal and vertical neighbours can communicate.

Experiments have been carried out using two sources and two sinks, with the

sources and sinks fixed in the corners of the grid. The two sources are in the

lower two corners and the two sinks in the upper two corners. An example

configuration is shown in figure 4.1. The configuration chosen at the start

remains constant until the end of the experiment.

Forward ants were launched from the sources periodically using a timer, both

sources launch ants at the same rate. Approximately 500 different simulations

of each network setup will be performed on the simulator. Each run is finished

when 115 cycles have been completed; insufficient cycles will lead to that run

being excluded from the results. This is to ensure that the protocol is able to

continually deliver data from sources to sinks over an extended period of time.

4.4.2 Parameters

The ACO based protocol involves setting a number of parameters, which are

set once at the start and are constant between nodes. The process of choosing

the next node to travel to is dependent on three parameters. These are the

weighting of pheromone trail amount between nodes, average hops, and hop

range. Pheromone indicates that previous ants have followed this route before,

with higher values being preferred as this indicates more successful routes. The

use of this parameter encourages the formation of successful routes based on

previous performance. The average hops directs ants generally towards the

sinks, so nodes with lower average hops are preferred. Hop range was chosen

for the probability function as this will help to form the backbone; a lower

hop range indicates the middle route between sinks, and so it is more likely

92

Name Value

Pheromone Impact 4
Average Hops Impact 1
Hops Range Impact 4
Backbone Length Impact 1
Route Length Impact 1
Evaporation Constant 0.8

Table 4.2: Simulation parameters for ACO based Routing in Many-to-Many
WSN

for ants to meet. This will encourage ants to travel towards each other. Each

input is weighted using the input parameters, which were set to be 4, 1, and 4

respectively, for all network sizes. These parameters were found to be most

effective through repeated testing. These are used for both variations of the

protocol tested. However, the parameters can be easily changed to suit different

networks with different requirements.

The second set of parameters to be set are largely used for pheromone trail

updates. The amount of pheromone laid is dependent on the success of the

route followed by the forward ants. Backbone length is a factor for pheromone

updates; longer backbones are encouraged as this means better use of data

aggregation, fewer messages sent, and better scaleability, so more pheromone

is laid. Backbone length impact was set to be 1. Additionally, route length is

also used when updating the trail change, shorter routes are more desirable,

however proportionally with longer backbones.

The final parameter to consider is evaporation constant, a value that deter-

mines how quickly pheromone trail evaporates between nodes. The evaporation

constant was set to be 0.8, which leads to the pheromone value dropping very

little between cycles, leading to fast convergence on a route. It was found that

despite little evaporation happening cycle to cycle, the protocol was still able

to converge on an efficient route.

93

4.5 Results

The results for the two variations of the ACO based protocol for routing in

many-to-many WSN are presented here. The performance metrics that are

being considered are:

• Delivery Ratio: The ratio between total messages sent and total

messages successfully received. With the setup presented here of two

sources and two sinks, this is the ratio between all messages sent launched

from both sources and all messages received at both sinks.

• Number of nodes involved: The mean number of nodes involved in

the communication from sources to sinks, as a percentage of total number

of nodes in the network.

• Packets Sent per cycle: The number of packets sent in a cycle. This

includes packets sent by both forward and backward ants, but excludes

packets sent during the set up phase.

• Backbone length: The mean number of nodes in the backbone formed.

A longer backbone is considered more successful, as benefits from the

advantages of data aggregation to a greater extent.

• Backbone Convergence: The converged backbone for an experiment is

considered to be the backbone that most routes follow for that experiment.

A higher percentage of experiments following its converged route is more

successful as this shows consistency.

4.5.1 Base ACO Protocol

Figure 4.2 shows that the base ACO routing protocol achieves a high mean

delivery ratio for all network sizes, indicating the consistent delivery of messages

from both sources to both sinks. The average delivery ratio is 93.3% between

network sizes. Additionally, the standard error in the delivery ratio shown

in figure 4.2a is very small, which shows consistency between experiments

94

●
● ●

● ●

●
●

●
●

●

0

25

50

75

100

25 49 81 121 169
Network size (nodes)

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

Protocol
ACO
Flooding

(a) Mean Delivery Ratio

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

250

25 49 81 121 169
Network size (nodes)

M
ea

n
P

ac
ke

ts
 S

en
t P

er
 C

yc
le Protocol

ACO
Flooding

(b) Mean Packets Sent Per Cycle

●

●

●

●

●

●

●

●

●

●

0

10

20

30

40

50

25 49 81 121 169
Network size (nodes)

N
od

es
 In

vo
lv

ed

Protocol
ACO
Flooding

(c) Nodes Involved in Routing from
all sources to all sinks

●

●

●

●

●

●

●

●

●

●

0

20

40

60

25 49 81 121 169
Network size (nodes)

N
od

es
 In

vo
lv

ed
 (

%
 N

et
w

or
k

S
iz

e)

Protocol
ACO
Flooding

(d) Nodes involved in routing as a
percentage of network size

Figure 4.2: Delivery Ratio and Nodes Involved for the ACO based protocol

performed at each network size. The delivery ratio remains similar between

network sizes, but falls slightly at the largest network size of 169 nodes. This

could be due to difficulty in forming the initial backbone, or just due to the

necessity for more packets needing to be sent overall leading to more failures in

delivery. The timer used for combining ants into a backbone remained constant

between network sizes, so delivery ratio may be improved with increasing this

timer. Despite this, the protocol still has a high delivery ratio consistently

between network sizes. Compared with a simple flooding protocol, the ACO

protocol achieves consistently better delivery ratio indicating that it was more

successful at packet delivery.

When comparing the ACO with flooding in the figure 4.2, the equivalent

network tested with a flooding protocol achieved on average lower delivery

ratios and more packets sent overall. The flooding protocol achieved an average

95

delivery ratio of 69.2%, which is significantly lower than the ACO protocol.

This indicates that the ACO protocol improves over both flooding and ACO

with ant memory for many-to-many routing, and that the protocol is reliable

for a number of network sizes. The packets sent increases with network size,

but at a significantly slower rate that the equivalent increase of the flooding

based protocol. This shows that the ACO protocol is scaleable, as it becomes

more efficient with larger networks in terms of packets sent. A similar trend is

seen with the nodes involved in route, shown in Figures 4.2c and 4.2d.

Figure 4.3b shows the mean number of packets sent in each cycle. Each

cycle starts when ants are launched from the sources and ends when backward

ants are received. The packets sent slowly increases with larger networks

sizes for the ACO protocol. This is expected, as more packets are required

to traverse the network when it is larger. The packets sent does not increase

linearly, indicating that the advantages introduced by the use of a backbone

have more impact as the network size increases, showing the scaleability of

the protocol. Similarly, when looking at the nodes involved in routing, figure

4.2c, the ACO protocol uses more nodes as the network size increases, but this

increase is not constant, again indicating scalability as the protocol becomes

more effective as the network becomes larger. Figure 4.2d shows that with an

increase in network size, the number nodes involved as a percentage of network

size decreases. This is also representative of the scalebility of the protocol, as

the route to the sinks becomes proportionally shorter as the network size gets

larger, using less of the nodes in the networks. Both the packets sent and the

nodes involved in routing is consistently less than flooding, especially as the

network size gets larger.

When analysing the role of the backbone in routing for the ACO protocol,

it was found that the backbone length increased in larger network sizes, as

shown in figure 4.3a. This is expected, as the larger network size necessitates

a larger number of hops from source to sink. However, when looking at the

96

●

●

●

●

●

0

5

10

15

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

Mean Backbone Length

(a) Mean backbone length

●

●

●

●

●

0

10

20

30

40

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

Mean Backbone Length
(% Network Size)

(b) Mean Backbone Length as a
Percentage of Network Size

●

●

●

●
●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

Mean Backbone Length
with Network Diameter

(c) Backbone length with increas-
ing network diameter, as a percent-
age of network size

Figure 4.3: Backbone Analysis of the protocol

backbone length as a percentage of the total network size, this now decreases

with larger networks. This shows the scalability of the protocol, as larger

networks benefit from the data aggregation of the backbone to a greater extent.

This is collaborated with figure 4.3b, showing that the packets sent increases

with network size, but the size of this increase is less with larger networks.

When considering the length of the backbone in proportion to the maximum

distance between a source and a sink, figure 4.3c, we see that a similar decrease

happens, again indicating the scalability of the algorithm.

Figure 4.4a shows that the backbone is successfully formed the majority of

the time for all network sizes. The success rate is lower for smaller networks,

97

●

●

● ●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

Backbones Created
with Network Diameter

(a) Backbone Creation

●

●
●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

Converged Backbones Followed
with Network Diameter

(b) Backbone Convergence

Figure 4.4: Further Backbone Analysis

which may indicate that ants tend towards the sinks more often when they

are relatively close. There is also a drop in the creation of backbone with the

largest network size, which may be due to similar issues regarding delivery

ratio. In some cases the backbone is formed more than once in a cycle, leading

to a percentage higher than 100%, however this is a very rare occurrence and is

not considered to be affecting the running of the protocol in the vast majority

of cycles.

Backbone convergence is investigated in figures 4.4b and 4.5. Figure 4.4b

shows the percentage of cycles that follow the converged backbone route. Simi-

lar issues occur with the smallest network size, however a large proportion of

cycles follow the converged backbone for other sizes. There is a small drop

for larger network sizes, consistent with other metrics. Figure 4.5 shows that

experiments tend to converge on a backbone at approximately the third cycle.

Ants then tend to follow that converged backbone through subsequent cycles

to the end of the experiment, indicating a persistent route. The converged

backbone is defined as the backbone that is followed by ants for the majority

of the experiment. The smallest network size of 25 nodes has more variation

in convergence than larger networks as well as a lower convergence rate, which

may be caused by similar issues involving backbone creation shown in figure

4.4a.

98

●

●

●

●●
●●

●●

●●●●●
●

●●
●

●●
●

●
●

●●●●●
●●●●

●
●

●●●●●
●●●

●
●

●
●

●

●
●●

●●●●
●

●
●●●

●
●●

●●
●●●●●●

●
●

●
●●●

●
●

●●
●●●

●●●●●●
●●

●
●

●
●●●●●●

●●●
●

●●
●

●
●●

●●●●

0

25

50

75

100

20 40 60 80 100 120
Cycle

N
um

be
r

of
 e

xp
er

im
en

ts
 fo

llo
w

in
g

th
e

co
nv

er
ge

d
ba

ck
bo

ne
 (

%
 T

ot
al

 E
xp

er
im

en
ts

)

Network Size

●●●●●

25
49
81
121
169

Figure 4.5: Number of Experiments following the converged backbone as a
percentage of total experiments.

4.5.2 ACO with No Ant Memory

The same set of experiments were performed for the version of the ACO proto-

col with no Ant Memory, and the results are shown in this section. The base

ACO protocol is compared with the no ant memory variation of the protocol,

to investigate the effect removing ant memory has upon performance.

Variations on the measurement of delivery ratio is shown in figure 4.6a. There

is not a great deal of difference between the three measures of delivery ratio

that are investigated, indicating that most times a message is received on a

sink, that the other sink also receives a message, and that message consists of

ants from both sources. This shows that the protocol is successfully delivering

messages from both sources to both sinks. The error bars on each point are

very small, indicating that the protocol is consistent over all simulations.

The no ant memory variation of the protocol is compared with the base

ACO protocol in figure 4.6b. It can be observed that both the base protocol

and the variation with no any memory have very similar delivery ratios. It

99

● ● ● ● ●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●

All Sinks Delivery Ratio
Base Delivery Ratio

Unique Delivery Ratio

Delivery Ratio with
Increasing Network Size

(a) Mean Delivery Ratio of No Ant
Memory ACO

● ●
● ● ●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●Base ACO No Ant Memory ACO

Delivery Ratio Comparison

(b) Comparing mean delivery ratio
of base ACO and no ant memory
ACO

Figure 4.6: Delivery Ratio for the ACO based protocol with no ant memory

●

●

●

●

●

0

10

20

30

40

50

60

25 49 81 121 169

Network Size

M
ea

n
N

od
es

 In
vo

lv
ed

●Base ACO No Ant Memory ACO

Nodes Involved in Routing with
 Increasing Network Size

(a) Nodes Involved in routing

●

●

●

●

●

0

10

20

30

40

50

60

25 49 81 121 169

Network Size

M
ea

n
N

od
es

 In
vo

lv
ed

 (
%

 N
et

w
or

k
S

iz
e)

●Base ACO No Ant Memory ACO

Nodes Involved in Routing
% Network Size

(b) Nodes involved as a percentage
of network size

Figure 4.7: Nodes Involved for the ACO based protocol with no ant memory

can be argued that the no ant memory variation is slightly more consistent

than the base ACO protocol, as it doesn’t have a decrease in performance for

the largest memory size. This could be explained by the ants not having to

carry the larger routes in memory necessary for larger network sizes, leading

to improved performance. This also indicates that the effects of removing ant

memory does not lead to a significant amount of “loops” forming in the route,

as there is no reduction in performance compared to the base ACO protocol.

Figure 4.7a shows the nodes involved in routing messages from sources to

sinks. The trend travels upward, with more nodes being involved in routing

with larger networks. This is expected, as as the network size becomes larger,

100

●

●

●

●

●

0

5

10

15

25 49 81 121 169
Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

●Base ACO No Ant Memory ACO

Mean Backbone Length with
Increasing Network Size

Figure 4.8: Mean Backbone Length No Ant Memory ACO

the minimum possible distance increases. The error on the points are small,

indicating that the number of nodes involved is consistent between simulations,

as well as being consistent between cycles. Looking at the number of nodes

involved as a percentage of network size, 4.7b, it can be observed that with a

larger network, proportionally fewer total nodes are involved. This decrease in

the percentage of nodes as networks get larger shows the scaleability of the

protocol. Nodes involved when considering only cycles where all sinks receive

from all sources is a slightly lower figure, this could indicate that there are a

small number of cycles without a backbone that increases the average nodes

involved figure.

When comparing the base ACO protocol with the no ant memory version, it can

be seen that both versions of the protocol follow a similar trend of increasing

number of nodes involved with larger networks, but decreasing the percentage

of nodes involved as a percentage of network size. For both methods, the no

ant memory version uses less nodes in routing than the base ACO protocol.

101

Figure 4.8 shows the mean backbone length of the no ant memory version of

the protocol. The backbone length increases with network size, as expected as

a longer backbone is required to traverse the network. Figure 4.8 also compares

the backbone length of the no ant memory protocol with the base protocol.

Generally there is very little difference between the two versions of the code

and backbone length, showing that removing the ant memory doesn’t have

an adverse effect on the effects of data aggregation through the backbone.

Similarly, figures 4.9a and 4.9b show that there is very little difference for the

percentage of network size and network diameter measures.

As a percentage of network size, figure 4.9a, it can be shown that the backbone

length decreases with network size. The backbone length as a percentage

of the maximum distance from a source to sink (network diameter) remains

approximately constant with increasing network size, at around 50%. This

figure indicates that most of the route is usually backbone ants, indicating a

good level of data aggregation in the network, as well as a consistent one.

●

●

●

●

●

0

10

20

30

40

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

●Base ACO No Ant Memory ACO

Mean Backbone Length % Network Size

(a) Mean Backbone Length as a per-
centage of network size

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

●Base ACO No Ant Memory ACO

Mean Backbone Length % of
 Maximum Network Diamter

(b) Mean Backbone Length as a per-
centage of network diameter

Figure 4.9: Comparison of Backbone Length for no ant memory ACO protocol

102

●

●
●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
B

ac
kb

on
e

Le
ng

th

●Base ACO No Ant Memory

Cycles where Converged
Backbone was Followed

(a) Number of times the backbone was cre-
ated over the simulation

●

●
●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

P
er

ce
nt

ag
e

C
on

ve
rg

en
ce

●Base ACO No Ant Memory

Cycles where Converged
Backbone was Followed

(b) Percentage of cycles where the con-
verged backbone was being followed by
ants.

Figure 4.10: Analysis of Backbone Creation for no ant memory ACO protocol

It can be shown from figure 4.10a that a backbone was consistently created for

most cycles over the course of the simulation. Additionally, figure 4.10b shows

that most cycles follow what was calculated to be the converged backbone, that

is the most commonly followed backbone. This shows consistent convergence

on a route. Figure 4.10a also shows that there is very little difference between

the no ant memory protocol and the base ACO protocol in terms of how often

the backbone was created. The no ant memory version of the protocol was

more consistent in following the converged backbone regardless of network size,

as shown by figure 4.10b.

The convergence of routes for the no ant memory code reasonably consistent,

as shown in figure 4.11. Most cycles are following the converged routes, with

less variation between network sizes as compared to the base ACO protocol.

4.6 Conclusion

In this chapter, a novel protocol for routing in wireless sensor networks was

presented. It is successful in continuous data delivery from all sources to all

sinks in grid based networks when considering a number of delivery metrics.

103

●

●

●

●●

●
●

●●●
●

●
●●

●
●

●
●

●●
●●●●●●

●

●
●

●

●●
●

●●
●●●●●

●
●●●

●●

●
●

●●
●●

●
●

●●
●

●
●

●
●●

●

●●

●

●●●●●
●●●●

●

●
●●●

●
●

●
●●

●●
●

●

●
●●

●●●
●●

●

●●●
●●

●
●●

●

●●●

●●

●

●
●●

●
●●

●●
●

●
●

●
●

●
●●

●●●●
●

●●●●
●●●●

●

●●
●●●●●●

●
●●

●●●
●●

●
●●

●
●

●●●●●
●

●

●●

●●●●●
●●

●●●●●●
●

●
●●

●
●

●
●

●●
●●●

●●
●●●

●

●
●●

●●
●●

●

●●

●●●
●

●

0

25

50

75

100

0 25 50 75 100

Cycle

P
er

ce
nt

ag
e

of
 E

xp
er

im
en

ts
F

ol
lo

w
in

g
C

on
ve

rg
ed

 B
ac

kb
on

e

●

●121 Nodes

169 Nodes

25 Nodes

49 Nodes

81 Nodes

Percentage of Experiments Following
Converged Backbone

Figure 4.11: Convergence of no ant memory routes

Delivery ratio is consistently high with increasing network sizes, indicating

the scaleability of the protocol, as the protocol remains successfull even when

scaled up to a larger network. Nodes involved and packets sent in routing

also remains low, which should lead to increased network lifetime as minimal

number of packets are sent. Additionally, results show that the protocol tends

to become more efficient as network size increases, as proportionally fewer

nodes are involved. This is achieved through the technique of a shared path or

backbone, which increases scalebility of the protocol through both the use of

data aggregation as fewer packets sent are necessary, and minimising the path

length needed to reach all sinks in the same route.

The protocol presented makes use of the meta heuristic Ant Colony Opti-

misation in order to create routing paths online throughout data delivery. Each

node only makes localised decisions, with no greater knowledge of the network

topology required. The ACO protocol presented in this chapter is novel in

that it uses no concept of ant memory, which has previously been required for

104

routing protocols using the algorithm. This has the effect of reducing the size

of the payload needed to be carried for routing purposes. There is no impact in

performance, and it could be argued that removing the ant memory improves

delivery ratio for larger networks.

105

Chapter 5

Fault Tolerant ACO Routing

in Many-to-Many Wireless

Sensor Networks

Wireless Sensor Networks (WSNs) are used in a wide variety of environments

for a great deal of applications, each coming with their own problems. As

sensor nodes are generally limited in terms of battery life, it is likely that some

sensor nodes will run out of energy during operation of the network, and so

cannot be used in routing. Links between nodes may fail for a number of

reasons, including energy problems with the node reducing transmission power,

even if the node itself does not run out of energy completely. Environmental

factors such as wind may move sensor nodes out of range of its neighbours, or

other environmental events may block sensors from properly sending messages

to its neighbours. For some applications of wireless sensor networks, such as

extreme environments like battlefields, it may be common for a sensor node to

be destroyed by adverse conditions. If a WSN has been set up with the goal

of monitoring an environment that humans cannot access easily, it is likely to

be difficult for sensor nodes to be fixed, recharged, or moved back into place.

For this reason, it is necessary to develop fault tolerant protocols that are able

to detect and recover from faults in the network during operation of routing

106

protocols without the need for human intervention.

In this chapter a fault tolerant variant of the ACO based protocol intro-

duced in the previous chapter is presented (FT-ACO). FT-ACO has a number

of variations in order to achieve fault tolerance in the event of node failures

within a WSN. FT-ACO uses the same base version of the routing protocol

presented in the previous chapter, with some extensions to enable fault recovery.

Each ant makes localised decisions on where to travel to next, with the goal of

travelling a shared backbone in order to minimise messages sent, optimising

data aggregation, and thereby increasing network life time. To address the

issue of random node failures, a window-based active fault detection scheme

which uses a novel type of ants, referred to as “beacon ants” is proposed. The

purpose of beacon ants is to detect potential failed nodes. In addition to this

concept, a reliable unicast callback fault detection scheme is also investigated.

Utilising the pheromone evaporation aspect of ACO, the protocol adapts to

failures in an online fashion during the running of the routing protocol. The

concept of “targeted evaporation” of links between nodes in introduced, which

will encourage ants to avoid failed nodes in their decisions. This enables fault

recovery without requiring expensive network wide broadcasts, setting up

multiple routes ahead of time, or finding new routes from scratch. The protocol

will remain fully distributed, and is able to recover from faults that occur

during the operation of the protocol in networks with multiple sources and

multiple sinks. The protocol is able to achieve more than 80% delivery ratio

with 5% node failures while remaining scaleable compared to other approaches

requiring periodic topology maintenance.

In summary, the solution proposed is for the problem of fault tolerant routing

in many-to-many wireless sensor networks. Results show that the protocol is

able to recover from node failures whilst still being able to successfully deliver

packets from sources to sinks in cost efficient routes. The contributions made

in this chapter are:

107

• An ACO based fault tolerant routing protocol for many-to-many wireless

sensor networks (FT-ACO) that is an extension of the previous ACO

based protocol.

• A distributed implementation of FT-ACO.

• Simulations of the distributed implementation with varied node failures

in various sized networks.

5.1 Problem Specification

The problem to be solved can be stated as follows: Given a WSN, a number of

sources s and a number of sinks S, find a minimal set of edges such that data

can be routed from multiple sources s1, . . . , sk to multiple sinks ∆1, . . . ,∆l

even in the presence of node crashes.

Previous fault tolerant works rely upon centralised routing algorithms in

order to reroute around failures, or the setting up of multiple routes ahead of

time in order to switch to an alternate route in the case of node failures. This

has the potential to be inefficient, requiring large numbers of packets sent or

the amount of information needed to be stored on each sensor node. Other

protocols will require constant reinforcement of alternate routes or network

wise broadcasts to update topology information, which again is expensive in

terms of messages sent. To avoid these issues, the ACO based protocol is used

where only local information about neighbours is required for fault recovery.

Targeted pheromone evaporation is used to naturally reroute around failed

nodes without the whole network needing knowledge of the failure.

The ACO based protocol developed in the previous chapter is extended to

become a fault tolerant ACO based protocol, FT-ACO. Three different types

of ants are used in fault-tolerant routing: (i) Forward ants are ants launched

from sources in order to carry sensing data to the sinks, (ii) Backward ants are

108

launched from the sinks following the successful delivery of a forward ant, and

they follow the forward path in reverse, back to the source nodes, updating

the pheromone trails between nodes and reinforcing successful routes. Finally,

(ii) in order to ensure fault tolerance, Beacon Ants are introduced, which are

used to provide active fault monitoring throughout the network.

The novelty of the approach is the integration of fault tolerance in ACO.

Beacon ants have been introduced with the goal of identifying failed (i.e.,

crashed) nodes. These ants are periodically broadcast from each node to its

neighbours, with the periodicity of beacon ants enabling a balance between

number of packets sent and crash detection latency. A window of beacon coun-

ters is developed that keeps track of the number of beacon ants received, which

has the impact of reducing the chance of false positives. When a node fails to

receive expected beacon ants from a neighbour, it will initiate fault recovery

mechanisms. Fault recovery is provided through the targeted evaporation of

the pheromone between nodes; when a node has been identified as failed by a

beacon ant, the pheromone is partially evaporated, with evaporation amount

varied based on the likelihood of failure, calculated from the window of beacon

counts, reducing the chance that an ant will travel to it proportionately. This

is akin to the case of achieving the strong eventual accuracy property of a

failure detector.

5.2 Description of the Fault Tolerant ACO Protocol

The fault tolerant ACO based protocol is an extension of the protocol as

described in the previous chapter. Changes have been made to implement

forms of fault detection, in addition to a fault recovery process to route around

failed nodes. The fault tolerant implementation of the ACO protocol is de-

scribed in this section. It consists of both a set up phase and a continuous

data delivery phase as in the previous protocol, as well as a continuous fault

detection mechanism. FT-ACO is based upon the variant of the ACO based

109

protocol for many-to-many routing with no ant memory.

There are again some variations to FT-ACO, in order to investigate the

effectiveness of different forms of fault detection. These are:

• Active fault detection using beacon ants. Beacon ants are periodically

broadcast to find local node failures.

• Active fault detection using both beacon ants and reliable unicast.

• Passive fault detection using only the base ACO protocol

Set up Phase

The set up phase occurs once throughout the running of the protocol and does

not need to be run again if node failures occur. It is the same setup phase as

described in the previous chapter.

Following this set up phase, the main running of the protocol begins. This

consists of continuous delivery of data from the sources to the sinks.

Data Delivery The data delivery phase of the protocol remains the same

as the data delivery phase of the base ACO protocol with no ant memory as

described in Chapter 4, until the forward ants reach the sink. At this point

there is a change in how the pheromone is updated in order to take into account

the number of ants that form the backbone. This change was made to prioritise

routes with more ants comprising the backbone, to encourage more successful

routes.

1. Once the ants reach the sinks, they are transformed into backward ants.

If a forward ant has reached a sink without having formed a backbone,

backward ants are not generated, so that only paths where a backbone

is formed are reinforced. Backward ants travel to the prev node, as

marked by the forward ants, travelling back to the source nodes. The

first backward ant to reach the backbone continues along it, such that

110

only one backward ant traverses the backbone, with subsequent ants

halting. At the end of the backbone the backward ant is split and

continue to the sources using a broadcast. As the backward ants travel,

they update a value in the neighbours list, ∆τ , which represents the

change in pheromone value, using:

∆τt = ∆τt−1 +
A

lr
+
B · lb
lr

+ (C · |ants|) (5.1)

where ∆τt indicates the change in pheromone value at current time t, lr

represents the total forward route length, including the multiple routes

to and from the backbone, lb is the length of the backbone, |ants| is the

count of ants that combined to the form the backbone, and A, B, and

C are the weights of these parameters. The number of ants represents

a change from the original ACO based protocol, and was introduced in

order to prioritise routes for which more than one ant has been combined

to form the backbone. If a failure occurs, it is more likely that the

backbone will form, so this was more necessary to include.

2. The pheromone value is periodically updated using the equation:

τt = (ρ · τt−1) + ∆τt (5.2)

where τt represents the pheromone value at time t, ρ ∈ 01 indicates the

rate of evaporation, and ∆τ is the trail change value.

3. Increment the cycle count by 1, t by 1, and launch one ant from each

source node to start the next cycle.

Fault Tolerance with Beacon Ants

The fault detection protocol using beacon ants and targeted evaporation runs

while the main protocol is finding routes and delivering data. This is described

below:

1. At the start and end of each cycle, beacons ants are broadcasted from each

111

node. Each node keeps track of how many beacons that it has broadcasted,

as well as how many broadcasts it has received from neighbours. To

do this, each node associates each neighbour with a window of size w

keeping track of how many beacon ants have been received from that

neighbour.

2. When a broadcast is received from a neighbour, a counter associated

with that neighbour is incremented

3. When a node sends a broadcast, it increments its own counter indicating

how many broadcasts it has sent. Additionally, all windows of all the

neighbours are updated. This involves inserting the counter of broadcasts

received from that neighbour at the start of the window, while shifting

the rest of the window values down.

4. When the window has been fully populated, then fault detection begins.

To do this, an evaporation amount is calculated using

ρft = D − q

w
(5.3)

where ρft indicates the evaporation amount that is used if there is a fault

detected, D is the highest number of adjacent values in the window that

are the same, and w is the window size.

5. If ρft < 1, this is considered to be a potential fault as the received

beacons from a neighbour has stagnated. Pheromone trail to this node is

evaporated using

τ = (ρft · τprev) (5.4)

where τ represents the new pheromone value, τprev is the previous trail

and ρft indicates the evaporation amount calculated in 5.3

6. The runicast method of fault detection makes use of the the reliable

unicast method of sending packets in ContikiOS. This returns a “timed

112

out” function when a message fails to send, using this the trail is then

evaporated using

τ = (ρrft · τprev) (5.5)

where τ represents the new pheromone value, τprev is the previous trail

and ρrft indicates the evaporation amount used to reduce trail. This will

be different to the beacon ants evaporation amount as the equation is

different, and also to account for different false positive rates.

Fault Tolerance with Passive Pheromone Evaporation

This method of fault tolerance represents no change in the base ACO protocol,

however the evaporation constant is varied in order to investigate how well

ants naturally recover from failures using evaporation.

The fault tolerant protocol ACO based routing protocol is further explained in

Algorithms 5, 6, 7, 8, and 9.

Algorithm 5 Description of the Fault Tolerant ACO based Protocol for
Many-to-Many WSN

1: procedure ACO-protocol
2: cycle ← 0
3: t ← 0
4: cyclemax ← C
5: while cycle < cyclemax do
6: BeaconAntSend()
7: messages ← 0 ▷ The number of messages received by this node
8: if node ∈ sources then
9: Choose next node n ∈ neighbours with Eqn (4.1)
10: prevnode ← 0
11: Send message from node towards n, with packetbuf routea

12: if node receives a forward ant then
13: ForwardAntReceived()
14: else if node receives a backward ant then
15: BackwardAntReceived()
16: else if node receives a beacon ant then
17: BeaconAntReceived()

18: Evaporate pheromone between node and n with eq:pheromone-update
19: BeaconAntSend()
20: cyclemax ← C + 1

21:

113

Algorithm 6 Description of Forward Ant Protocol

1: procedure ForwardAntReceived
2: prevnode ← from ▷ The node we received the forward ant from
3: messages ← messages+ 1
4: if node ∈ sinks then
5: Launch backward ant; send message from node towards prevnode
6: else
7: if Backbone has not been formed then
8: if messages1 then
9: Set a timer for s seconds.
10: while Timer is not yet finished do
11: Wait
12: if messages ̸= |sources| then
13: messages ← 0
14: Choose next node n with probability (4.1)
15: Send message towards n
16: else
17: Aggregate data
18: messages ← 0
19: Choose next node n with probability (4.1)
20: Send message towards n

21: else
22: if Backbone has been split then
23: Choose next node n with probability 5.2)
24: Send message towards n, with packetbuf routec
25: else if ∃n ∈ N(n)→ (∀i ∈ sinks→ hn,i < hnode,i) then
26: Choose next node n with probability (4.1)
27: Send message towards n
28: else ▷ Split the backbone
29: Send |sinks| messages from node to the neighbours with the smallest hn,i

for each sink
30:

Algorithm 7 Description of Backward Ant Protocol

1: procedure BackwardAntReceived
2: bwmessages ← bwmessages+ 1
3: Update change in pheromone with equation 5.3
4: if node ∈ sources then ▷ Backward ant route complete
5: Stop ant, send no more messages.
6: else
7: if node is the first node to reach the backbone then
8: if bwmessages > 1 then
9: Stop ant, send no more messages

10: else if node is the node where the backbone was created then
11: Broadcast messages to node ∈ N(n)
12: else
13: if nextnode = from then
14: Send backward ant toward prevnode

Algorithm 8 Description of BeaconAntSend

1: procedure BeaconAntSend
2: beaconsSent ← beaconsSent+ 1
3: Broadcast Beacon Ant
4: Update windows of all neighbours with receivedCount
5: Let j be the number of adjacent values from the start of the window with the same

count
6: if (D - (j / |W |) ¡ 1 then
7: Evaporate trail between this node and faulty neighbour with eqn 5.7

114

Algorithm 9 Description of BeaconAntReceived

1: procedure BeaconAntReceived
2: receivedCount ← receivedCount+ 1

5.2.1 Changes to Base ACO protocol

The Fault Tolerant variant of the ACO routing protocol for many-to-many

wireless sensor networks is based on the original protocol, however introduces

some new concepts. The additions made to the protocol are summarised in

this section.

• Beacon ants: The introduction of a new type of ant in the protocol,

the beacon ant, is the main change for the Fault Tolerant variant. The

beacon ants are periodically launched by all nodes, and all nodes keep

track of the beacon ants they receive from their neighbours.

• Fault Detection using reliable unicast: An additional avenue of fault detec-

tion has also been introduced, exploiting the reliable unicast mechanism

developed for Contiki OS.

• Targeted Pheromone Trail evaporation: On detection of a failure, nodes

will evaporate the pheromone trail between itself and the failed node.

• Updated pheromone trail update: The equation to update pheromone

trail has been altered in order to take into account the number of ants

forming the backbone, in order to prioritise routes formed of ants from

multiple sources.

5.3 Experimental Setup

FT-ACO was implemented using ContikiOS, an open source operating system

created for the Internet of Things [36]. ContikiOS has a simulator associated

with it called COOJA, that can be used to simulate wireless sensor networks [93].

All simulations were carried out with COOJA using emulated Sky motes with

the UDGM radio medium and the null RDC driver. The null RDC driver was

used as this means that the radio is constantly on, leading to fewer failures in

115

transmissions. This means that the link failures that occur can be controlled

more easily, as there should be fewer unplanned failures. The MAC driver used

was CSMA, the default mechanism for COOJA, as this retransmits in the case

of collision, which again should lead to fewer unplanned failures in transmission.

For each simulation, approximately 150 runs of each setup are performed.

For each simulation, at least 115 cycles will have been completed, in order to

see how the protocol performs long term. Simulations where insufficient cycles

have completed or insufficient failures occurs were excluded.

The experimental setup in terms of the OS the protocol was written in and the

simulation software used has remained constant with the base ACO routing

protocol. This will allow comparisons to be made between the two protocol

variants. The main change made is the failure model, where a number of nodes

will be simulated failing for experiements carried out.

5.3.1 Network Configuration

All experiments were performed on a square grid of nodes with varying sizes

n× n, where n ∈ {5, 7, 9, 11, 13}. The distance between all nodes is constant,

and the transmission range and power setup such that each node can only

communicate with its horizontal and vertical neighbours. The number of

sources and sinks as well as the placement of these sources and sinks are varied

for some experiments, but for most experiments there are two sources and two

sinks placed in the corners of the network. Forward ants are launched from

the sources at the same time for each cycle.

The network configurations have largely remained the same as with the base

ACO protocol, so as to allow comparisons to be made between them.

116

5.3.2 Failure Model

Node failures are simulated by randomly removing nodes from the simulation.

At the start of each cycle, each node has a percentage chance of being removed,

with this probability varying based on the total number of failures required for

the experiment. Additionally, a number of experiments were performed with

predetermined “patterned failures”. These failures are a set of neighbouring

nodes being removed at the same timed, in order to explore the response to

patterned failures. This may occur, for instance, when neighbouring nodes are

destroyed by the environment. When a node is removed from the network, its

neighbours will not be able to send any packets to it.

5.4 Results

To determine the success of the fault tolerance many-to-many protocol, the

following performance metrics will be examined:

• Delivery Ratio: The ratio of packets sent to packets received on the

sinks. Due to the nature of the protocol, when there are node failures

there is the potential for sinks to receive packets multiple times. This

could be caused, for instance, by multiple splittings of the backbone

leading to multiple ant paths, or both ants from both sources being

received on the same sink, without forming a backbone. For this reason,

several forms of the delivery ratio are used, in order to investigate how

successfully each sink receives packets originating from both sources.

– Base DR: Total received over total sent, whether at backbone has

formed or not. This is just a simple overlook of the delivery ratio in

its simplest form.

– Unique DR: This delivery ratio only counts one packet receiving on

a sink, so no repeat visits are included in this number.

– All Sinks DR: This delivery ratio measure only considers cycles

where both sinks receive a packet from a formed backbone, without

117

including any repeated visits on sinks. This measure is used to look

at how often the protocol is able to successfully deliver to all sinks,

i.e. how many ideal cycles occur.

• Number of Nodes involved per cycle: This metric looks at how

many nodes are involved in sending packets from sources to sinks in a

particular cycle. It simply counts how many nodes form the routes from

sources to sinks. Again, two variations are used.

– Base: Total nodes involved in each cycle, for routes where the

backbone formed and where they did not. This may look lower than

the backbone routes, as if a backbone is not formed, not every sink

will receive a packet. Additionally, the backbone routes are able to

deliver messages from both sources to both sinks, however a route

with no backbone will only be able to deliver packets from a source

to a single sink. The equivalent level of sink delivery would require

two different routes, which does not occur here.

– All Sinks Nodes involved: A measure of how many nodes are involved

only for the routes where all sinks receive from all sources, i.e. a

backbone has been formed of ants from all sources.

• Packets sent per cycle: This metric counts how many packets are

required to send an ant from the sources to sinks in each cycle. It

is a similar measure to nodes involved, as generally for the protocol

here each node will only send a message twice; once forward and one

backward. However, this measure will also include the packets sent

on unsuccessful routes that are taken during fault recovery. This is

interesting to investigate as other fault tolerant routing protocols will

require repeat sending of packets.

• Backbone Length: The number of nodes that form the backbone for a

particular route. Generally, a longer backbone is considered to be more

successful, as means that a greater amount of the total route length is

118

making use of the aggregated path along the backbone, implying fewer

packets sent overall.

• Fault detection time in cycles: This is how long the protocol takes

to detect a fault in the network, measured in terms of cycles.

• Recovery time in cycles: Recovery is defined as the cycle where

packets from both sources have been successfully delivered to all sinks

using a route with a backbone. This means that recovery time in cycles

will be the number of cycles from the cycle the failure occurred in, to the

first cycle with both sinks receiving from both sources. This is often 0,

for instance in the failed node is not a node on the main path.

The following results look at three different forms of fault detection, as described

in earlier sections:

• Beacon Ants

• Beacon Ants and Reliable Unicast Callback

• Passive Fault Detection

In all cases of fault detection, the same fault recovery mechanism is used, as

described in the previous section.

5.4.1 Parameters

The fault tolerant ACO based protocol has a number of parameters to set. The

three factors for choosing the next node are pheromone, average hops, and hop

range. Pheromone indicates that previous ants have followed this route before,

with higher values indicating more successful routes. The average hops directs

ants generally towards the sinks, so nodes with lower average hops are preferred.

After the backbone has been split, the probability function changes to take into

account the smallest hop count to a sink and has a different weight function

associated with it. Hop range was chosen for the probability function as this

will help to form the backbone; a lower hop range indicates the middle route

119

Name Symbol Value

Pheromone Impact α 4
Average Hops Impact β 1
Hops range Impact γ 1
Post Backbone Hop Count Impact 8
Route Length Impact A 1
Backbone Length Impact B 3
Num. Ants Impact C 1
Evaporation Constant ρ 0.9
Beacon Ants Constant D 1.35
Runicast Constant ρft 0.2

Table 5.2: Simulation parameters for Fault Tolerant ACO based Protocol

between sinks, and so it is more likely for ants to meet. Each factor is weighted

using the same input parameters for all network sizes. These parameters were

found to be most effective through repeated experimentation

Pheromone update that takes place during the backward ants path also has a

number of parameters associated with it. These relate to the relative impact

of the length of the total route, the length of the backbone in proportion to

the total rote length, and the number of ants. The vales for these weights are

1, 3, and 1 respectively.

The evaporation constant was set to be 0.9, which leads to the pheromone

value dropping very little between cycles, leading to fast convergence on a

route. The evaporation constant for the fault tolerant parts of the protocol

is set to 0.2 for reliable unicast. For beacon ants, the evaporation is variable

but depended on a constant D which was chosen to be 1.35 as it was found

this led to the best compromise between reducing pheromone and so enabling

recovery while also not letting false positives affect normal routes.

5.4.2 Experimental Results

Figure 5.1 illustrates that generally the delivery ratio decreases with increased

node failures, regardless of the delivery ratio type that is considered. This is

120

expected, as with more failed nodes, there will be more cycles consisting of

either fault detection or fault recovery, leading to cycles without ants receiving

on the successfully sinks. Additionally, with more nodes failing during the

simulation, there is an increased chance that some routes to a sink become

impossible, for example if all neighbours around a sink fail, leading to worse

delivery ratios.

When considering the two different fault detection methods, beacon ants

only and beacon ants and runicast, there are some small variations in how

the delivery ratio changes. The fault detection method that makes use of the

runicast callback leads to lower delivery ratio at the highest number of node

failures. This may indicate that making use of both fault detection schemes

leads to too much pheromone trail being evaporated, leading to a break down

of routes. When looking at the lowest number of node failures, the delivery

ratio for the beacon ants only form of fault detection is lower. This may imply

that the runicast method of detecting faults is more effective at lower node

failures, perhaps detecting faults faster, or that the higher amount of trail

evaporation is more effective when only a few nodes fail in the network.

For both fault detection methods, it can be found that the All Sinks delivery

ratio is lower. This could be explained by the fact that this measure does not

include cycles where fault recovery is in progress and either the backbone is not

created correctly, or only one sink receives a packet. As node failures increase,

it can be observed that the delivery ratio for all ants receiving to all sinks

lowers, as it becomes more difficult to form an ideal route with a backbone.

The base delivery ratio remains higher, as this figure includes routes where no

backbone is formed, or only one sink receives an ant.

The difference between the base delivery ratio and the unique delivery ra-

tio, that is where only one received ant per sink is included in the figure, is

very small, indicating that situations where there are multiple ants received on

121

●

●

●

●
●

●

●

●

●

●

0

25

50

75

100

0.1 1.0 5.0 10.0 15.0

Node Failures (% network size)

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●

●(Beacons and Runicast) All Sinks Delivery Ratio

(Beacons and Runicast) Base Delivery Ratio

(Beacons and Runicast) Unique Delivery Ratio

(Beacons) All Sinks Delivery Ratio

(Beacons) Base Delivery Ratio

(Beacons) Unique Delivery Ratio

Delivery Ratio with Increasing Node Failures

Figure 5.1: Delivery Ratio with increasing node failures for FT-ACO

122

●
●

●
●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●Delivery Ratio (All Sinks) Delivery Ratio (Base)

Delivery Ratio with No Failures

(a) Delivery Ratio of networks with
varying size with no node failures
using beacon ants only

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●Delivery Ratio (All Sinks) Delivery Ratio (Base)

Delivery Ratio with 1% failures

(b) Delivery Ratio of networks with
varying size with 1% node failures
using beacon ants only

Figure 5.2: Delivery Ratio of FT-ACO with no failures and 1% failures

the same sink in one cycle is low for both methods of fault detection.

Figures 5.2a and 5.2b show the delivery ratio of networks of increasing

sizes with no node failures and 1% node failures respectively. This fault de-

tection mechanism here is beacon ants only. The base delivery ratio remains

approximately constant with varying network sizes, indicating that the protocol

can be considered scaleable with increading network size. However there is

a decrease in delivery ratio for the smallest size network. As seen before in

5.1, the delivery ratio for all sinks in generally lower for a number of possible

reasons, however there is not significant decrease.

Figure 5.3 indicates that the fault tolerant adaptation of the protocol does

not significantly impact the delivery ratio when there are no node failures

compared with the base ACO protocol. Generally, the delivery ratio of the

base ACO protocol with no ant memory is similar to the fault tolerant version

of the protocol. There is a decrease in effectiveness for the smallest network

size for the fault tolerant protocol when considering all sinks. This could be

due to the level of false positives of failure detecting being relatively large

compared to network size. This could indicate that the periodic of beacon ants

could be reduced in smaller networks, for instance sending a beacon any every

123

● ● ● ● ●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●

ACO (no ant memory, all sinks DR)
ACO (no ant memory, base DR)

FT ACO (All Sinks DR)
FT ACO (Base DR)

Comparison of Delivery Ratio
with Increasing Network Size

Figure 5.3: Comparing original ACO protocol with Fault Tolerant variant

other cycle.

The average number of nodes involved in sending packets from the sources to

the sinks for each cycle is shown in figure 5.4. Looking at the average nodes

involved for all cases, including cycles where not all sinks receive messages or

where the backbone is not formed, the number of nodes involved with increased

node failures decreases slightly. This is due to the fact that some of these cycles

will be during fault recovery, when full routes are not formed. For instance, if

an ant from one source attempts to travel towards the backbone, but a node

has failed on the route towards the backbone, this ant will halt at the failed

node. The other ant will continue to follow it’s preferred route towards the

sinks, though without a backbone, and so the number of nodes involved in

this cycle will be less. However, despite fewer nodes being involved in sending

messages, this is not an optimal scenario, as the data from both sources will

not have been aggregated and sent to both sinks.

The average number of nodes involved when looking at only cycles where both

124

●●●

●●

0

10

20

30

40

50

60

0.11.0 5.0 10.0 15.0

Node Failures

N
od

es
 In

vo
lv

ed

●

Nodes Involved (All sinks, Beacons and Runicast)
Nodes Involved (All sinks, Beacons Only)
Nodes Involved (Beacons and Runicast)
Nodes Involved (Beacons Only)

Nodes involved with Increasing Node Failures

Figure 5.4: Nodes involved in Fault Tolerant ACO Routing Protocol

sinks receive messages from both sources shows a very slight increase in the

number of nodes involved. This is expected, as often additional nodes may be

required in routes where there has been a failure. For instance, ants may route

around nodes that have failed, including additional nodes in the process, or

there may be a slight shortening of the backbone, and so the positive effects of

aggregation is reduced.

There is a small change in the average number of nodes involved when compar-

ing the beacons only method of fault detection to the beacon ants and runicast

method of fault detection. The beacons only method of fault detection uses

fewer nodes in routes where all sinks receive from all sources. This could again

be explained by there being too much trail evaporated for this fault detection

method, leading to worse routes. When considering the average nodes involved

for all cycles, the beacon ants and runicast method has more variation between

node failure amounts, which adds credence to the theory that this method

causes too much pheromone trail to be evaporated.

125

●

●

●

●●

280

290

300

310

0.11.0 5.0 10.0 15.0

Node Failures

P
ac

ke
ts

 S
en

t P
er

 C
yc

le

●Beacons and Runicast Beacons Only

Packets Sent Per Cycle with
Increasing Node Failures

Figure 5.5: Packets sent per cycle in Fault Tolerant ACO Routing Protocol

Figure 5.5 shows the mean packets sent per cycle with increasing node failures.

It can be observed that there is a decrease in the number of packets sent per

cycle with increased node failures. This is likely due to a reduction in the

number of beacon ants being broadcasted as more nodes in the network fail, as

these types of message consist of most of the packets sent per cycle, as shown

in figures 5.6a and 5.6b. The beacons and runicast method has more packets

sent per cycle on average than the beacons only method, until the number

of failures is at its largest amount. This trend approximately mirrors the

nodes involved trend for the beacons and runicast method of fault detection,

indicating that this is at least partially explained by the number of nodes

involved in routing. Additionally, the runicast method of routing involved

multiple repeat transmissions while trying to send to a failed node, leading to

increased packets. This figure could be varied depending on network setup,

leading to a variation in the number of packets sent due to retransmissions.

When considering only packets sent on the forward ant route (Figure 5.7),

126

0

10000

20000

30000

0 5 10 15

Node Failures (% network size)

M
ea

n
P

ac
ke

ts
 P

er
 C

yc
le

Backward Fault Tolerance Forward

Mean Packets per Cycle
(Beacons Only)

(a) Packets sent per cycle using
the Fault Tolerant ACO Routing
Protocol with Beacon Ants

0

10000

20000

30000

0 5 10 15

Node Failures (% network size)

M
ea

n
P

ac
ke

ts
 P

er
 C

yc
le

Backward Fault Tolerance Forward

Mean Packets per Cycle with
(Beacons and Runicast)

(b) Packets sent per cycle using
the Fault Tolerant ACO Routing
Protocol with both Beacon ants
and Runicast

Figure 5.6: Comparing the mean packets sent per cycle using both fault
detection methods

●

●
●

●
●

10

20

30

40

0.11.0 5.0 10.0 15.0

Node Failures

P
ac

ke
ts

 S
en

t P
er

 C
yc

le

●Beacons and Runicast Beacons Only

Packets Sent Per Cycle On Route

Figure 5.7: Mean Packets Sent On Route in Fault Tolerant ACO Routing
Protocol

127

fewer packets are sent as node failures increase for both forms of fault detection.

This again can be explained by there being more cycles consisting of fault

recovery and incomplete routes when node failures increase. The number of

beacons for beacons only is again slightly less, due to better routes.

Figure 5.8a shows that the mean detection time remains largely constant

regardless of the number of failures. This is understood to be because the

method is localised, and so number of total network failures should not make

a significant difference to fault detection.

The recovery only times shown in figure 5.8b shows that the time to recover

after detection increases as the total node failures in the network increase. This

is expected as more node failures leads to more difficulties in finding routes, as

fewer possible routes exist.

The average backbone length is shown in figure 5.8c, where a comparison

is made showing the difference between backbones in all routes, and with solely

routes where all sinks receive a message, as well as between fault detection

methods. Generally the backbone length remains constant between all these

variations, with most measurements being with error of each other. This

indicates that the fault tolerant variations are still able to consistently form a

backbone.

The total time to recover from node failures, including the time to detect

the fault, generally increased with an increased number of node failures, as

seen in figure 5.8d. This is expected, as as the number of failures increases,

the harder it becomes to recover from the failure, due to failures elsewhere in

the network. The error on the figures are large, indicating a relatively large

amount of variation in the recovery time. This could be due to the fact that

a lot of failures will occur for nodes that are not on the route followed by

ants, meaning the recovery time is 0 cycles. It can be seen that the beacons

128

and runicast fault detection method has a quicker recovery time for a smaller

number of failures, but is slower for the larger number of failures. As we can

see in figure 5.8a, this is likely not caused by a difference in detection time,

but actually a difference in recovery time, figure 5.8b. It seems likely that the

reduction in trail was too much with this method of fault recovery.

●●●
●

●

0

1

2

3

4

0.11.0 5.0 10.0 15.0

Node Failures

M
ea

n
D

et
ec

tio
n

T
im

e
(C

yc
le

s)

●

Beacons and Runicast
Beacons Only

Mean Detection Time in Cycles

(a) Mean Detection Time in Fault
Tolerant ACO Routing Protocol

●

●

●

●

●

0

2

4

6

8

0.11.0 5.0 10.0 15.0

Node Failures

M
ea

n
R

ec
ov

er
y

O
nl

y
T

im
e

(C
yc

le
s)

●

Beacons and Runicast
Beacons Only

Mean Recovery Only Time in Cycles

(b) Mean Recovery Only (no detec-
tion) Time in Fault Tolerant ACO
Routing Protocol

●
●

●

●
●

0.0

2.5

5.0

7.5

10.0

0.11.0 5.0 10.0 15.0

Node Failures

M
ea

n
B

ac
kb

on
e

Le
ng

th

●

Mean Backbone Length (All sinks, Beacons and Runicast)
Mean Backbone Length (All sinks, Beacons Only)
Mean Backbone Length (Beacons and Runicast)
Mean Backbone Length (Beacons Only)

Mean Backbone Length with
Increasing Node Failures

(c) Average Backbone Length in
Fault Tolerant ACO Routing Pro-
tocol

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0.11.0 5.0 10.0 15.0

Node Failures

M
ea

n
R

ec
ov

er
y

T
im

e
(C

yc
le

s)

●

Beacons and Runicast
Beacons Only

Mean Recovery Time in Cycles

(d) Mean Recovery Time in Fault
Tolerant ACO Routing Protocol

Figure 5.8: Recovery Analysis for FT-ACO

In the process of fault detection there will be a number of false positive

reports, where a node has been detected as faulty when it is not. This false

detection rate is shown in 5.9a for both beacons only fault detection and

beacons and runicast fault detection. This is the overall false detection over the

course of the experiment as a percentage of the total number of fault detections.

The false detection rate is very high for lower number of failures, indicating

129

●

●

●

●

●

0

25

50

75

100

0.11.0 5.0 10.0 15.0

Node Failures

Fa
ls

e
D

et
ec

tio
n

R
at

e

●

Beacons and Runicast
Beacons Only

False Detection of Node Failures

(a) False Fault Detection Rate in
Fault Tolerant ACO Routing Pro-
tocol

●●●●●0.0

2.5

5.0

7.5

10.0

0.11.0 5.0 10.0 15.0

Node Failures

Fa
ls

e
D

et
ec

tio
ns

 P
er

 C
yc

le

●

Beacons and Runicast
Beacons Only

False Detection of Node Failures
Per cycle

(b) False Fault Detections Per Cy-
cle in Fault Tolerant ACO Routing
Protocol

Figure 5.9: False Detection of Faults

that the window size for the beacons likely needs to be made bigger, or the

rate at which the beacon broadcast was sent should be lower. This explains the

high number of packets sent. However, this does indicate that false detections

does not have a great deal of impact on the final success of fault recovery, as

other performance metrics remain good.

When considering the false fault detection per cycle in figure 5.9b, it can

be shown that there are very few actual false fault detections for each cycle of

the experiment. This could explain why these false reports have little impact

on overall fault recovery. Generally there is less than one false fault detection

for every cycle, despite the false positives forming a high proportion of the

total detections.

5.4.3 Patterned Failures

A number of experiments with patterned failures were performed, with the

resulting routes explored in this section.

Figure 5.10 shows a patterned failure occurring on the main backbone of the

network, with an example of a resulting recovered route. This shows that that

the ants tended towards diverting around the node failures, with a resulting

130

Figure 5.10: Patterned Failure on the backbone and an example route.

longer backbone. With repeated experiments, the average delivery ratio where

this failure occurred was 89.3% ± 0.7. This shows that the protocol was

generally able to recover reasonably quick from a patterned failure on an

important part of the route. The all sinks measure was slightly lower 81% ± 1,

likely due to some cycles consisting of fault recovery. The average backbone

length was 8.8 ± 0.1 nodes, and the average number of nodes involved 32.5

± 0.2 nodes. This represents an increase on the random failure results, as

expected from visual inspection of the route. The mean detection time is 1

cycle, and the recovery time is 4.25 ± 0.08 cycles. This represents a relatively

increase on the random failures, however for a patterned failure on an important

part of the route should be considered a reasonably quick recovery.

An example of a recovered route that is formed when a patterned failure occurs

after the backbone is split is shown in figure 5.11. For this failure, the mean

delivery ratio is 89.5% ± 0.6 and the all sinks delivery ratio 81% ± 1. The base

delivery ratio is slightly better than the previous pattern, though the all sinks

measure is around the same. This could be due to the sink on the other side

still receiving messages as the affected branch recovers from the failures. This

pattern saw an average backbone length of 6.3 ± 0.1 nodes, indicating that is

led to a smaller backbone in its recovered routes. The average nodes involved

was 33.2 ± 0.3 nodes, similar to the previous pattern. The mean detection

131

Figure 5.11: Pattern Failure on a ant after the backbone has split.

time was 1 cycle, and recovery time 5.9 ± 0.4.

Figure 5.12: Pattern Failure on nodes note usually on a route.

Figure 5.12 shows a patterned failure in an area not usually forming part of

a forward ants route, with an example of how forward ants tend to behave.

In this scenario, no recovery is necessary, and so delivery ratio does not see a

significant drop. The base delivery ratio is 94.0% ± 0.3 and the all sinks ratio

is 89.4% ± 0.7, which is similar to other measures with no failures. Generally

recovery was not necessary.

132

5.4.4 Passive Fault Recovery

A concept that has been designated as “Passive Fault Recovery” was investi-

gated, shown in figure 5.13. This relies upon the idea that pheromone trail

evaporation over time improves routes and discourages worse routes, and so

there should be some amount of recovery possible through the use of normal

pheromone evaporation. However in reality performance was not high using

this method. Observing the “all sinks” delivery ratio metric, it can be observed

from figure 5.13a that delivery ratio suffered with increased evaporation, i.e.

lower evaporation constant. This metric followed a similar pattern when there

are 1% node failures in the network, though the delivery ratio is less overall

(figure 5.13b). The base delivery ratio gives deceptively high values, due a

very large amounts of repeat receives on sinks. This scenario occurs when no

backbone is formed, but the ant still splits at the appropriate point to receive

on both sinks. This can be confirmed by the mismatch between the base and

all sinks delivery ratios measured. Figure 5.13c shows the unique delivery ratio,

which indicates the delivery ratio when only one ant per sink is counted. This

show that the delivery ratio is low for lower evaporation constants, and fault

recovery was not very effective.

The recovery time of the passive fault recovery scheme is shown in figure

5.13d. The recovery time decreases with higher evaporation constant, before

plateauing around 0.6 evaporation constant.

5.5 Conclusion

The work presented in this chapter extends upon the routing protocol discussed

in the previous chapter in order to create a fault tolerant routing protocol for

grid based many-to-many wireless sensor networks. The protocol exploits the

localised nature of Ant Colony Optimisation in order to avoid the requirement

for network wide updates or refreshes when a failure is detected. This improves

the scaleability of the protocol, as each node only requires knowledge about its

133

●

●

●

●
●

●

0

25

50

75

100

0.010.100.20 0.40 0.60 0.800.90

Evaporation Constant

D
el

iv
er

y
R

at
io

●No Node Failures No Node Failures (All Sinks)

Delivery Ratio with
No Node Failures

(a) Passive fault tolerance with no
node failures

●

●

●
●●●

0

25

50

75

100

0.010.100.20 0.40 0.60 0.800.90

Evaporation Constant

D
el

iv
er

y
R

at
io

●1% Node Failures 1% Node Failures (All Sinks)

Delivery Ratio with
1% Node Failures

(b) Passive fault tolerance with 1%
node failures

●

●

●●●
●

0

25

50

75

100

0.01 0.10 0.20 0.40 0.60 0.80 0.90

Evaporation Constant

D
el

iv
er

y
R

at
io

●1% Node Failures No Node Failures

Delivery Ratio with varied
Evaporation Constant

(c) Passive Fault Tolerance unique
delivery ratio

●

●
●

●

●

●

0

10

20

30

40

50

0.01 0.10 0.20 0.40 0.60 0.80 0.90

Evaporation Constant

A
ve

ra
ge

 R
ec

ov
er

y
T

im
e

(C
yc

le
s)

Recovery Time with varied
Evaporation Constant

(d) Passive Fault Tolerance recov-
ery time

Figure 5.13: Summary of passive fault tolerance results

134

local neighbours, and not the whole network, in order for the routing protocol

to be tolerant to failures.

In order to detect and recover from failures, this chapters introduces two

novel concepts for ACO based routing. Firstly, the concept of the beacon ant,

and ant that is continuously broadcast to all neighbours at a relatively low

rate in a heartbeat like fashion, in order to detect if a neighbour has failed.

Secondly, the concept of targeted pheromone trail evaporation is introduced in

order to recover from failures. If beacon ants indicate that a node may have

failed, the neighbours of the node will evaporate the pheromone trail between

itself and the node. This evaporation only occurs on that one link, as well as

being proportional to the likelihood of failure i.e. number of missed beacon

ants. This technique leads to successful fault detection and recovery for high

numbers of node failures throughout the network, as well as quick recovery

times leading to few delivery cycles failing to deliver messages from sources to

sinks.

135

Chapter 6

ACO Based Routing in

Wireless Sensor Networks for

Generating Minimal Steiner

Trees

The previous two chapters introduced an ACO based routing protocol for

many-to-many wireless sensor networks and a fault tolerant extension of that

protocol. This chapter attempts to show that this concept can be applied to

further problems in WSN with success. This can show that an ACO based

framework is adaptable to a number of scenarios whilst still using the same

basic concepts.

The problem of generating minimal Steiner trees in wireless sensor networks is

NP-Hard, but if achieved efficiently can have a great deal of useful applications.

Solutions for finding minimal Steiner trees is a much investigated problem in

circuit design and wired networks, however when attempting to solve the same

problem in wireless sensor networks a number of additional problems occur. A

distributed solution is required, as nodes may not necessarily have knowledge

of network topology, and the topology may change throughout the running of

136

the protocol through node or link failures. Additionally, protocols for wireless

sensor networks have a greater need for scalability, with energy costs being

a large concern for network lifetime. This means that as the network size

increases, the costs involved should not increase disproportionately, for instance

dramatically increasing the number of packets set. The protocol should also

be scaleable in terms of number of sinks, meaning that the protocol should

not need to be repeated for each sink as this uses a disproportionate amount

of resources. To solve the problem of finding Steiner Trees in WSN, this

chapter presents an ACO based protocol for creating Steiner Trees based on

the previously introduced routing protocol.

Wireless Sensor networks will commonly experience problems with faulty

nodes or loss of links, requiring a level of fault tolerance in routing protocols.

A fault tolerant variant of the ACO protocol for minimal Steiner Trees is also

presented that can recover from node failures occurring on the tree that has

been formed.

The work in this chapter presents an ACO based protocol that is able to

find minimal Steiner trees in grid based wireless sensor networks with multiple

sources and multiple sinks. The problem specification for this chapter will

form a Steiner Tree with the terminal points being the sources and sinks. The

solution proposed makes use of a newly developed type of ant denoted as a

“pheromone initialisation ant”, which is used to initialise a minimum level of

pheromone level between nodes in the network. This allows ants to be directed

towards the sinks without any knowledge of their distance to the sinks, or their

neighbours distance to the sinks. The contributions made in this chapter are:

• A novel ACO based protocol for generating Steiner Trees in wireless

sensor networks through the use of pheromone initialisation ants, and

without the use of ant memroy.

• A distributed implementation of the ACO protocol for Steiner Trees.

137

• A fault tolerant variant of the Steiner Tree protocol.

• Simulations of the distributed protocol on the COOJA network simulator.

6.1 Problem Specification

A Steiner tree consists of a number of terminal points with are connected

together. Additional nodes may be used to connect the terminal points, known

as Steiner points. A minimal Steiner tree attempts to do this with minimal

edge weight. For the problem presented here in wireless sensor networks,

the sources and sinks in the network are treated as the terminal points that

must be connected together with minimal weight, and any other nodes in

the network are treated as Steiner points. In this work, all edge weights are

taken to be 1, equivalent to hop count. The goal of this protocol is to connect

multiple sources s1, . . . , sk to multiple sinks ∆1, . . . ,∆l such that data may be

continually delivered via a Steiner Tree structure. The Steiner Tree problem is

considered to be NP-hard, and to solve it the meta heuristic of Ant Colony

Optimisation is used.

6.2 Description of Protocol

The ACO protocol developed to form Steiner trees in networks with multiple

sources and multiple sinks is described here. Ants are represented as messages

being sent throughout the network from sources to sinks. The ants meet and

combine on a particular node to form a backbone, before splitting and continu-

ing on to the sinks. In this way, the sources and sinks, i.e. the terminal nodes,

are connected in the form of a Steiner tree. Through the process of pheromone

evaporation, a near optimal tree should be found. The protocol differs from the

previous ACO based routing protocol in that it initiates with a start up phase

to initialise trail amounts, before starting to send messages from sources to

sinks for continuous data delivery. The protocol depends more on pheromone

trail than on hop count. This has the advantage of not having to store the hop

138

counts to all sinks for each neighbour, instead payload information is stored of

the last visiting ant in the form of a bloom filter [12]. Additionally, changes

are made to how the backbone is created and split, as with more sources and

sinks more creation and split points are needed.

In addition to the base Steiner Tree protocol, a fault tolerant extension of the

protocol has also been developed. This involves additional beacon ants being

used, as well as a method of routing ants around failed nodes using targeted

pheromone evaporation.

6.2.1 Steiner Trees using ACO

The ACO based protocol for minimal Steiner Trees is described in detail here,

followed by an algorithmic description. As with previous chapters, the protocol

starts with a start up phase followed by continuous data delivery.

Start up Phase

The goal of the start up phase is to initiate the pheromone trails between

nodes so as to encourage formation of Steiner Trees. Essentially, the sources

and sinks initiate a flooding broadcast, and the locations where the different

broadcast floods meet will approximately form the Steiner Tree. The pheromone

trails between nodes are updated in order to encourage forward ants to follow

these routes, with more pheromone added with shorter, more desirable routes.

Throughout the course of main running of the protocol, the original pheromone

updates that occur during the start up phase are maintained as the minimum

possible pheromone trail between nodes. This forms a difference with the

previous two versions of the protocol, as the hop counts of the neighbouring

nodes to all sinks are not maintained. This choice was made as with increasing

sources and sinks this may not be sustainable for the nodes to keep in memory.

Instead, a greater emphasis is placed on pheromone trail, with the start up

phase initiating these values. The steps of the phase are as follows:

139

• A neighbour discovery process takes place, where each node will send

a series of broadcasts in order to identify its neighbours. On receiving

a broadcast, the node will add the node to a list of neighbours. All

pheromone trails are initially set to be some value τinit, in this case 0.1.

• The source nodes initiate a flood of broadcasts to all neighbouring nodes.

The broadcast flood contains information of the originating source as

well as the hop count from the source.

• On receiving a broadcast, if the node has not received a broadcast before

it will note the hop count from the source and continue broadcasting. If

the node has received a broadcast before, it will only continue the process

if the hop count is lower than the currently recorded hop count. This one

hop count value is the one that is stored, and only for the start up phase.

• If the node chooses to continue its broadcasting, it records the node it

had received from in prevnode and also sets a timer of length c. During

the course of the timer of length c, if multiple broadcasts from originating

from different sources are received, the node is marked as “combineable”

using the variable combineable. This means that this is a node that

may combine to form a backbone during the main operation of the

protocol. The combineable variable is set to be the total number of hops

of broadcasts taken to reach the node from the sources, and is used later

to decide how longer to set a combine timer for.

• If no other broadcasts are received in during the timer, the node sends a

broadcast to its neighbours, incrementing the hop count.

• Once all nodes have finished broadcasting, backward ants are launched

from the combine nodes. The backward ants follow the route of the

broadcasts from the combine node to the sources, remembering the total

hop count on the combineable node, and updating the trail between the

nodes using:

τ = τinit +A/lr (6.1)

140

where τ indicates the new pheromone value, τinit is the initial trail

value, lr represents the total hop count on the combineable node, and

A is a constant chosen through experimentation in order to weight the

pheromone value appropriately. This equation was used as it encourages

route formation on nodes that will combine together the most ants,

whilst also allowing some variation in choices made by ants such that

the pheromone values are not too bias in any one direction. This allows

improvement of routes as the algorithm runs.

• Backward ants originating from the combineable node also perform

checks that it is following the minimal hops path. Each node on receiving

a backward ant will compare the received total hop count from the

combineable node with what it has current recorded as the lowest hop

count. If the received hop count is lower or this is the first backward ant

received, the trail is updated and the backward ant continues. Otherwise,

the backward ant stops.

• The same process is repeated with the sink nodes initiating broadcast

floods, except the equivalent combineable nodes are now marked as

“splittable”.

• At the end of the splittable flood, all combineable nodes are also marked

as splittable.

• If a node has not been marked as combineable, its combineable variable

is set to 1. This is so that each node will wait a short amount of time

during main operation of the protocol.

Continuous Data Delivery

The main protocol operation is the normal formation of ant routes from sources

to sinks to deliver data. The protocol works in cycles, with each cycle consisting

of the forward ants being launched from the sources in order to travel to the

sinks, the sinks launching backward ants to travel to the sources, and one

141

step of pheromone trail evaporation. Generally, the goal of the protocol is to

direct ants towards the creation of a backbone. Once the backbone has been

created, it will likely split multiple times along the backbone on all splittable

nodes. The most successful split, i.e. the split that is associated with the

longest backbone while still leading all ants to the sinks, will end up being

reinforced by backward ants. Subsequent cycles will have fewer splits as the

most successful route is reinforced by pheromone evaporation, making it less

likely for a split to occur, meaning fewer messages are sent.

The protocol presented here is different to other ACO based protocols as

it allows repeat visits to nodes. Here, if a forward ant lands on a node that

has been previously visited but by an ant following a worse route, for instance

it has more hops, the ant may visit the node again. This is necessary due to

the multiple splits that may take place. Additionally nodes no longer need to

store the hops counts to all sinks to all neighbours, but instead store a bloom

filter consisting of information of which sources it has received ants from. The

data delivery steps are as follows:

• A cycle variable is initially set to be 1. Messages received is set to be 0.

A timer is set of time p which should cover the time for forward ants to

travel from sources to sinks.

• Forward ants are periodically launched from the source nodes. The

forward ant carries in its payload several pieces of information required

for routing, which are:

– The single originating source node of this ant

– The hop count of the route the forward ant has travelled

– The number of ants that this forward ant consists of. As backbones

form, this number increases.

– A bloom filter [12] of size nbloom that consists of all the originating

source nodes that has formed this forward ant. When a backbone is

142

formed, all originators are added to the bloom filter.

• Each ant chooses the next node to travel to with equation:

pi,j =


ταi,j∑

k∈(N(i)−prevnode)

ταi,k
∀j ̸= prevnode

0 otherwise

(6.2)

where pi,j is the probability that the ant a will travel from node i to node

j, τi,j is the pheromone value between node i and node j. α indicates the

weight of pheromone trail. N(i) represents the neighbours of node i and

prevnode is the previous node. The equation for ants choosing a node to

travel to next has changed from previous variations of the protocol as

the hop count to each sink is no longer considered, only the pheromone.

Generally the ants will prefer a node with more pheromone trail, likely

choosing previously successful routes, or routes that were found in the

start up phase. The value of α was found through experimentation, and

it was necessary for a balance to be made between what is likely to be

a successful route, and making different choices in order to improve the

algorithm over time.

• On receiving a forward ant, the node will set the prevnode to be the

node it received from only if it wishes to continue the ant. The node will

decide to continue forwarding the ant if any of the following conditions

apply:

– It is the first forward ant received on this node. In this case the ants

payload is copied to the receiving node and used to compare future

forward ants to in order to decide if the new ant should continue.

– If the node has been visited before, the node will check if the source

node of that previous visit is in the bloom filter of the ant that has

just arrived. If it is, the ant will continue if it has a higher number

of ants compared with the previous visit.

143

– Alternatively, the ant may also continue if it represents some im-

provement in route. This means that either, the number of ants is

higher, or the number of hops is equal to or lower than the previous

forward ant and the backbone hops is equal to or higher than the

previous forward ant. It is also considered an improvement in route

if the hops is so much lower than the previous ant, that the total

number of hops of the most recently received forward ant is lower

than just the backbone hops of the previous ant.

• In addition to one of these conditions, a node will not forward a node if

– It is a source; sources only launch forward ants once.

– It is a sink; sinks don’t forward ants but wait to launch backward

ants.

– The node is combineable and needs to wait for the combine timer

to complete first.

– The forward ant was received during a combine timer, in this case

only one forward ant is launched after the timer completes.

– It is a node that has previously combined ants to form a backbone.

– It is a node that formed a route to a backbone.

• In all cases where a node chooses to continue forwarding the received

forward ant, it updates its stored payload to reflect that values of the new

forward ant. The messages received variable of the node is incremented

by 1. The prevnode variable is set to be the node the current node

received the forward ant from.

• If a node is combineable, the node will set a combine timer of length c.

During this combine timer, if another forward ant is received, the node

will check if it should combine this ant into a backbone if it satisfies

either of these conditions:

– No other ant has been received from the same originator, i.e. the

originator is not in the bloom filter.

144

– The originator of the received ant is in the nodes bloom filter, but

the ant represents an improvement in route.

• If the node chooses to combine this ant into a backbone, the node will

update its stored payload to be the amalgamation of the current ant with

the new ant. This involves adding the current number of ants to the new

ants number of ants (which may be higher than 1, if the received ant was

already a backbone, and had previously combined), and adding the total

hops together. Also, the bloom filter of the node is updated such that all

locations set to 1 in the received ants bloom filter, are also set to 1 for

the current node. This means that that nodes will be able to check the

originators of all ants that have been combined to form this backbone.

All previous nodes will be recorded.

• If a backbone has been formed, backward ants are launched from the

creation node. The backward ants follow the path of the forward ants

backward, either back to the sources, or back to the most recent creation

node before this one. No pheromone trail is updated, only a flag set on

the node to mark it as part of a route that formed a backbone. These

nodes will not be travelled along by subsequent forward ants, as this

would likely form loops from backtracking ants.

• After a backbone has been formed, a node may choose to split instead of

sending to a particular node. A node chooses to split if it is splittable,

and the pheromone trail coming out of the node is significantly higher

than the pheromone trail going into the node. The nodes into the node

is usually trail coming in from prevnode, unless the node is a combine

node, where there will be multiple previous listed. The nodes out are all

other neighbouring nodes. This decision to split is made using:

win · |nodesout| · ψ < wout (6.3)

where win is the total amount of pheromone trail of the nodes leading

145

into the node and wout is the total amount of pheromone trail leading

out of the node. |nodesout| is the number of nodes leading out, and ψ is

referred to as the split factor, and is varied based on how often splits are

desired to occur. The equation was chosen as a node with more trail out

than in implies a split would be advantageous, and the constant factor

ψ found through experimentation in order to ensure a balance between

following the preferred existing route and finding new routes.

• If a node chooses to split, a broadcast is sent from the node with the

same payload as a normal forward ant.

• Nodes receiving a broadcast will treat it as a forward ant and respond

the same.

• When a sink receives a forward ant, the ant stops. If this is the first

forward ant on the sink, the sink will store its payload and previous

node in prevnode. Otherwise, the sink will compare the forward ant with

its stored payload from the current best previous forward ant. If this

forward ant represents and improvement, the sink will update its stored

payload information and prevnode.

• After timer p has completed, the nodes stop forwarding forward ants and

the sinks each launch a single backward ant to the previous nodes stored

in prevnode.

• Backward ants travel to the node stored in prevnode and update trail

change using

∆τt = ∆τt−1 + (
B

lr
· (C · lb)) + (D · |ants|) (6.4)

where ∆τt indicates the change in pheromone value at current time t, lr

represents the total forward route length, lb is the length of the backbone,

|ants| is the number of ants that formed the backbone, and B, C, and D

are the weights of these values. The constant values were found through

146

experimentation for the particular circumstance of the network in order

to encourage the ants to follow particular kinds of routes.

• If a node receives more than one backward ant, this indicates that it has

split and subsequent forward ants have received on multiple sinks. This

means that this is a node where splitting should be reinforced, and so

trail is updated slightly more on the nodes coming out of the node. The

change in trail ∆τ is multiplied by a constant referred to as the true end

backbone factor, x.

• When a backward ant reaches a backbone creation node, the node will

broadcast in order to continue backward ants.

• When the backward ant reaches the source, it stops.

• The pheromone value is periodically, using the equation:

τt =


τstart + (ρ · τt−1) + ∆τt ∀(τstart + (ρ · τt−1) + ∆τt) > τmin

τmin otherwise

(6.5)

where τt represents the pheromone value at time t, τstart is the start

up phase trail, ρ ∈ 01 indicates the rate of evaporation, and ∆τ is the

trail change value. τmin indicates the minimal trail value between nodes,

and equates to the initial trail laid between nodes during the start up

phase. This value should remain the minimum amount of trail to prevent

evaporation of the base values found in the start up phase, as generally

these do not want to be variated from too much. However, this is a value

that may not be necessary for all circumstances for the WSN.

• Increment the cycle count by 1, t by 1, and launch one ant from each

source node.

147

6.2.2 Fault Tolerant Steiner Trees using ACO

The fault tolerant Steiner Tree protocol using ACO follows the same start up

phase and data delivery stage as the base Steiner Tree protocol with additional

beacon ants. This beacon ants enable fault detection between nodes. The fault

tolerant process is the same as the Fault Tolerant variant of ACO presented in

the previous chapter, but without the use of reliable unicast as this was shown

to not add much benefit. The addition steps are:

1. In addition to targeted trail evaporation, the node that has detected a

faulty neighbour also sets itself as splittable. This allows quicker recovery

around a node.

2. Neighbours within a one hop distance of the node that has detected a

fault also mark themselves as splittable. This occurs during the first

broadcast received from the original node that detected the fault.

6.2.3 Additions from base ACO protocol

A summary of the additions and changes made to the ACO protocol for the

variant presented for creation of Steiner Trees is explained here.

• The start up phase is changed in order to initialise the pheromone trail

between nodes to encourage Steiner Trees. This forms a change from the

base protocol which mostly aims to find neighbours and hop counts, here

though neighbour discovery still takes place hop counts are not stored,

and only used in the start up phase to find pheromone trail amounts.

• Forward ants are allowed to repeatedly visit nodes as long as it represents

an improved route, which means checking what has currently visited the

node.

• Use of a bloom filter to keep track of what has been visited of each node

• Change in how the backbone is split to be probability based.

• Pheromone updates have been changed again to facilitate a different goal.

148

• Allowing more splitting of nodes for fault tolerance.

6.3 Simulation Setup

The ACO based protocol for generating Steiner Trees was, as with the previous

ACO based protocols, implemented for Contiki OS, an operating system devel-

oped for Internet of Things based devices [36]. All simulations were carried

out on COOJA, a simulator built for Contiki OS [93]. The sensor nodes are

emulated sky motes using the UDGM radio medium, CSMA MAC driver,

and the null RDC driver for transmission, to keep consistent with previous

simulations for the ACO based protocol. The same network setup and settings

are used as in previous chapters, in order to enable comparisons.

For each network topology approximately 230 repeat simulations were per-

formed. Each simulation was run for long enough for 127 cycles to complete.

6.3.1 Network Configuration

All experiments were performed on a square grid of nodes with varying sizes

n× n, where n ∈ {5, 7, 9, 11, 13}. The distance between all nodes is constant,

and the transmission range and power setup such that each node can only

communicate with its horizontal and vertical neighbours. The number of

sources and sinks as well as the placement of these sources and sinks are

varied to explore the protocols ability to generate Steiner Trees. Forward ants

are launched from the sources at the same time for each cycle. The main

change from previous chapters is the changes in source and sink numbers and

placement.

6.3.2 Failure Model

Both random and patterned failures were investigated. For random failures, a

maximum number of node failures during the course of the experiment was set,

and each node had an equal chance of failing at any point. Patterned failures

149

Name Symbol Value

Pheromone Impact (Setup) A 7.4
Pheromone Impact (Pre Backbone) αpre 8
Pheromone Impact (On and Post Backbone) αpost 3
Split Factor ψ 0.5
Bloom Filter Size nbloom 18
Route Length Impact B 2
Backbone Length Impact C 2
Num. Ants Impact D 4
Evaporation Constant ρ 0.99

Table 6.2: Simulation parameters for the ACO based protocols for Steiner
Trees in Many-to-Many WSN

were predetermined ahead of time in order to investigate a particular scenarios.

On failure, no nodes are able to communicate with the failed node.

6.3.3 Parameters

The selection of input parameters is an important step in the running of the

ACO based protocol. Much of the adaptation of the protocol to differing

scenarios is through the changing of input parameters. For instance, networks

where it is more important to form a long backbone will require a longer

Backbone Length Impact variable. This is true in the case of Steiner Trees,

however it is also very important to include as many ants as possible along the

backbone, and so the Num. Ants Impact is high. The input parameters are

listed in table 6.2.

6.4 Results

In order to determine success of the protocol, a number of performance metrics

are investigated. In addition to these metrics, a graphical representation of

routes will also be presented, in order to examine how well Steiner Trees have

formed. The main performance metrics are listed below:

• Delivery Ratio: The same as described in previous chapters, though

the ratio will need to be changed with varied number of sources and sinks.

150

For instance, if there are 3 sinks then more messages will be expected, so

the ratio calculation is adjusted accordingly.

• Number of Nodes involved per cycle: Measued in the same way as

in the previous two chapters.

• Number of Nodes involved on route per cycle: This metric looks

at how many nodes form the final most successful path from sources to

sinks in each cycle. As the protocol runs, this figure should stay relatively

constant. This metric can be thought of as the Steiner tree weight.

– Base: Total nodes involved on the final route in each cycle, for

routes where the backbone formed and where they did not.

– All Sinks Nodes involved: A measure of how many nodes on the

final are involved only for the routes where all sinks receive from all

sources, i.e. a backbone has been formed of ants from all sources.

• Packets sent per cycle: Measured in the same way as previous chapters

• Backbone Length: The number of nodes that form the backbone.

Backbone can be measured in multiple ways when the number of sources

and sinks is varied, as there may be multiple combination nodes and

splitting nodes on a single backbone. For instance, a network with

three sources will likely have two nodes where ants merge to form a

backbone, which means there a two possible nodes which to count the

backbone length. For this reason multiple possible backbone lengths are

investigated.

– Maximum backbone length: the total number of nodes from the

first split to the last split.

– Minimum backbone length: the total number of nodes from the last

create on the backbone to the first split.

• Fault Detection time and Fault Recovery time, measured in the

same way as previous chapters

151

●
●

●
●

●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing Network Size

Figure 6.1: Delivery ratio of network of size 121 nodes with 2 sources and 2
sinks.

Initially the ACO protocol for Steiner Trees was tested on a simple topology

with two sources and two sinks in the outer corners of the network, as was

investigated for the previous chapters. This enables comparison between the

two protocols, and will also provide a base representation of performance for

the protocol. The results for this simple network was carried out on multiple

network sizes. The delivery ratio as the network size increases is shown in figure

6.1, and it can be shown that the delivery ratio remains high for a range of net-

work sizes. There is little difference between the base delivery ratio and the all

sinks delivery ratio, indicating that most cycles a backbone successfully formed

and all sinks received a forward ant. Figure 6.2 shows a comparison between the

ACO protocol for Steiner Trees with the previous versions of the ACO code for

wireless sensor networks. The Steiner Tree protocol consistently has a higher

delivery ratio compared with the other version of the protocols, and also has the

advantage of not appearing to reduce in performance at the largest network size.

The nodes involved performance metric is shown in figure 6.3a. The total

152

● ●
● ● ●

0

25

50

75

100

25 49 81 121 169

Network Size

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●Base ACO No Ant Memory ACO ST ACO

Delivery Ratio with Increasing Network Size

Figure 6.2: Comparison of delivery ratio of network of size 121 nodes with 2
sources and 2 sinks with other versions of the ACO protocol.

number of nodes involved gets larger with increasing network size, as expected

due to the minimum distance between sources and sinks being higher when the

network is bigger. The difference between the nodes involved base metric and

the nodes involved all sinks metric is minimal, indicating that there were not

many cycles where not all sinks received a forward ant. This is consistent with

the delivery ratio figure. The nodes involved on route metric is lower than the

total nodes involved, as expected. This metric does not include nodes that

sent messages during the cycle but didn’t end up on the final best route, a

scenario that is common at the start of each simulation while the best route is

being converged upon. Again there is not much difference between the base

form of the metric and the all sinks form of the metric, indicating that most

cycles received on all sinks.

Generally, the number of nodes involved, both total and on route, does not

increase linearly with network size, showing that the protocol is scaleable with

total network size. This is reinforced by the results shown in figure 6.3b, which

153

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

N
od

es
 In

vo
lv

ed

●

Nodes Involved
Nodes Involved (All Sinks)

Nodes Involved On Route
Nodes Involved On Route (All Sinks)

Nodes Involved with
Increasing Network Size

(a) Mean nodes involved in routing
per cycle

●

●

●
●

●

0

25

50

75

100

25 49 81 121 169

Network Size

N
od

es
 In

vo
lv

ed
 (

%
 N

et
w

or
k

S
iz

e)

●

Nodes Involved
Nodes Involved (All Sinks)

Nodes Involved On Route
Nodes Involved On Route (All Sinks)

Nodes Involved as a
Percentage of Network Size

(b) Mean nodes involved per cycle
as a percentage of network size

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

N
od

es
 In

vo
lv

ed

●

Base ACO
No Ant Memory ACO

ST Nodes Involved
ST Nodes Involved On Route

Nodes Involved with
Increasing Network Size Comparison

(c) Nodes Involved in routing com-
parison

●

●

●
●

●

0

25

50

75

100

25 49 81 121 169

Network Size

N
od

es
 In

vo
lv

ed
 (

%
 N

et
w

or
k

S
iz

e)

●

Nodes Involved
Nodes Involved (All Sinks)

Nodes Involved On Route
Nodes Involved On Route (All Sinks)

Nodes Involved as a
Percentage of Network Size

(d) Nodes involved in routing as a
percentage of network size

Figure 6.3: Nodes Involved in Steiner Tree Routing

shows the nodes involved as a percentage of network size. The nodes involved

as a percentage of network size decreases as network size increases. This implies

that for larger network sizes, proportionally fewer nodes are required in routing

from all sources to all sinks, which means that fewer messages are sent leading

to a longer network lifetime. A similar trend is seen with the nodes involved

on route, with fewer nodes involved on route as the network size increases. For

both total nodes involved and the nodes involved on route, there is again very

little difference between the base metric and the all sinks version of the metric,

as expected as this occurs in figure 6.3a. Also similarly to what is seen in figure

6.3a, the nodes involved on the route is lower than the total nodes involved.

Figure 6.3c shows a comparison between the nodes involved performance metric

154

●

●

●

●

●

0

5

10

15

25 49 81 121 169

Network Size

B
ac

kb
on

e
Le

ng
th

●

Mean Backbone Length
Mean Backbone Length (All Sinks)

Backbone Length with
Increasing Network Size

(a) Mean Backbone Length

●

●

●

● ●

0

10

20

30

40

25 49 81 121 169

Network Size

B
ac

kb
on

e
Le

ng
th

●

Backbone Length (% Network Size, All Sinks)
Backbone Length (% Network Size)

Backbone Length (% Network Size)
with Increasing Network Size

(b) Mean backbone length as per-
centage of network size

● ● ●

●

●

0

25

50

75

100

25 49 81 121 169

Network Size

B
ac

kb
on

e
Le

ng
th

●

Backbone Length (% Network Diameter, All Sinks)
Backbone Length (% Network Diameter)

Backbone Length (% Network Diameter)
with Increasing Network Size

(c) Backbone length as a percent-
age of network diameter

●

●

●

●

●

0

5

10

15

25 49 81 121 169

Network Size

B
ac

kb
on

e
Le

ng
th

●

Base ACO
Mean Backbone Length

No Ant Memory ACO

Backbone Length with
Increasing Network Size

(d) Backbone length comparison

Figure 6.4: Backbone Analysis in Steiner Tree Routing

with previous versions of the ACO protocol. The Steiner Tree ACO protocol

has more total nodes involved than other versions of the protocol with a larger

difference for larger network sizes. The nodes involved on route metric is largely

similar to the other versions of the protocol. This indicates that the Steiner

Trees version of the protocol may not be quite as scaleable as a cost for the

ability to form Steiner Trees. It is worth noting that the nodes involved figure

may reduced by varying the split factor, however this may be at the cost of

building less successful trees. Figure 6.3d compares the nodes involved as a

percentage of network size, and it can be observed that both versions of the

protocol see a decrease in the percentage of nodes involved as network size

increases, however the base ACO protocol generally has fewer nodes involved

in total. This is consistent with previous figures, and reinforces the need to

155

strike a balance between splitting of the backbone and forming efficient Steiner

trees.

● ●
● ● ●

0

25

50

75

100

25 49 81 121 169
Network Size

B
ac

kb
on

e
C

re
at

io
n

P
er

ce
nt

ag
e

●

Base ACO
No Ant Memory

ST ACO

Backbone Creation
with Increasing Network Size

(a) Percentage of cycles where a backbone
was created

●

●
●

●

●

0

25

50

75

100

25 49 81 121 169
Network Size

P
er

ce
nt

ag
e

R
ou

te
s

F
ol

lo
w

in
g

C
on

ve
rg

ed
 B

ac
kb

on
e

●

Base ACO
No Ant Memory

ST ACO

Backbone Convergenced
with Increasing Network Size

(b) Percentage of cycles where the con-
verged backbone was being followed by
ants.

Figure 6.5: Analysis of Backbone Convergence in Steiner Tree Routing

The backbone length that formed in the network with two sources and two

sinks is shown in figure 6.4a. As there are only two sources and two sinks,

there will only be one backbone creation node and one backbone split node,

which means only one measure of backbone length is possible, and this is shown

here. The backbone length increases as network size increases, as the minimum

distance that it is possible to travel to get to the sinks increases at the network

gets bigger. There is virtually no difference between the base metric and the all

sinks metric, indicating that when a backbone forms then it is very likely that

both sinks will receive a message from it. The backbone length as a percentage

of network size is represented in figure 6.4b. The backbone gets proportionally

shorter with increased network size, however not linearly. This could indicate

that the backbone becomes less effective as a data aggregator as the network

size increases, however when the backbone length as a percentage of maximum

network diameter is investigated (figure 6.4c), it can be shown that backbone

length remains constant. It can be argued that the positive aggregation effects

156

of the backbone is just as effective at larger network sizes, as the backbone

length remains a similar percentage of the network diameter.

Figure 6.4d compares the backbone length formed by the Steiner Trees ACO

protocol with the other versions of the protocol. The Steiner trees backbone

length follows a similar trend to the other versions of the protocol, with back-

bone length increasing with network size. The smallest network sizes see a

slightly smaller mean backbone length, possibly indicating that the backbone

formation is not as successful for smaller network sizes with the Steiner Tree

protocol. The largest network size sees an increase in backbone length over the

other version of the protocols, indicating that this version of the protocol has

an advantage in larger network sizes when it comes to backbone formation.

The percentage of cycles where a backbone is created over the course of

the simulation is shown in figure 6.5a. A backbone is consistently created for

most cycles with very little variation across network sizes. The Steiner Tree

version of the protocol is arguably better at forming backbones than other

versions of the protocol, as there is no drop at the smallest network size, and

it is unlikely for multiple backbones to be formed during the same cycle when

there are only two sources.

Backbone Convergence is investigated in figure 6.5b. This figure shows the

percentage of cycles that follow the ’converged’ backbone. This is defined as

the backbone that is followed by the majority of the routes over the course of

the experiment, and more routes following this same route shows better route

convergence. The Steiner Tree ACO protocol has lower route convergence for

the smallest network size of 25 nodes, but other sizes shows consistent conver-

gence on a route. This drop for the smallest network size could indicate that

parameters should be amended for smaller networks, or perhaps timers set for

backbone creation may not be optimised for this network size. A similar trend

can be seen for the base ACO protocol, except there is also a small drop with

157

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169
Network Size

P
ac

ke
ts

 S
en

t p
er

 C
yc

le

Packets Sent per Cycle with Increasing Network Size

(a) Packets sent per cycle

●

●

●

●

●

0

25

50

75

100

25 49 81 121 169
Network Size

P
ac

ke
ts

 S
en

t p
er

 C
yc

le

●Base ACO ST ACO

Packets Sent per Cycle with
 Increasing Network Size

(b) Packets sent per cycle compared with
other variation of ACO protocol

Figure 6.6: Packets Sent in Steiner Tree Routing

the largest network size. This could show that the Steiner Tree ACO protocol

is more scaleable and performs better for larger networks. Compared to the

no ant memory ACO, the Steiner Tree ACO protocol has better backbone

convergence for most network sizes, and similar convergence for the smallest

network size.

Mean packets sent per cycle (figure 6.6a) increases as network size increases,

which is expected as the number of nodes involved in routing also increasing.

Comparing the Steiner Trees ACO protocol with the base ACO protocol (figure

6.6b) the packets sent is higher, consistent with the number of nodes involved.

This emphasises the necessity of balancing the number of packets sent with

the ability to form Steiner Trees connecting multiple sources and sinks.

The network diagram in figure 6.7a shows the most common converged route

followed by forward ants in a network of size 121 nodes. It can be seen that

the forward ants travelling from the sources travel in a way such that they

meet on a node to form a backbone. Following this, in early cycles the nodes

will likely split all the way along the backbone until it gets to a node that is

no longer splittable, at which point the ants travel towards the sinks. As the

158

(a) Most common route found for network of size 121 with 2 sources and 2 sinks in
the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 98.6 ±0.3 98.3 ±0.4
Nodes Involved 45.7 ±0.6 46.0 ±0.6
Nodes Involved on Route 34.8 ±0.2 35.2 ±0.2
Backbone Length 12.0 ±0.1 11.8 ±0.1
Backbone Len. (% Size) 9.89 ±0.09 9.8 ±0.1
Backbone Len. (% Diameter) 59.9 ±0.5 59.1 ±0.6
Packets per Cycle 74.0 ±0.6 -

(b) Performance metric for 2 sources, 2 sinks

Figure 6.7: Network of 121 nodes with 2 sources and 2 sinks

simulation runs for longer, the routes tend to converge on a low number of splits.

The most common converged route for a network topology with three sources

is shown in figure 6.8a. Two ants are launched from the sources in the bottom

left corner, and combine on the node between them. This combined ant then

travels to meet the third ant from the bottom right corner, forming a backbone

of ants from all three sources. This then travels along the backbone before

splitting to reach both sinks. The delivery ratio remains high, implying that

the protocol still enables the successful delivery of data from all sources to all

sinks. The delivery ratio remains high with the additional source, even when

considering the all sinks delivery ratio measure.

The route shown in figure 6.9a is the most common converged route with

four sources. The route seems efficient, with ants meeting early to form a

159

(a) Most common route found for network of size 121 with 3 sources and 2 sinks in
the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 95.1 ±0.9 90 ±2
Nodes Involved 59.0 ±0.7 61 ±1
Nodes Involved on Route 31.5 ±0.3 31.3 ±0.5
Backbone Length 10.7 ±0.1 8.6 ±0.2
Backbone Len. (% Size) 8.9 ±0.1 7.1 ±0.2
Backbone Len. (% Diameter) 53.7 ±0.7 43 ±1
Packets per Cycle 98 ±1 -

(b) Performance metric for 3 sources, 2 sinks

Figure 6.8: Network of 121 nodes with 3 sources and 2 sinks

backbone of two ants. The delivery ratios remain consistently high, indicating

the ability of the protocol to consistently deliver data. A network with 5 sources

is shown in figure 6.10a and still shows consistent delivery ratio, however the

all sinks delivery ratio has dropped. This shows that this is the point where

the consistent backbone formation is less.

For the highest number of sources tested, six sources, the converged routes

formed were less consistent between simulations. This means that there was not

one route that could be considered the converged route over the course of all

simulations. Additionally, a larger proportion of experiments had no converged

route consisting of ants from all 6 sources merging to form a backbone. It was

found that 30.9% of simulations successfully formed a backbone consisting of

ants from all 6 sources and sent messages to both sinks from this backbone.

This suggests that this is the point where the technique starts to become less

successful of forming routes. However, there were still a number of experiments

160

(a) Most common route found for network of size 121 with 4 sources and 2 sinks in
the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 96.3 ±0.8 81 ±2
Nodes Involved 45.7 ±0.7 43 ±1
Nodes Involved on Route 31.0 ±0.3 28.3 ±0.6
Backbone Length 9.0 ±0.2 7.8 ±0.2
Backbone Len. (% Size) 7.4 ±0.2 6.5 ±0.2
Backbone Len. (% Diameter) 45 ±1 39 ±1
Packets per Cycle 82.3 ±0.9 -

(b) Performance metric for 4 sources, 2 sinks

Figure 6.9: Network of 121 nodes with 4 sources and 2 sinks

were a Steiner Tree was formed corrected. An example of a successful route,

that is all sinks consistently received messages from all sources, is shown in

figure 6.11a. The route shows a reasonably efficient route, with most ants

joining the backbone in few nodes, albeit not optimally in all cases. The reason

for this loss in efficiency in joining the backbone is that the ants tended to

want to join together symmetrically; routes to the backbone tended to form

in pairs of nodes, at a point equidistant to the two nodes. This is due to

issues with synchronising the wait timer on each node, leading to a preference

for symmetrical routes. This choice meant that routes prioritised the most

number of ants possible to form a backbone, however input parameters could be

changed for example to encourage shorter paths to the backbone but fewer ants.

In addition to varying the number of sources in the network, the number

of sinks were also varied. The most common converged route for a network

with three sinks is shown in figure 6.12a. The backbone forms using the same

161

(a) Most common route found for network of size 121 with 5 sources and 2 sinks in
the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 95 ±1 59 ±3
Nodes Involved 68.9 ±0.8 61 ±3
Nodes Involved on Route 33.7 ±0.4 28 ±1
Backbone Length 11.2 ±0.2 8.4 ±0.3
Backbone Len. (% Size) 9.2 ±0.1 7.0 ±0.3
Backbone Len. (% Diameter) 56.0 ±0.9 42 ±2
Packets per Cycle 110 ±1 -

(b) Performance metric for 5 sources, 2 sinks

Figure 6.10: Network of 121 nodes with 5 sources and 2 sinks

route that previous experiments with 2 sources uses, in a minimal number of

hops. The ant then splits at the latest possible point, and delivers messages to

all sinks in a minimal number of hops

The most commonly followed converged route for 4 sinks between simulations

is shown in figure 6.13a. The delivery ratio is good, with the mean value being

92%, indicating that generally messages were successfully delivered from all

sources to all sinks. It can be observed that the route is not optimal after the

initial split, as two parallel paths travel to two sinks, when it would be more

efficient to have one path that later splits again. This is likely due to the hop

count of the lower parallel route being smaller than the upper route, as the

lower route has travelled one node less along the shared backbone. The means

that the lower sink prefers the route from the lower parallel route. Each ant is

not aware about the “true” end of the backbone, as it will not know which of

the split ants actually get to the sinks.

162

(a) Example of a route found for network of size 121 with 6 sources and 2 sinks in the
outermost corners of the networks.

At 5 sinks, the protocol starts to be less consistent with forming routes to

all sinks, with 41.5% of simulations successfully delivering messages from all

sources to all sinks. An example of a successful route is shown in figure 6.14a.

This experiment had a delivery ratio of 99.2%, showing that when a route does

initially form the protocol is successful at delivery messages to the sinks. The

nodes involved in the route for this particular experiment is on average 38.6

and the average backbone length forms a reasonable portion of this, depending

on the definition of the backbone. Similarly, with 6 sinks the protocol also did

not consistently create successful routes, however an example where the tree

did form is shown in 6.14b.

163

(a) Most common converged route for network of size 121 with 2 sources and 3 sinks
in the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 94.9 ±0.7 87 ±2
Nodes Involved 51.9 ±0.8 65 ±3
Nodes Involved on Route 34.4 ±0.3 35.1 ±0.4
Backbone Length 15.0 ±0.1 8.28 ±0.1
Backbone Len. (% Size) 12.4 ±0.1 6.8 ±0.1
Backbone Len. (% Diameter) 74.8 ±0.7 41.4 ±0.6
Packets per Cycle 96 ±1 -

(b) Performance metric for 2 sources, 3 sinks

Figure 6.12: Network of 121 nodes with 2 sources and 3 sinks

(a) Most common converged route for network of size 121 with 2 sources and 4 sinks
in the outermost corners of the networks.

Performance Metric Base Value All Sinks Value

Delivery Ratio 92 ±1 85 ±2
Nodes Involved 51.1 ±0.7 49.8 ±0.3
Nodes Involved on Route 36.5 ±0.3 33 ±2
Backbone Length 13.0 ±0.2 12.2 ±0.3
Backbone Len. (% Size) 10.8 ±0.1 10.0 ±0.3
Backbone Len. (% Diameter) 65 ±1 61 ±2
Packets per Cycle 101 ±1 -

(b) Performance metric for 2 sources, 4 sinks

Figure 6.13: Network of 121 nodes with 2 sources and 4 sinks

164

(a) Example of a route found for
network of size 121 with 2 sources
and 5 sinks.

(b) Example of a route found for
network of size 121 with 2 sources
and 6 sinks.

Figure 6.14: Routes for 5 and 6 sinks

165

An overview of how the delivery ratio varies with increased sources or sinks

is shown in figures 6.15a and 6.15b. It can be seen with increasing number of

sources, the all sinks version of delivery ratio decreases with increasing number

of sources, indicating that larger number of sources makes it more difficult for

successful delivery of packets. However, the base delivery ratio remains high,

indicating that at least some ants have delivered data to some sinks. This

may be useful in scenarios where multiple sinks are used for fault tolerance. A

similar pattern is shown for increasing number of sinks.

●
●

●
●

●

●

0

25

50

75

100

1 2 3 4 5 6

Number of Source Nodes

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing Sources

(a) Delivery Ratio of networks with
varying number of sources

●

●

●

●

● ●

0

25

50

75

100

1 2 3 4 5 6

Number of Sinks Nodes

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing Sinks

(b) Delivery Ratio of networks with
varying number of sinks

Figure 6.15: A comparison of delivery ratios when varying sources and sinks

6.4.1 Fault Tolerant Steiner Trees using ACO

An extended version of the protocol was implemented that attempts to develop

fault tolerant Steiner Trees in wireless sensor networks with multiple sources

and multiple sinks. The delivery ratio of this protocol with increasing node

failures is shown in figure 6.16a. First random node failures are investigated,

then a selected number of patterned failures.

It can be seen in figure 6.16a that the base delivery ratio of the protocol

remains relatively consistent as random node failures increases. This means

that regardless of failures, the protocol is able to deliver messages from a source

166

to a sink, though not necessarily all of them. The all sinks delivery ratio figure

drops as more failures occur, seeing its first significant drop at 5% node failures,

or approximately 6 failures throughout the network. When comparing with the

fault tolerant ACO based protocol in figure 6.16b, the Steiner Tree protocol

follows a similar trend. Both versions of the protocol have a consistent base

delivery ratio with increasing node failures, however the All Sinks delivery

ratio measure decreases with more node failures.

●
●

●

●

●
●

0

25

50

75

100

0.11.0 5.0 10.0 15.0

Node Failures (% network size)

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing
Node Failures

(a) Delivery Ratio of protocol with
increasing node failures in a net-
work with 2 sources and 2 sinks.

●

●

●

●
●

●

0

25

50

75

100

0.11.0 5.0 10.0 15.0

Node Failures (% network size)

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●FT−ACO (All Sinks) FT−ACO (Base DR)
ST (All Sinks) ST (Base DR)

Delivery Ratio with Increasing
Node Failures

(b) Delivery Ratio of protocol with
increasing node failures compared
with previous fault tolerant ACO
based protocols in a network with
2 sources and 2 sinks

Figure 6.16: Delivery Ratio for Fault Tolerant Steiner Trees

In order to investigate how the protocol performs with a similar number of

node failures but with varying topology, figures 6.17a and 6.17b show delivery

ratio with increasing sources and sinks when node failures remains at 3%. As

the number of sources increases, the base delivery ratio remains high, and

tends to increase with more sources. This could be explained by the fact that

this figure includes delivery of data on sinks when the full backbone has not

been formed, and so it may be easier for some closer sources to reach the sink

without forming a full backbone. It could be possible that two main trees are

created, and the all sinks delivery ratio is not capturing this behaviour. As

with previous results, the all sinks delivery ratio decreases with the number of

sources.

167

●

●

●

●
●

0

25

50

75

100

1 2 3 4 5

Number of Source Nodes

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing Sources

(a) Delivery Ratio of networks with
3% node failures with increasing
sources.

●

●
●

●

●

0

25

50

75

100

1 2 3 4 5

Number of Sink Nodes

M
ea

n
D

el
iv

er
y

R
at

io
 (

%
)

●All Sinks Delivery Ratio Base Delivery Ratio

Delivery Ratio with Increasing Sinks

(b) Delivery Ratio of networks with
3% node failures with increasing
sinks.

Figure 6.17: Delivery Ratio for 3% node failures

Patterned Node Failures

A series of patterned failures were also tested with the fault tolerant Steiner

Tree protocol, all with two sources and two sinks. Firstly, a patterned failure

where nodes failed on the backbone. This was inconsistent between experi-

ments, however an example of a recovered route is shown in figure 6.18. Likely

due to the process of multiple splits, the ants have preferred a route with a

short backbone, and were less successful at routing around a failure to the fault

tolerant protocol in chapter two. The mean delivery ratio for all experiment

for this pattern is 75% ± 1 and the all sinks delivery ratio is 59% ± 2. Again

this is less successful than the previous fault tolerant protocol.

A pattern where node failures occur between the backbone split node and

a sink is shown in figure 6.19. This example route is more efficient, using

fewer nodes and having a longer backbone. The protocol performed different

routes on different experiments, however the mean delivery ratio was 77% ±

1 and the all sinks delivery ratio 58% ± 2. This shows that the Steiner Tree

ACO protocol was less effective than the base fault tolerant ACO protocol at

delivering to all sinks in the case of failure.

The final patterned failure investigated a group of nodes failing that do not

168

Figure 6.18: Patterned Failure on the backbone and an example route.

Figure 6.19: Patterned Failure after the backbone split and an example route.

form the expected route, figure 6.20. The mean delivery ratio is lower than that

with no failures, 85% ± 0.9 and 73% ± 2 for base and all sinks respectively.

This could indicate that the fault detecting beacon ants may be affecting the

performance of the protocol. Figure 6.20 shows an example route, however

this is not consistent between experiments.

169

Figure 6.20: Patterned Failure not on the main route and an example route.

6.5 Conclusion

This chapter has presented an alternate version of the ACO based routing

protocol for many-to-many wireless sensor networks described in the previous

two chapters in order to create Steiner Trees in grid based networks. Steiner

Trees have many potential uses in WSN, included the connection of an arbitrary

number of sources and sinks. In this chapter, the terminal points of Steiner

Trees were considered to be the multiple sources and sinks in the network, and

were connected with a routing path created by ants. In order to do this, a

novel pheromone trail initialisation process was developed, which initialised

pheromone trail values between nodes before data delivery took place in order

to encourage trees to be created. This was successful for various numbers of

sources and sinks whilst still keeping the requirement that each node had only

local knowledge of the global network topology. The protocol still is able to

function without ant memory, and each node only has to store a bloom filter of

consistent size. This has the advantage of needing to store a constant amount

of information, regardless of the number of sources and sinks, showing the

scaleability of the protocol. The protocol is also able to be used for networks

with multiple sinks without repeating the protocol for each sink.

In addition to the ACO based Steiner Tree protocol, a fault tolerant vari-

170

ant of the protocol was developed, which shows potential in dealing with node

failures in the network while still being able to deliver from sources to sinks.

The protocol was less successful when considering only routes where all sources

and all sinks were included on route, however high base delivery ratio shows

that most of the time at least some data was still being successfully delivered.

This could indicate that the use of a Steiner Tree as a whole could be a fault

tolerant technique, as it enables that at least some packets were consistently

delivered from at least one source to one sink regardless of node failures.

171

Chapter 7

Discussion, Evaluation, and

Future Work

Ant Colony Optimisation can be used as the basis for a framework that can

generate routing protocols for solving many routing problems in Wireless Sensor

Networks. It has been shown that the ACO framework is successful in grid

based networks in the routing of messages from multiple sources to multiple

sinks, a problem that is little researched by existing work despite having the

potential for many situation as WSN become more sophisticated. The protocol

has successful continuous data delivery with high delivery ratios, whilst also

remaining efficient and scaleable. The ACO framework can also be used for

fault tolerance routing protocol, being able to successfully recovery from faults

with the novel introduction of “beacon ants”, as well as the use of targeted

pheromone evaporation. Finally ACO framework for routing protocols was

adapted in order to find Steiner Trees in WSN using the same basic concepts,

successfully forming Steiner trees in a distributed fashion. These variations of

routing protocol based on the same ACO based framework show how the meta

heuristic can be adapted to a number of different problems, without needed a

specific set of starting conditions. The flexibility and scalebility of the protocol

leads it to many potential uses and applications.

172

This chapter presents a discussion of the ACO based routing protocol as

a framework for varied WSN based routing problems, including its limitations.

Observations that were made through the course of development are noted

here that may lead to future applications of the protocol being more successful.

7.1 Observations

This section will discuss various observations through the course of the work

around the concept of ACO in routing in many-to-many WSN.

Generally, it was found that the protocol was more successful when the network

topology was more symmetrical with how the sources and sinks were laid out.

For instance, if the sources and sinks are all in the corners of the network,

it was easier for ants to combine and form a backbone. This is likely due

to synchronisation of ants; when they are travelling approximately the same

distance to get to the backbone, it is easier to time the combine timer to wait

for the backbone to form. This could be helpful in deciding where to place

sources and sinks in the network topology when setting up the network. It

must be noted that the protocol was tested only on a grid topology, and so the

observations of symmetrically laid out networks may not apply if the network

itself is not symmetrical.

In the course of this work, it was found that the choice of input parame-

ters was very important for the success of the protocol. For instance, changing

the evaporation constant meant a balance between consistency in routes, choos-

ing nodes that led to a previously successful path, and making new choices

in order to improve the path. In this course of this work, input parameters

were largely chosen through experimentation, with the most successful values

being used throughout. It is important to note that the variation of input

parameters has a great deal of impact of the overall success of the routing

protocols, and also has an impact on how adaptable the framework is for

173

different scenarios. Again looking at evaporation constant, this could be varied

based on the desired outcomes for a particular applications. If the goal is

consistency and quickly forming routes, less evaporation should occur.

One of the goals of this work was to create an ACO based framework that

could be extended and adjusted for the use of solving many problems. Though

most aspects of the protocol were kept the same, the base concepts remained

throughout. For instance, the probabilistic choice of which node to travel to

next by the ants was a consistent factor in all protocols, but the exact equation

used to decide this was changed. Different problems required different priorities,

so the equation is a way of adapting to these without making large changes

to the base algorithm. This shows how the framework is adaptable to new

problems. Other important aspects that could be considered for a change for a

new problem include; which nodes combine and split, how much information

each node holds about its neighbours, the equation for backward ant trail

updates. There is also the potential for the reintroduction of ant memory for

certain problems, especially if payload is not a concern.

Many lessons were learnt in the course of developing the fault tolerant extension

of the ACO protocol for successful data delivery. Generally, a balance needed

to be struck between encouraging ants to avoid failed nodes, and completely

disregarding a node when it was detected as a potential failure. It was im-

portant to set the trail evaporation to be high enough for an ant to be more

likely to choose and alternative route, whilst also not leading to the complete

break down of routes leading to entirely random choices. Often nodes were

detected as failed when they were fine, and it could be conceivable in real world

scenarios where a node may be temporarily unavailable, so it was desired to

not discount the node completely. This also means that the fault detection

using the beacon ants required experimentation to determine input parameters

such as window size. A larger window size meant that it would take longer for

faults to be detected, but a small window would lead to more false positives.

174

It was found that with larger network sizes, the benefits of using ACO became

greater. For instance, the larger networks led to a larger proportion of the

total route length consisting of the backbone, and so also relatively fewer nodes

involved. This means fewer energy expanded in sending messages and so a

greater network lifetime. This scaleability of the protocol is a large advantage,

as it performs better with larger networks, not worse as with much previous

work in WSN routing. This means that the ACO based framework for routing

in WSN is well suited for large networks, making them durable and reliable.

7.2 Limitations

There were some limitations in synchronisation of the forward ants, i.e., when

combining to form a backbone, if a source is very close to where the backbone

will be, it may tend to travel an artificially long route in order to arrive at

the backbone at the same time as ants originating further away. This could

lead to inefficiency in the routes used, however it was shown that for most part

delivery ratio remained high when these synchronisation issues occurs. This

could be improved by changing the timer length, or with more experimentation

of input parameters.

There are also some limitation in the protocol when it comes to splitting

the backbone, as sometimes it may split early, leading to inefficient routes.

This is a consequence of the distributed nature of the protocol, and is hard to

avoid as sometimes a route may look more efficient to an ant when it is not.

The requirement of using backward ants could also be considered a limi-

tation of the protocol as it increases the total number of messages needing

to be sent. Many existing works that make use of ACO in WSN also use

backward ants, as it is necessary to use them to update pheromone trail after

completion of the routes, as there is no way of knowing how successful the

175

route is until it has finished. Future work could be carried out to lessen the

impact of backward ants, for instance reducing the frequency of backward ant

launches as the algorithm runs. This could take the form of, for instance, after

x cycles, backward ants will only be launched from the sinks every other cycle.

7.3 Evaluation

This work presented an ACO based framework for routing in many-to-many

wireless sensor networks, that could be used to generate various routing proto-

cols for a number of different problems. These ACO based routing protocols

are effective in successfully delivering messages from sources to sinks in a wide

range of network sizes and topologies in an efficient and scaleable way. The

use of the ACO meta heuristic allows the protocol to be applied to a number

of different problems, without needed a specific set of starting conditions.

This chapter both summarises the work presented, and also explores future

directions that could follow from the work.

7.3.1 Conclusion

As WSN are more commonly used, a larger number of applications will emerge

that will require more complicated starting conditions and topologies, for

instance multiple sources and multiple sinks. For this reason, it is necessary

for routing protocols that can be applied to a wide range of starting conditions.

For this reason, meta heuristics are chosen as the focus of this work, and so

an Ant Colony Optimisation based framework that can be applied to wide

ranging and more complicated applications. The ACO based framework has

been used to develop a number of routing protocols for WSN, while the base

concepts of ACO remain constant.

The routing protocols developed in this work have been shown to be suc-

cessful in delivering data in grid based networks with varied number of sources

and sinks. Results also show that the protocol scales very well in larger network

176

size in terms of minimising the number of messages sent and overall path length,

while maintaining a high delivery ratio. To expand on this, as the network

size gets larger, the protocol does not used proportionally larger resources. If

the network size increases, the number of messages sent and the path length

of routes between sources and sinks does not increase proportionally, but is

efficient in terms of path length and messages sent. It was also found that

as the network got larger, certain benefits such as the ability to aggregate

data improved, as the backbone forms a larger part of the total route. Due to

these factors, the protocol can be considered scaleable. Additionally, the fault

tolerant variant is able to maintain this high delivery ratio while recovering

from a relatively large amount of faults in the network. The ACO protocol

was also shown to be able to create Steiner Trees in a WSN and successfully

deliver between Steiner points on the tree.

In ACO, agents known as ants travel between nodes in a graph laying “pheromone

trail” between the nodes. The amount of pheromone trail laid is proportional

to the success of the route, and is also periodically evaporated. Ants travel

between nodes choosing the next node to travel to using a probability function

based on a measure of distance to the goal, and the amount of trail between

the nodes. Through the use of pheromone trail, successful routes form over

time. The ACO protocol developed for WSN took this concept and used it

to create short, efficient routes. The protocol used the concept of a shared

path, or “backbone” in order to make the most of data aggregation to improve

scalebility; more nodes on the backbone meant that fewer messages were needed

to be sent with increased network size. Both forward and backward ants were

used, forward to move data from sources to sinks, and backward travel from

sink to source to update pheromone trails. The protocol was successful at

delivering all data from all sources to all sinks with a minimal number of nodes

and messages. It was scaleable and energy efficient, getting more efficient

with larger networks. The scalebility comes from the fact that the protocol

forms short routes between sources and sinks, using proportionally fewer nodes

177

compared to the total network size.

The first version of the protocol required the use of a concept called “ant

memory”. This is where each ant travelling through the network kept track

of the nodes it had visited so far. This was used to ensure no nodes were

repeated in the route, as well as by backward ants to know the route they

needed to travel along to update pheromone trail. This had the advantage of

preventing repeated nodes, but at the cost of having to carry more information

in the payload. This is a very commonly used concept in most ACO protocols

presented in previous works, however has its limitations as it increases the size

of the payload of each ant reducing scaleability. A variation on the protocol

was produced that had no ant memory, instead each node on being visited

by an ant kept track of the previously visited node by the ant, and the node

the ant chose to travel to next. This means meant the payload was smaller,

increasing the effectiveness of the protocol with larger networks as the amount

of information each node and ant needs to keep track of remains the same

regardless of the route length. This enables backward ants to travel the correct

route, however did not necessarily prevented repeat visits. It was found in

experiments that the removal of ant memory did not lead to repeat visits, and

in many ways improved performance in terms of delivery ratio and other metrics.

Due to their limited energy supply and the types of environments that WSNs

are often used in, it is not uncommon and often expected for sensor nodes

to fail over the course of the lifetime of the network. In these situations, it

is advantageous for a routing protocol to recovery from these faults and still

be able to deliver data from sources to sinks. A fault tolerant variant of the

ACO based routing protocol for many-to-many sensor networks is therefore

introduced. This protocol introduces the concepts of “beacon ants”. Beacon

ants are periodically broadcast between nodes in order to detect faulty nodes.

A window of the number of beacon ants received from each neighbours is kept

by each node, and if no beacon ant has been received for a predetermined time

178

(dictated by the window size), the neighbour may have failed. The pheromone

trail between the detecting node and the potential faulty node is then evapo-

rated proportionally to the likelihood that the node has failed using targeted

pheromone evaporation. This discourages ants from travelling to the node in

the future, however does not entirely discount it in case the node is actually

not faulty. The protocol remains scaleable and efficient, but also is able to

successfully recover from faults in the network for both random and patterned

failures. The scaleability remains in terms of the route length and messages

sent from the base ACO protocol. As the fault tolerance emerges locally, that

is each node only needs to keep track of the faults of its immediate neighbours,

the protocol will not become less efficient with larger networks, only more

neighbours. Recovery time is often low, partially because routes formed by the

ACO routing protocol use a low proportion of the nodes to begin with, but

also due to the ants only making local decisions about routes, they can easily

find a path to travel around most failed nodes.

A variation on the protocol was developed for creating Steiner Trees between

nodes in a grid based wireless sensor network. Steiner Trees are helpful in a

number of scenarios, as they are a cost effective way of connecting sources

and sinks. This takes the concepts from the previous ACO based protocols

and introduces an pheromone initialisation step. Before data delivery takes

place, pheromone initialisation occurs in order to encourage Steiner Trees to

form in the network. This consists of simultaneous flooding from sources and

sinks, with pheromone being laid between nodes on routes to where separate

floods meet. This version of the protocol has no measure of distance in the

probability function used by ants to travel between nodes, only pheromone

trail. This means that the information necessary for each node to store is much

lower, and is the same size regardless of how many sources and sinks it needs

to keep track of. Additionally changes were made to how the backbone was

created and split, in order to facilitate more sources and sinks. This version

of the protocol was able to create Steiner Trees between arbitrary number

179

of sources and sinks in grid based networks while maintaining performance

metrics such as delivery ratio and packets sent. Additionally, a fault tolerant

variant of this protocol was developed that used beacon ants and targeted

pheromone evaporation, that showed some level of tolerance to faults, though

less successfully than the previous fault tolerant protocol.

To summarise, an ACO-based framework was developed for routing in many-

to-many WSN, tested in a variety of grid based networks. The framework

makes use of meta heuristics in order to solve varied problems without the need

for specific starting conditions. The protocols are all distributed, with only

local decisions being made by nodes. Results have shown the routing protocols

developed from the ACO based framework are successful at continuous data

delivery, achieving high delivery ratios even in the presence of faults. The

protocol is very scaleable, often become more efficient as network size increases

due to the positive effects of aggregation along the backbone. The fault tolerant

routing protocol could recover from faults quick and maintain this high delivery

ratio whilst also still following efficient routes. Finally, the ACO framework

was used to create a protocol for Steiner Tree routing, which meant that routes

could be formed for a large range of grid based network topologies. Overall this

shows the flexibility of the ACO framework, in its ability to successfully routing

messages in many-to-many networks for a wide range of starting conditions

and network topologies.

7.3.2 Future Work

The work presented in this thesis used Ant Colony Optimisation in order

to create efficient and scaleable routing protocols for many-to-many wireless

sensor networks that are tolerant to faults. However, the work my be extended

and applied in many different possible ways, and so some of the potential

future directions for the work are presented in this section.

180

Optimisation Variables

The work here focuses on messages sent and nodes involved as an optimisation

variable for efficient routes, however there are other possible variables to

consider. For instance, energy remaining on the nodes could form an interesting

path of future research. The protocol could be adapted to take energy remaining

of the nodes into account when selecting the next node to travel to, and so

increasing the lifetime of the network in this way. This could form an energy

aware variation of the ACO based routing protocol, based on the main concepts

of the ACO framework. This would be implemented through changes to the

equations used by ants to select the next node to travel to. In the current

work the probability function is based on hop counts and pheromone value,

an energy aware probability function would also include a factor considering

the expected energy cost to travel to this node, and/or the energy remaining

on that node. The goal here would be to encourage ants to travel paths that

require less energy, or to avoid nodes with less energy remaining. The energy

required for paths could be found in the set up phase, whereas the energy

remaining on nodes could be found using the beacon ants.

Improved Fault Tolerant Steiner Tree Routing

The fault tolerant variant of the ACO based routing protocol for creating

Steiner Trees in WSN showed promise, however was not entirely successful.

It appears that the repeated broadcasting of the beacon ants interfered with

the routing process, and so led to less successful routes. Future work should

be carried out to improve on this aspect of the protocol, perhaps through

more targeted broadcast of beacon ants. For instance, beacon ants could only

be launched if a node expects backward ants but has not received any, or as

part of the backward ant route in order to only detect failed nodes on the

route rather than in the whole network. This would reduce the amount of

beacon ants, and therefore have less chance of interupting the path of forward

ants. Another method of improving fault tolerant Steiner tree routing would

181

be to investigate changes in the input parameters. Input parameters such as

evaporation constant remained constant in the investigation, however lowering

this figure, and so increasing the evaporation, could lead to better results.

This is because ants will be forced to find alternative routes earlier, as the

pheromone will evaporate more quickly. To improve fault tolerance, there is

also the potential of rethinking the fault tolerance mechanism entirely, and

instead of using beacon ants utilise backward ants more in the fault detection

process. Backward ants could be sent along previously successful routes if sinks

have not received forward ants in a while in order to detect where along that

route the fault is.

Reduction In Backward Ants Sent

Backward ants form a substantial amount of total packages sent throughout

the running of the protocol, however when the forward ants have converged on

a route for long enough, backward ants often end up being redundant. A future

path of research could be to find ways to reduce the number of backward ants

needed, for instance backward ants could be sent every cycle at the start of

the continuous data delivery, but the rate of backward ants would be reduced

over time. For instance, after 10 successful cycles of data delivery, backward

ants would only be launched every other cycle with the evaporation rate being

reduced in order to maintain pheromone values. Alternatively, backward ants

could also only be launched by the sink the route is changing, for instance

if the route length is different, in order to update pheromone trails based on

this new route. Reducing the amount of backward ants sent may also require

some level of reduction of pheromone evaporation, such that routes are still

maintained. This would have the effect of reducing the amount of messages

sent, and so decreasing energy used and increasing network lifetime.

Adaptation for non grid topologies

It would be advantageous to adapt the protocol for no grid based topologies,

as the testing carried out in this work was on grid networks. This would likely

182

not involve too many changes of the protocol, though perhaps would need

some experimentation in the appropriate input parameters. For instance, it

may be advantageous to increase the evaporation rate, as it may require more

experimentation from the ants in order to find the optimal route. It would be

useful to investigate how the efficiency of the protocol scales with the number

of neighbours nodes have, as this would evaluatate scaleability for both total

network size and the connectivity of the network.

Investigation into Mobile Nodes

An interesting branch of research would be to experiment with ACO based

routing protocols in networks with a number of mobile nodes. This was

beyond the scope of this work due to resources, however could be developed

into a successful variant of the protocol without too many changes outside of

input parameters. An advantage of the protocol is it’s adaptability, and so

investigating this network setup would help to prove this.

Genetic Algorithms

The use of genetic algorithms for optimal parameter selection could be a

possible extension area. In the work presented in this thesis, a number of

input parameters are required to be selected, such as evaporation rate. These

parameters were chosen based on a combination of logical reasoning based

on desired behaviours, and tested with repeated simulations. However, the

application of genetic algorithms could both speed up this process as well as

finding more effective input parameters, allowing the protocols to be more

effective in a wide range of environments, without having the repeated test

for differing figures. This allows the ACO based framework to be more easily

adapted for future problems.

Open Source Protocol Suite

A potential area of future work is in the release of an open source suite of

the ACO based routing protocols for WSN presented this thesis. Such a suite

183

would be adapted in such as a way as to enable easy use of the protocol for

anyone wishing to set up a WSN. This work would involve changes to the

ContikiOS implementation such that the protocol could be changed by the

end user without needing to change the source code, such as through a user

interface. This user interface would potentially set up the protocol for range of

sources and sinks, and allow the user to change input parameters. This could

also be combined with the future work using genetic algorithms, in order to

optimise settings for a particular WSN setup.

184

Bibliography

[1] Kemal Akkaya and Mohamed Younis. A survey on routing proto-

cols for wireless sensor networks. Ad Hoc Networks, 3(3):325 – 349,

2005. ISSN 1570-8705. doi: https://doi.org/10.1016/j.adhoc.2003.

09.010. URL http://www.sciencedirect.com/science/article/pii/

S1570870503000738.

[2] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A

survey on sensor networks. IEEE Communications Magazine, 40(8):

102–114, Aug 2002. ISSN 0163-6804. doi: 10.1109/MCOM.2002.1024422.

[3] Ian F. Akyildiz and IsWireless Sensor Networks for Habitat Moni-

toringmail H. Kasimoglu. Wireless sensor and actorâwe refer to en-

tities that can act on the network as actors they are sometimes re-

ferred to as actuators in related literature.â networks: research chal-

lenges. Ad Hoc Networks, 2(4):351 – 367, 2004. ISSN 1570-8705.

doi: https://doi.org/10.1016/j.adhoc.2004.04.003. URL http://www.

sciencedirect.com/science/article/pii/S1570870504000319.

[4] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-

less sensor networks: a survey. Computer Networks, 38(4):393 – 422,

2002. ISSN 1389-1286. doi: https://doi.org/10.1016/S1389-1286(01)

00302-4. URL http://www.sciencedirect.com/science/article/

pii/S1389128601003024.

[5] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor

185

http://www.sciencedirect.com/science/article/pii/S1570870503000738
http://www.sciencedirect.com/science/article/pii/S1570870503000738
http://www.sciencedirect.com/science/article/pii/S1570870504000319
http://www.sciencedirect.com/science/article/pii/S1570870504000319
http://www.sciencedirect.com/science/article/pii/S1389128601003024
http://www.sciencedirect.com/science/article/pii/S1389128601003024

networks: a survey. IEEE Wireless Communications, 11(6):6–28, 2004.

doi: 10.1109/MWC.2004.1368893.

[6] S. Ali, A. Fakoorian, and H. Taheri. Optimum reed-solomon erasure

coding in fault tolerant sensor networks. In 2007 4th International

Symposium on Wireless Communication Systems, pages 6–10, 2007. doi:

10.1109/ISWCS.2007.4392291.

[7] H. Alwan and A. Agarwal. A survey on fault tolerant routing techniques

in wireless sensor networks. In 2009 Third International Conference

on Sensor Technologies and Applications, pages 366–371, 2009. doi:

10.1109/SENSORCOMM.2009.62.

[8] Isaac Amundson and Xenofon D. Koutsoukos. A survey on localization

for mobile wireless sensor networks. In Richard Fuller and Xenofon D.

Koutsoukos, editors, Mobile Entity Localization and Tracking in GPS-less

Environnments, pages 235–254, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg. ISBN 978-3-642-04385-7.

[9] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt. Riot

os: Towards an os for the internet of things. In 2013 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages

79–80, 2013. doi: 10.1109/INFCOMW.2013.6970748.

[10] Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga,

Habib Youssef, Carlo Alberto Boano, and Mário Alves. Radio link quality

estimation in wireless sensor networks: A survey. ACM Trans. Sen. Netw.,

8(4):34:1–34:33, September 2012. ISSN 1550-4859. doi: 10.1145/2240116.

2240123. URL http://doi.acm.org/10.1145/2240116.2240123.

[11] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and

M. Parlange. Sensorscope: Out-of-the-box environmental monitoring.

In 2008 International Conference on Information Processing in Sensor

Networks (ipsn 2008), pages 332–343, 2008. doi: 10.1109/IPSN.2008.28.

186

http://doi.acm.org/10.1145/2240116.2240123

[12] Burton H Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[13] David Braginsky and Deborah Estrin. Rumor routing algorthim for

sensor networks. In Proceedings of the 1st ACM International Workshop

on Wireless Sensor Networks and Applications, WSNA ’02, pages 22–31,

New York, NY, USA, 2002. ACM. ISBN 1-58113-589-0. doi: 10.1145/

570738.570742. URL http://doi.acm.org/10.1145/570738.570742.

[14] Wenyu Cai, Xinyu Jin, Yu Zhang, Kangsheng Chen, and Rui Wang. Aco

based qos routing algorithm for wireless sensor networks. In Jianhua Ma,

Hai Jin, Laurence T. Yang, and Jeffrey J.-P. Tsai, editors, Ubiquitous

Intelligence and Computing, pages 419–428, Berlin, Heidelberg, 2006.

Springer Berlin Heidelberg.

[15] Tiago Camilo, Carlos Carreto, Jorge Sá Silva, and Fernando Boavida. An

energy-efficient ant-based routing algorithm for wireless sensor networks.

In Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio

Martinoli, Riccardo Poli, and Thomas Stützle, editors, Ant Colony

Optimization and Swarm Intelligence, pages 49–59, Berlin, Heidelberg,

2006. Springer Berlin Heidelberg. ISBN 978-3-540-38483-0.

[16] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra,

M. Pozzi, D. Zonta, and P. Zanon. Monitoring heritage buildings with

wireless sensor networks: The torre aquila deployment. In 2009 Interna-

tional Conference on Information Processing in Sensor Networks, pages

277–288, 2009.

[17] Jinran Chen, Shubha Kher, and Arun Somani. Distributed fault detection

of wireless sensor networks. In Proceedings of the 2006 Workshop on

Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks,

DIWANS ’06, page 65–72, New York, NY, USA, 2006. Association for

Computing Machinery. ISBN 1595934715. doi: 10.1145/1160972.1160985.

URL https://doi.org/10.1145/1160972.1160985.

187

http://doi.acm.org/10.1145/570738.570742
https://doi.org/10.1145/1160972.1160985

[18] Yuequan Chen, Edward Chan, and Song Han. Energy efficient multi-

path routing in large scale sensor networks with multiple sink nodes. In

Jiannong Cao, Wolfgang Nejdl, and Ming Xu, editors, Advanced Par-

allel Processing Technologies, pages 390–399, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg. ISBN 978-3-540-32107-1.

[19] T. Clouqueur, K. K. Saluja, and P. Ramanathan. Fault tolerance in

collaborative sensor networks for target detection. IEEE Transactions

on Computers, 53(3):320–333, 2004. doi: 10.1109/TC.2004.1261838.

[20] D Costa and A Hertz. Ants can colour graphs. Journal of the Opera-

tional Research Society, 48(3):295–305, 1997. doi: 10.1057/palgrave.jors.

2600357.

[21] B. Deb, S. Bhatnagar, and B. Nath. Reinform: reliable information

forwarding using multiple paths in sensor networks. In 28th Annual

IEEE International Conference on Local Computer Networks, 2003. LCN

’03. Proceedings., pages 406–415, 2003. doi: 10.1109/LCN.2003.1243166.

[22] Budhaditya Deb, Sudeept Bhatnagar, and Badri Nath. A topology

discovery algorithm for sensor networks with applications to network

management, 2002.

[23] D. S. Deif and Y. Gadallah. An ant colony optimization approach for

the deployment of reliable wireless sensor networks. IEEE Access, 5:

10744–10756, 2017. doi: 10.1109/ACCESS.2017.2711484.

[24] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic

control for communications networks. J. Artif. Int. Res., 9(1):317–365,

December 1998. ISSN 1076-9757. URL http://dl.acm.org/citation.

cfm?id=1622797.1622806.

[25] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-tolerant

event boundary detection in sensor networks. In Proceedings IEEE 24th

Annual Joint Conference of the IEEE Computer and Communications

188

http://dl.acm.org/citation.cfm?id=1622797.1622806
http://dl.acm.org/citation.cfm?id=1622797.1622806

Societies., volume 2, pages 902–913 vol. 2, 2005. doi: 10.1109/INFCOM.

2005.1498320.

[26] Niannian Ding, P. X. Liu, and Chao Hu. Data gathering communication

in wireless sensor networks using ant colony optimization. In 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 697–702, Aug 2005. doi: 10.1109/IROS.2005.1545067.

[27] P. Djukic and S. Valaee. Minimum energy fault tolerant sensor networks.

In IEEE Global Telecommunications Conference Workshops, 2004. Globe-

Com Workshops 2004., pages 22–26, 2004. doi: 10.1109/GLOCOMW.

2004.1417543.

[28] P. Djukic and S. Valaee. Maximum network lifetime in fault tolerant

sensor networks. In GLOBECOM ’05. IEEE Global Telecommunications

Conference, 2005., volume 5, pages 5 pp.–3106, 2005. doi: 10.1109/

GLOCOM.2005.1578328.

[29] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic.

In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99

(Cat. No. 99TH8406), volume 2, pages 1470–1477 Vol. 2, 1999. doi:

10.1109/CEC.1999.782657.

[30] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions

on Evolutionary Computation, 1(1):53–66, 1997. doi: 10.1109/4235.

585892.

[31] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by

a colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 26(1):29–41, Feb 1996. ISSN

1083-4419. doi: 10.1109/3477.484436.

[32] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE

189

Computational Intelligence Magazine, 1(4):28–39, 2006. doi: 10.1109/

MCI.2006.329691.

[33] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Positive feedback

as a search strategy. Technical report, 1991.

[34] S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between traffic

overhead and reliability in multipath routing for wireless sensor networks.

In 2003 IEEE Wireless Communications and Networking, 2003. WCNC

2003., volume 3, pages 1918–1922 vol.3, 2003. doi: 10.1109/WCNC.2003.

1200680.

[35] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight

and flexible operating system for tiny networked sensors. In Proceedings

of the 29th Annual IEEE International Conference on Local Computer

Networks, LCN ’04, pages 455–462, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2260-2. doi: 10.1109/LCN.2004.38. URL

https://doi.org/10.1109/LCN.2004.38.

[36] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight

and flexible operating system for tiny networked sensors. In Local Com-

puter Networks, 2004. 29th Annual IEEE International Conference on,

pages 455–462, 2004. doi: 10.1109/LCN.2004.38.

[37] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting

the world with wireless sensor networks. In 2001 IEEE International

Conference on Acoustics, Speech, and Signal Processing. Proceedings

(Cat. No.01CH37221), volume 4, pages 2033–2036 vol.4, 2001. doi:

10.1109/ICASSP.2001.940390.

[38] K. Fathima and Kumar Sindhanaiselvan. Ant colony optimization based

routing in wireless sensor networks. Int. J. Adv. Netw. Appl., 4:1686–1689,

02 2013.

[39] E. Felemban, Chang-Gun Lee, and E. Ekici. Mmspeed: multipath multi-

190

https://doi.org/10.1109/LCN.2004.38

speed protocol for qos guarantee of reliability and. timeliness in wireless

sensor networks. IEEE Transactions on Mobile Computing, 5(6):738–754,

2006. doi: 10.1109/TMC.2006.79.

[40] L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric

tsps by ant colonies. In Proceedings of IEEE International Conference

on Evolutionary Computation, pages 622–627, 1996. doi: 10.1109/ICEC.

1996.542672.

[41] Luca Maria Gambardella, Éric Taillard, and Giovanni Agazzi. Macs-

vrptw: A multiple colony system for vehicle routing problems with time

windows. In New Ideas in Optimization, pages 63–76. McGraw-Hill, 1999.

[42] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Es-

trin. Highly-resilient, energy-efficient multipath routing in wireless sen-

sor networks. SIGMOBILE Mob. Comput. Commun. Rev., 5(4):11–25,

October 2001. ISSN 1559-1662. doi: 10.1145/509506.509514. URL

https://doi.org/10.1145/509506.509514.

[43] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of

computing steiner minimal trees. SIAM Journal on Applied Mathematics,

32(4):835–859, 1977. doi: 10.1137/0132072. URL https://doi.org/10.

1137/0132072.

[44] Chen Gen-Huey, Michael E. Houle, and Kuo Ming-Ter. The steiner prob-

lem in distributed computing systems. Information Sciences, 74(1):73 –

96, 1993. ISSN 0020-0255. doi: https://doi.org/10.1016/0020-0255(93)

90128-9. URL http://www.sciencedirect.com/science/article/

pii/0020025593901289.

[45] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal

on Applied Mathematics, 16(1):1–29, 1968. doi: 10.1137/0116001. URL

https://doi.org/10.1137/0116001.

[46] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,

191

https://doi.org/10.1145/509506.509514
https://doi.org/10.1137/0132072
https://doi.org/10.1137/0132072
http://www.sciencedirect.com/science/article/pii/0020025593901289
http://www.sciencedirect.com/science/article/pii/0020025593901289
https://doi.org/10.1137/0116001

and Philip Levis. Collection tree protocol. In Proceedings of the 7th

ACM Conference on Embedded Networked Sensor Systems, SenSys ’09,

pages 1–14, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-519-2.

doi: 10.1145/1644038.1644040. URL http://doi.acm.org/10.1145/

1644038.1644040.

[47] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Self-organized

shortcuts in the argentine ant. Naturwissenschaften, 76(12):579–581,

1989.

[48] J. Grosso, A. Jhumka, and M. Bradbury. Reliable many-to-many routing

in wireless sensor networks using ant colony optimisation. In 2019 15th

European Dependable Computing Conference (EDCC), pages 111–118,

2019. doi: 10.1109/EDCC.2019.00030.

[49] Jasmine Grosso and Arshad Jhumka. Fault-tolerant ant colony based-

routing in many-to-many iot sensor networks. pages 1–10, 11 2021. doi:

10.1109/NCA53618.2021.9685935.

[50] J. Gutiérrez, J. F. Villa-Medina, A. Nieto-Garibay, and M. Á. Porta-

Gándara. Automated irrigation system using a wireless sensor network

and gprs module. IEEE Transactions on Instrumentation and Measure-

ment, 63(1):166–176, 2014. doi: 10.1109/TIM.2013.2276487.

[51] M. J. Handy, M. Haase, and D. Timmermann. Low energy adaptive

clustering hierarchy with deterministic cluster-head selection. In 4th In-

ternational Workshop on Mobile and Wireless Communications Network,

pages 368–372, 2002. doi: 10.1109/MWCN.2002.1045790.

[52] H. Hassanein and Jing Luo. Reliable energy aware routing in wireless

sensor networks. In Second IEEE Workshop on Dependability and Security

in Sensor Networks and Systems, pages 54–64, 2006. doi: 10.1109/DSSNS.

2006.10.

[53] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liest-

192

http://doi.acm.org/10.1145/1644038.1644040
http://doi.acm.org/10.1145/1644038.1644040

man. A survey of gossiping and broadcasting in communication net-

works. Networks, 18(4):319–349, 1988. doi: https://doi.org/10.1002/

net.3230180406. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/net.3230180406.

[54] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan.

Adaptive protocols for information dissemination in wireless sensor

networks. In Proceedings of the 5th Annual ACM/IEEE Interna-

tional Conference on Mobile Computing and Networking, MobiCom ’99,

page 174–185, New York, NY, USA, 1999. Association for Comput-

ing Machinery. ISBN 1581131429. doi: 10.1145/313451.313529. URL

https://doi.org/10.1145/313451.313529.

[55] Chih-fan Hsin and Mingyan Liu. Self-monitoring of wireless sensor

networks. Computer Communications, 29, 07 2004. doi: 10.1016/j.

comcom.2004.12.031.

[56] Yu Hu, Tong Jing, Zhe Feng, Xian-Long Hong, Xiao-Dong Hu, and Gui-

Ying Yan. Aco-steiner: Ant colony optimization based rectilinear steiner

minimal tree algorithm. Journal of Computer Science and Technology,

21(1):147–152, 2006.

[57] F. K. Hwang and Dana S. Richards. Steiner tree problems. Net-

works, 22(1):55–89, 1992. doi: 10.1002/net.3230220105. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/net.3230220105.

[58] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.

Directed diffusion for wireless sensor networking. IEEE/ACM Transac-

tions on Networking, 11(1):2–16, 2003. doi: 10.1109/TNET.2002.808417.

[59] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John

Heidemann, and Fabio Silva. Directed diffusion for wireless sensor net-

working. IEEE/ACM Trans. Netw., 11(1):2–16, February 2003. ISSN

1063-6692. doi: 10.1109/TNET.2002.808417. URL http://dx.doi.org/

10.1109/TNET.2002.808417.

193

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230180406
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230180406
https://doi.org/10.1145/313451.313529
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230220105
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230220105
http://dx.doi.org/10.1109/TNET.2002.808417
http://dx.doi.org/10.1109/TNET.2002.808417

[60] V. Isler, S. Kannan, and K. Daniilidis. Sampling based sensor-network

deployment. In 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 2, pages

1780–1785 vol.2, 2004. doi: 10.1109/IROS.2004.1389654.

[61] Won-Suk Jang, William M. Healy, and MirosÅaw J. Skibniewski. Wire-

less sensor networks as part of a web-based building environmental

monitoring system. Automation in Construction, 17(6):729 – 736,

2008. ISSN 0926-5805. doi: https://doi.org/10.1016/j.autcon.2008.

02.001. URL http://www.sciencedirect.com/science/article/pii/

S0926580508000174.

[62] Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm

for numerical function optimization: Artificial bee colony (abc) algorithm.

J. of Global Optimization, 39(3):459–471, November 2007. ISSN 0925-

5001. doi: 10.1007/s10898-007-9149-x. URL https://doi.org/10.

1007/s10898-007-9149-x.

[63] Dervis Karaboga, Selcuk Okdem, and Celal Ozturk. Cluster based

wireless sensor network routing using artificial bee colony algorithm.

Wireless Networks, 18(7):847–860, 2012.

[64] Richard M. Karp. Reducibility among Combinatorial Problems, pages

85–103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2.

doi: 10.1007/978-1-4684-2001-2 9. URL https://doi.org/10.1007/

978-1-4684-2001-2_9.

[65] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95 - International Conference on Neural Networks, volume 4,

pages 1942–1948 vol.4, 1995. doi: 10.1109/ICNN.1995.488968.

[66] Michael Kintner-Meyer, Michael Brambley, Teresa Carlon, and Nathan

Bauman. Wireless sensors: Technology and cost-savings for commercial

buildings. 2002 ACEEE Summer Study on Energy Efficiency in Buildings,

11, 01 2002.

194

http://www.sciencedirect.com/science/article/pii/S0926580508000174
http://www.sciencedirect.com/science/article/pii/S0926580508000174
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

[67] Y. Kiri, M. Sugano, and M. Murata. Self-organized data-gathering

scheme for multi-sink sensor networks inspired by swarm intelligence.

In First International Conference on Self-Adaptive and Self-Organizing

Systems (SASO 2007), pages 161–172, 2007. doi: 10.1109/SASO.2007.52.

[68] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for

multimedia communication. IEEE/ACM Transactions on Networking, 1

(3):286–292, 1993. doi: 10.1109/90.234851.

[69] Sookyoung Lee and Mohamed Younis. Recovery from multiple simul-

taneous failures in wireless sensor networks using minimum steiner

tree. Journal of Parallel and Distributed Computing, 70(5):525 – 536,

2010. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2009.12.

004. URL http://www.sciencedirect.com/science/article/pii/

S0743731509002433.

[70] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing

and scheduling problems. Networks, 11(2):221–227, 1981. doi: 10.1002/

net.3230110211.

[71] Lucas Lessing, Irina Dumitrescu, and Thomas Stützle. A comparison

between aco algorithms for the set covering problem. In Marco Dorigo,

Mauro Birattari, Christian Blum, Luca Maria Gambardella, Francesco

Mondada, and Thomas Stützle, editors, Ant Colony Optimization and

Swarm Intelligence, pages 1–12, Berlin, Heidelberg, 2004. Springer Berlin

Heidelberg. ISBN 978-3-540-28646-2.

[72] L. Li and J. Y. Halpern. Minimum-energy mobile wireless networks revis-

ited. In ICC 2001. IEEE International Conference on Communications.

Conference Record (Cat. No.01CH37240), volume 1, pages 278–283 vol.1,

2001. doi: 10.1109/ICC.2001.936317.

[73] Wen-Hwa Liao, Yucheng Kao, and Ying-Shan Li. A sensor deploy-

ment approach using glowworm swarm optimization algorithm in wire-

less sensor networks. Expert Systems with Applications, 38(10):12180 –

195

http://www.sciencedirect.com/science/article/pii/S0743731509002433
http://www.sciencedirect.com/science/article/pii/S0743731509002433

12188, 2011. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2011.

03.053. URL http://www.sciencedirect.com/science/article/pii/

S0957417411004611.

[74] S. Lindsey and C. S. Raghavendra. Pegasis: Power-efficient gathering in

sensor information systems. In Proceedings, IEEE Aerospace Conference,

volume 3, pages 3–1125–3–1130 vol.3, 2002. doi: 10.1109/AERO.2002.

1035242.

[75] Bing-Hong Liu, Ngoc-Tu Nguyen, Van-Trung Pham, and Wei-Sheng

Wang. Constrained node-weighted steiner tree based algorithms for

constructing a wireless sensor network to cover maximum weighted

critical square grids. Computer Communications, 81:52 – 60, 2016.

ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2015.07.

027. URL http://www.sciencedirect.com/science/article/pii/

S0140366415002844.

[76] L. Liu, Y. Song, H. Zhang, H. Ma, and A. V. Vasilakos. Physarum

optimization: A biology-inspired algorithm for the steiner tree problem

in networks. IEEE Transactions on Computers, 64(3):818–831, 2015. doi:

10.1109/TC.2013.229.

[77] E. L. Lloyd and G. Xue. Relay node placement in wireless sensor

networks. IEEE Transactions on Computers, 56(1):134–138, 2007. doi:

10.1109/TC.2007.250629.

[78] Haiyun Luo, Fan Ye, Jerry Cheng, Songwu Lu, and Lixia Zhang. Ttdd:

Two-tier data dissemination in large-scale wireless sensor networks. Wire-

less Networks, 11(1):161–175, 2005.

[79] J. Lynch. An overview of wireless structural health monitoring for

civil structures. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 365:345 – 372, 2006.

196

http://www.sciencedirect.com/science/article/pii/S0957417411004611
http://www.sciencedirect.com/science/article/pii/S0957417411004611
http://www.sciencedirect.com/science/article/pii/S0140366415002844
http://www.sciencedirect.com/science/article/pii/S0140366415002844

[80] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1996. ISBN 9780080504704.

[81] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and

John Anderson. Wireless sensor networks for habitat monitoring. In

Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications, WSNA ’02, page 88–97, New York, NY, USA,

2002. Association for Computing Machinery. ISBN 1581135890. doi: 10.

1145/570738.570751. URL https://doi.org/10.1145/570738.570751.

[82] I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley. A new heuristic for

rectilinear steiner trees. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 19(10):1129–1139, Oct 2000. ISSN

1937-4151. doi: 10.1109/43.875292.

[83] Kamalrulnizam Bin Abu Bakar Malrey Lee Marjan Radi, Behnam Dez-

fouli. Multipath routing in wireless sensor networks: Survey and research

challenges. Sensors, 12(1):650–685, 2012. ISSN 1424-8220. doi: 10.3390/

s120100650. URL https://www.mdpi.com/1424-8220/12/1/650/pdf.

[84] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating

routing misbehavior in mobile ad hoc networks. In Proceedings of the 6th

Annual International Conference on Mobile Computing and Networking,

MobiCom ’00, page 255–265, New York, NY, USA, 2000. Association for

Computing Machinery. ISBN 1581131976. doi: 10.1145/345910.345955.

URL https://doi.org/10.1145/345910.345955.

[85] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava.

Coverage problems in wireless ad-hoc sensor networks. In Proceed-

ings IEEE INFOCOM 2001. Conference on Computer Communications.

Twentieth Annual Joint Conference of the IEEE Computer and Com-

munications Society (Cat. No.01CH37213), volume 3, pages 1380–1387

vol.3, 2001. doi: 10.1109/INFCOM.2001.916633.

197

https://doi.org/10.1145/570738.570751
https://www.mdpi.com/1424-8220/12/1/650/pdf
https://doi.org/10.1145/345910.345955

[86] Vinod Menaria, S.C. Jain, and Nagaraju Autha. A fault tolerance based

route optimisation and data aggregation using artificial intelligence to

enhance performance in wireless sensor networks. International Journal

of Wireless and Mobile Computing, 14:123, 01 2018. doi: 10.1504/IJWMC.

2018.091139.

[87] Manki Min, Hongwei Du, Xiaohua Jia, Christina Xiao Huang, Scott

C. H. Huang, and Weili Wu. Improving construction for connected

dominating set with steiner tree in wireless sensor networks. Journal of

Global Optimization, 35(1):111–119, 2006.

[88] Raquel A.F. Mini, Antonio A.F. Loureiro, and Badri Nath. The distinc-

tive design characteristic of a wireless sensor network: the energy map.

Computer Communications, 27(10):935 – 945, 2004. ISSN 0140-3664.

doi: https://doi.org/10.1016/j.comcom.2004.01.004. URL http://www.

sciencedirect.com/science/article/pii/S0140366404000143. Pro-

tocol Engineering for Wired and Wireless Networks.

[89] L. Mottola and G. P. Picco. Muster: Adaptive energy-aware multi-

sink routing in wireless sensor networks. IEEE Transactions on Mo-

bile Computing, 10(12):1694–1709, Dec 2011. ISSN 1536-1233. doi:

10.1109/TMC.2010.250.

[90] T. Naumowicz, R. Freeman, H. Kirk, B. Dean, M. Calsyn, A. Liers,

A. Braendle, T. Guilford, and J. Schiller. Wireless sensor network for

habitat monitoring on skomer island. In IEEE Local Computer Network

Conference, pages 882–889, 2010. doi: 10.1109/LCN.2010.5735827.

[91] Roman Novak, Jože Rugelj, and Gorazd Kandus. “steiner tree based

distributed multicast routing in networks,” steiner trees in industries. 11,

01 2000. doi: 10.1007/978-1-4613-0255-1 10.

[92] Luis Oliveira and Joel Rodrigues. Wireless sensor networks: A survey

on environmental monitoring. JCM, 6:143–151, 04 2011. doi: 10.4304/

jcm.6.2.143-151.

198

http://www.sciencedirect.com/science/article/pii/S0140366404000143
http://www.sciencedirect.com/science/article/pii/S0140366404000143

[93] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and

Thiemo Voigt. Cross-level sensor network simulation with cooja. In 31st

IEEE Conference on Local Computer Networks, pages 641–648, November

2006. doi: 10.1109/LCN.2006.322172.

[94] Mohd Fauzi Othman and Khairunnisa Shazali. Wireless sensor network

applications: A study in environment monitoring system. Procedia

Engineering, 41:1204 – 1210, 2012. ISSN 1877-7058. doi: https://doi.org/

10.1016/j.proeng.2012.07.302. URL http://www.sciencedirect.com/

science/article/pii/S1877705812027026. International Symposium

on Robotics and Intelligent Sensors 2012 (IRIS 2012).

[95] E. I. Oyman and C. Ersoy. Multiple sink network design problem in large

scale wireless sensor networks. In 2004 IEEE International Conference on

Communications (IEEE Cat. No.04CH37577), volume 6, pages 3663–3667

Vol.6, June 2004. doi: 10.1109/ICC.2004.1313226.

[96] Lilia Paradis and Qi Han. A survey of fault management in wireless

sensor networks. Journal of Network and Systems Management, 15(2):

171–190, 2007. doi: 10.1007/s10922-007-9062-0. URL https://doi.

org/10.1007/s10922-007-9062-0.

[97] R. C. Prim. Shortest connection networks and some generalizations. The

Bell System Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.

1538-7305.1957.tb01515.x.

[98] Markus Prossegger and Abdelhamid Bouchachia. Ant colony optimization

for steiner tree problems. CSTST ’08, page 331–336, New York, NY, USA,

2008. Association for Computing Machinery. ISBN 9781605580463. doi:

10.1145/1456223.1456292. URL https://doi.org/10.1145/1456223.

1456292.

[99] Rong Qu, Ying Xu, Juan P. Castro, and Dario Landa-Silva. Particle

swarm optimization for the steiner tree in graph and delay-constrained

multicast routing problems. Journal of Heuristics, 19(2):317–342, 2013.

199

http://www.sciencedirect.com/science/article/pii/S1877705812027026
http://www.sciencedirect.com/science/article/pii/S1877705812027026
https://doi.org/10.1007/s10922-007-9062-0
https://doi.org/10.1007/s10922-007-9062-0
https://doi.org/10.1145/1456223.1456292
https://doi.org/10.1145/1456223.1456292

[100] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie

Kohler, and Deborah Estrin. Sympathy for the sensor network debugger.

SenSys ’05, page 255–267, New York, NY, USA, 2005. Association for

Computing Machinery. ISBN 159593054X. doi: 10.1145/1098918.1098946.

URL https://doi.org/10.1145/1098918.1098946.

[101] Chris R. Reid, David J. T. Sumpter, and Madeleine Beekman. Op-

timisation in a natural system: Argentine ants solve the towers of

hanoi. Journal of Experimental Biology, 214(1):50–58, 2011. ISSN

0022-0949. doi: 10.1242/jeb.048173. URL https://jeb.biologists.

org/content/214/1/50.

[102] Marc Reimann, Karl Doerner, and Richard F Hartl. D-ants: Savings

based ants divide and conquer the vehicle routing problem. Com-

puters Operations Research, 31(4):563 – 591, 2004. ISSN 0305-0548.

doi: https://doi.org/10.1016/S0305-0548(03)00014-5. URL http://www.

sciencedirect.com/science/article/pii/S0305054803000145.

[103] Luigi Rizzo. Effective erasure codes for reliable computer communication

protocols. ACM SIGCOMM computer communication review, 27(2):

24–36, 1997.

[104] G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree

approximation. SIAM J. Discrete Math., 19:122–134, 01 2005. doi:

10.1137/S0895480101393155.

[105] V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks.

IEEE Journal on Selected Areas in Communications, 17(8):1333–1344,

1999. doi: 10.1109/49.779917.

[106] JoÅŸe Rugelj and Sandi KlavÅŸar. Distributed multicast routing in

point-to-point networks. Computers Operations Research, 24(6):521 –

527, 1997. ISSN 0305-0548. doi: https://doi.org/10.1016/S0305-0548(96)

00074-3. URL http://www.sciencedirect.com/science/article/

pii/S0305054896000743.

200

https://doi.org/10.1145/1098918.1098946
https://jeb.biologists.org/content/214/1/50
https://jeb.biologists.org/content/214/1/50
http://www.sciencedirect.com/science/article/pii/S0305054803000145
http://www.sciencedirect.com/science/article/pii/S0305054803000145
http://www.sciencedirect.com/science/article/pii/S0305054896000743
http://www.sciencedirect.com/science/article/pii/S0305054896000743

[107] Muhammad Saleem and Muddassar Farooq. Beesensor: a bee-inspired

power aware routing protocol for wireless sensor networks. In Workshops

on Applications of Evolutionary Computation, pages 81–90. Springer,

2007.

[108] C. Schurgers and M. B. Srivastava. Energy efficient routing in wire-

less sensor networks. In 2001 MILCOM Proceedings Communica-

tions for Network-Centric Operations: Creating the Information Force

(Cat. No.01CH37277), volume 1, pages 357–361 vol.1, 2001. doi:

10.1109/MILCOM.2001.985819.

[109] Noman Shabbir and Syed Hassan. Routing Protocols for Wireless Sensor

Networks (WSNs). 10 2017. ISBN 978-953-51-3561-6. doi: 10.5772/

intechopen.70208.

[110] R. C. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc

sensor networks. In 2002 IEEE Wireless Communications and Networking

Conference Record. WCNC 2002 (Cat. No.02TH8609), volume 1, pages

350–355 vol.1, Mar 2002. doi: 10.1109/WCNC.2002.993520.

[111] Faisal Karim Shaikh and Sherali Zeadally. Energy harvesting in wireless

sensor networks: A comprehensive review. Renewable and Sustainable

Energy Reviews, 55:1041–1054, 2016. ISSN 1364-0321. doi: https://

doi.org/10.1016/j.rser.2015.11.010. URL https://www.sciencedirect.

com/science/article/pii/S1364032115012629.

[112] Gurdip Singh and Kusuma Vellanki. A distributed protocol for con-

structing multicast trees. In IN PROCEEDINGS OF THE INTER-

NATIONAL CONFERENCE ON PRINCIPLES OF DISTRIBURED

SYSTEMS, 1998.

[113] Gurdip Singh, Sanjoy Das, Shekhar V Gosavi, and Sandeep Pu-

jar. Ant Colony Algorithms for Steiner Trees: An Application to

Routing in Sensor Networks. In Leandro Nunes de Castro and Fer-

nando J Von Zuben, editors, Recent Developments in Biologically In-

201

https://www.sciencedirect.com/science/article/pii/S1364032115012629
https://www.sciencedirect.com/science/article/pii/S1364032115012629

spired Computing, pages 181–206. IGI Global, Hershey, PA, USA,

2005. ISBN 9781591403128. doi: 10.4018/978-1-59140-312-8.ch008.

URL http://services.igi-global.com/resolvedoi/resolve.aspx?

doi=10.4018/978-1-59140-312-8.ch008.

[114] Jessica Staddon, Dirk Balfanz, and Glenn Durfee. Efficient tracing of

failed nodes in sensor networks. WSNA ’02, page 122–130, New York, NY,

USA, 2002. Association for Computing Machinery. ISBN 1581135890.

doi: 10.1145/570738.570756. URL https://doi.org/10.1145/570738.

570756.

[115] T. Stutzle and H. Hoos. Max-min ant system and local search for the

traveling salesman problem. In Proceedings of 1997 IEEE International

Conference on Evolutionary Computation (ICEC ’97), pages 309–314,

1997. doi: 10.1109/ICEC.1997.592327.

[116] Thomas StÃŒtzle and Holger H. Hoos. Maxâmin ant system. Future

Generation Computer Systems, 16(8):889 – 914, 2000. ISSN 0167-739X.

doi: https://doi.org/10.1016/S0167-739X(00)00043-1. URL http://www.

sciencedirect.com/science/article/pii/S0167739X00000431.

[117] S. Surendran and S. Prakash. An aco look-ahead approach to qos enabled

fault- tolerant routing in manets. China Communications, 12(8):93–110,

2015. doi: 10.1109/CC.2015.7224693.

[118] A. T. Tai, K. S. Tso, and W. H. Sanders. Cluster-based failure detection

service for large-scale ad hoc wireless network applications. In Inter-

national Conference on Dependable Systems and Networks, 2004, pages

805–814, 2004. doi: 10.1109/DSN.2004.1311951.

[119] Ankit Tiwari, Prasanna Ballal, and Frank L. Lewis. Energy-efficient

wireless sensor network design and implementation for condition-based

maintenance. ACM Trans. Sen. Netw., 3(1):1–es, March 2007. ISSN

1550-4859. doi: 10.1145/1210669.1210670. URL https://doi.org/10.

1145/1210669.1210670.

202

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59140-312-8.ch008
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59140-312-8.ch008
https://doi.org/10.1145/570738.570756
https://doi.org/10.1145/570738.570756
http://www.sciencedirect.com/science/article/pii/S0167739X00000431
http://www.sciencedirect.com/science/article/pii/S0167739X00000431
https://doi.org/10.1145/1210669.1210670
https://doi.org/10.1145/1210669.1210670

[120] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil

Turner, Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna,

David Gay, and Wei Hong. A macroscope in the redwoods. SenSys

’05, page 51–63, New York, NY, USA, 2005. Association for Computing

Machinery. ISBN 159593054X. doi: 10.1145/1098918.1098925. URL

https://doi.org/10.1145/1098918.1098925.

[121] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert

Pless, and Christopher Gill. Integrated coverage and connectivity con-

figuration in wireless sensor networks. In Proceedings of the 1st Inter-

national Conference on Embedded Networked Sensor Systems, SenSys

’03, page 28–39, New York, NY, USA, 2003. Association for Comput-

ing Machinery. ISBN 1581137079. doi: 10.1145/958491.958496. URL

https://doi.org/10.1145/958491.958496.

[122] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. repli-

cation: A quantitative comparison. In Peter Druschel, Frans Kaashoek,

and Antony Rowstron, editors, Peer-to-Peer Systems, pages 328–337,

Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-

45748-0.

[123] Wenjing Lou. An efficient n-to-1 multipath routing protocol in wireless

sensor networks. In IEEE International Conference on Mobile Adhoc

and Sensor Systems Conference, 2005., pages 8 pp.–672, 2005. doi:

10.1109/MAHSS.2005.1542857.

[124] Wenjing Lou and Younggoo Kwon. H-spread: a hybrid multipath scheme

for secure and reliable data collection in wireless sensor networks. IEEE

Transactions on Vehicular Technology, 55(4):1320–1330, 2006. doi: 10.

1109/TVT.2006.877707.

[125] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,

and M. Welsh. Deploying a wireless sensor network on an active volcano.

IEEE Internet Computing, 10(2):18–25, 2006. doi: 10.1109/MIC.2006.26.

203

https://doi.org/10.1145/1098918.1098925
https://doi.org/10.1145/958491.958496

[126] Huaming Wu, Yong Cheng, Qiuyue Liu, Jun Wang, Shaohua Wan, and

Tariq Umer. Distributed fault detection for wireless sensor networks

based on support vector regression. Wireless Communications and Mobile

Computing, 2018:4349795, 2018. doi: 10.1155/2018/4349795. URL

https://doi.org/10.1155/2018/4349795.

[127] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed

energy conservation for ad hoc routing. In Proceedings of the 7th An-

nual International Conference on Mobile Computing and Networking,

MobiCom ’01, page 70–84, New York, NY, USA, 2001. Association for

Computing Machinery. ISBN 1581134223. doi: 10.1145/381677.381685.

URL https://doi.org/10.1145/381677.381685.

[128] Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang. Gradient broadcast:

A robust data delivery protocol for large scale sensor networks. Wireless

Networks, 11(3):285–298, 2005. doi: 10.1007/s11276-005-6612-9. URL

https://doi.org/10.1007/s11276-005-6612-9.

[129] Peng-Yeng Yin, Ray-I. Chang, Chih-Chiang Chao, and Yen-Ting Chu.

Niched ant colony optimization with colony guides for qos multicast

routing. Journal of Network and Computer Applications, 40:61 – 72,

2014. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2013.08.

003. URL http://www.sciencedirect.com/science/article/pii/

S1084804513001781.

[130] M. Younis and R. Waknis. Connectivity restoration in wireless sen-

sor networks using steiner tree approximations. In 2010 IEEE Global

Telecommunications Conference GLOBECOM 2010, pages 1–5, 2010. doi:

10.1109/GLOCOM.2010.5683530.

[131] M. Yu, H. Mokhtar, and M. Merabti. Fault management in wireless

sensor networks. IEEE Wireless Communications, 14(6):13–19, 2007.

doi: 10.1109/MWC.2007.4407222.

204

https://doi.org/10.1155/2018/4349795
https://doi.org/10.1145/381677.381685
https://doi.org/10.1007/s11276-005-6612-9
http://www.sciencedirect.com/science/article/pii/S1084804513001781
http://www.sciencedirect.com/science/article/pii/S1084804513001781

[132] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy

aware routing: a recursive data dissemination protocol for wireless sensor

networks. UCLA Computer Science Department Technical Report, 463,

10 2001.

[133] M. M. Zanjireh and H. Larijani. A survey on centralised and distributed

clustering routing algorithms for wsns. In 2015 IEEE 81st Vehicular

Technology Conference (VTC Spring), pages 1–6, 2015. doi: 10.1109/

VTCSpring.2015.7145650.

[134] Ying Zhang, Lukas D. Kuhn, and Markus P. J. Fromherz. Improve-

ments on ant routing for sensor networks. In Marco Dorigo, Mauro

Birattari, Christian Blum, Luca Maria Gambardella, Francesco Mon-

dada, and Thomas Stützle, editors, Ant Colony Optimization and Swarm

Intelligence, pages 154–165, Berlin, Heidelberg, 2004. Springer Berlin

Heidelberg. ISBN 978-3-540-28646-2.

[135] Jerry Zhao and Ramesh Govindan. Understanding packet delivery per-

formance in dense wireless sensor networks. In Proceedings of the 1st

International Conference on Embedded Networked Sensor Systems, Sen-

Sys ’03, page 1–13, New York, NY, USA, 2003. Association for Comput-

ing Machinery. ISBN 1581137079. doi: 10.1145/958491.958493. URL

https://doi.org/10.1145/958491.958493.

[136] Y. J. Zhao, R. Govindan, and D. Estrin. Residual energy scan for

monitoring sensor networks. In 2002 IEEE Wireless Communications

and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609),

volume 1, pages 356–362 vol.1, 2002. doi: 10.1109/WCNC.2002.993521.

205

https://doi.org/10.1145/958491.958493

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Publications
	Sponsorships and Grants

	Abstract
	Acronyms
	Chapter Introduction
	Wireless Sensor Networks
	Data Routing in WSN
	Application Areas
	Environmental Monitoring
	Structural Monitoring
	Habitat Monitoring
	Industrial Monitoring

	Contributions
	Many-to-Many Routing in Wireless Sensor Networks using ACO

	Fault Tolerant Many-to-Many Routing in Wireless Sensor Networks
	Generating Steiner trees in Wireless Sensor Networks
	Protocol Performance
	Organisation

	Chapter Background
	Routing in Wireless Sensor Networks
	One-to-One Routing
	One-to-Many Routing
	Many-to-One Routing
	Many-to-Many Routing

	Meta Heuristics
	Ant Colony Optimsation
	Bee Colony Algorithms
	Other Particle Swarm Algorithms

	Fault Tolerance in Wireless Sensor Networks
	Fault Prevention and Robustness
	Fault Detection
	Fault Recovery in WSN
	Fault Tolerance with ACO in WSN

	Steiner Trees
	Using and Generating Steiner Trees in WSN
	Steiner Trees using ACO
	Fault Tolerant Steiner Trees

	Summary of Routing Protocols
	Summary of Fault Tolerance Protocols
	Summary of Protocols relating to Steiner Trees in WSN
	Summary

	Chapter Problem Statement and Experimental Setup
	Objectives
	General Network Characteristics
	Experimental Setup
	Performance Metrics

	Chapter Routing in Many-to-Many Wireless Sensor Networks using Ant Colony Optimisation
	Problem Specification
	Description of Protocol
	ACO for Many-to-Many Routing
	ACO Protocol with no Ant Memory

	Distributed Implementation
	Simulation Setup
	Network Configuration
	Parameters

	Results
	Base ACO Protocol
	ACO with No Ant Memory

	Conclusion

	Chapter Fault Tolerant ACO Routing in Many-to-Many Wireless Sensor Networks
	Problem Specification
	Description of the Fault Tolerant ACO Protocol
	Changes to Base ACO protocol

	Experimental Setup
	Network Configuration
	Failure Model

	Results
	Parameters
	Experimental Results
	Patterned Failures
	Passive Fault Recovery

	Conclusion

	Chapter ACO Based Routing in Wireless Sensor Networks for Generating Minimal Steiner Trees
	Problem Specification
	Description of Protocol
	Steiner Trees using ACO
	Fault Tolerant Steiner Trees using ACO
	Additions from base ACO protocol

	Simulation Setup
	Network Configuration
	Failure Model
	Parameters

	Results
	Fault Tolerant Steiner Trees using ACO

	Conclusion

	Chapter Discussion, Evaluation, and Future Work
	Observations
	Limitations
	Evaluation
	Conclusion
	Future Work

	Insert from: "WRAP_Coversheet_Theses_new1.pdf"
	http://wrap.warwick.ac.uk/166567

