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There is an increasing interest in using video sensor networks (VSNs) as an alternative to existing video monitoring/surveillance
applications. Due to the limited amount of energy resources available in VSNs, power consumption efficiency is one of the most
important design challenges in VSNs. Video encoding contributes to a significant portion of the overall power consumption at the
VSN nodes. In this regard, the encoding parameter settings used at each node determine the coding complexity and bitrate of the
video. This, in turn, determines the encoding and transmission power consumption of the node and the VSN overall. Therefore,
in order to calculate the nodes’ power consumption, we need to be able to estimate the coding complexity and bitrate of the video.
In this paper, we modeled the coding complexity and bitrate of the H.264/AVC encoder, based on the encoding parameter settings
used. We also propose a method to reduce the model estimation error for videos whose content changes within a specified period
of time. We have conducted our experiments using a large video dataset captured from real-life applications in the analysis. Using
the proposed model, we show how to estimate the VSN power consumption for a given topology.

1. Introduction

Technology advances in communications have enabled the
implementation of pervasive computing applications that
share the vision of small, inexpensive, distributed, and robust
networked devices that can gather and process context
specific information on behalf of the users. In this regard,
wireless sensor networks (WSNs) [1] that can monitor differ-
ent types of physical phenomena and are able to provide a
diverse set of context data to interested clients can be used as
the basis architecture for such implementation. While WSN
was originally used to monitor physical measurement of the
environment such as temperature andhumidity, recent trends
show that WSNs may successfully be used in a wide range
of other applications, including monitoring the condition of
public structures such as bridges [2], surveillance of access
hatches [3], monitoring of indoor asbestos [4], healthcare [5],
and habitat monitoring of seabird or fish [6, 7]. Furthermore,
with the availability of more advance sensor nodes, we wit-
nessed an increasing number of studies investigating the use

of sensor network platforms for intelligent environments [8],
intelligent green service in the Internet of Things [9], and
smart homes [10]. Some of these applications require the
sensor network to provide multimodal information in the
form of multimedia streams, such as images or video [11]. For
this reason, video sensor networks (VSNs) have attracted a
lot of research attention in the past decades.The low cost and
flexibility offered by VSNs provide an interesting alternative
to several existing video monitoring technologies [12, 13].
Studies on different VSNs applications have been reported in
the literature [14–16].

Key research areas in VSNs are discussed in [11, 17],
while [18] puts significant attention on sensor coverage, [19]
details quality of service (QoS), and energy consumption is
covered in [20–22]. However, sinceVSNs usually have limited
energy resources, the issue of energy efficiency becomes one
of the most important design aspects in VSNs. In a common
WSN that operates on scalar data, energy efficiency is entirely
dependent on the data transmission process [1, 23–25]. On
the contrary, video processing requires extensive resources
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in encoding the video and transmitting the encoded video
stream. The encoder parameter settings used by the VSN
nodes affect the coding complexity and bitrate of the video.
The coding complexity and bitrate of the encoder in turn
determine the encoding and transmission power consump-
tion of the video node. In order to improve theVSNoperation
efficiency, an in-depth study of energy consumption trade-
offs in a VSN is thus necessary.

Among the existing video coding standards, H.264/AVC
is the most widely used video encoder in the consumer
market [26, 27]. In the context of VSN, Ahmad et al. [21]
studied the required energy for encoding and transmitting
video content in the case of using H.264/AVC encoder.
Unfortunately, the number of encoding configuration set-
tings considered in that study is limited. By including more
encoder settings than those used in [21], the authors in
[22] proposed a table that includes different combinations
of coding complexity and bitrates, producing compressed
videos with almost similar quality in terms of peak signal
to noise ratio (PSNR). A model to estimate the coding
complexity and bitrate of an H.264/AVC-based VSN was
proposed in [28].

In this paper, we modeled the coding complexity and
bitrate of the H.264/AVC encoder in a VSN, based on the
encoder parameter settings used. In order to proceed, we
need to mimic a real-life setting of a VSN deployment and
capture a large amount of real-life content which we used
in our analysis. From this large dataset, some videos were
used as the training set, while the rest were used to test the
performance of our model. We provide a method to reduce
the estimation error for videos whose content changes within
a specified period of time. Using our proposed scheme, we
show how the VSN total power consumption is estimated.

The rest of the paper is organized as follows. Section 2
describes the H.264/AVC coding complexity and bitrate
modeling. The encoding and transmission power consump-
tion model is discussed in Section 3. Conclusions are drawn
in Section 4.

2. H.264/AVC Complexity and Bitrate Model

In this section we describe our coding complexity and bitrate
model. A method for reducing the estimation error is also
described in this section.

2.1. Experiment Settings. In order to mimic realistic VSN
applications, we have captured real-life videos using four
cameras in the atrium of a public building. The cameras
were installed so that each of them had a different point
of view as shown in Figure 1. The views of some cameras
were overlapping with one another. The scene arrangement
was such that each camera point of view was different. In
order to mimic a practical application, all video sequences
were downsampled to 416 × 240 pixels of resolution and
their frame rate was reduced to 15 frames per second (fps).
Five shots of videos were captured using the four cameras,
resulting in a total of 20 different videos. These videos were
named using the convention ⟨𝑐𝑎𝑚𝑒𝑟𝑎-𝑖𝑑 𝑠ℎ𝑜𝑡-𝑖𝑑⟩.Therefore,
camera1 shot1 is the video obtained by camera 1 in the first

Camera 2

Camera 3

Camera 1

Camera 4

Sink

Figure 1: Camera placements.

shot. The four videos of the fifth shot were selected as the
training set for the model, while the remaining videos were
used as the test set.

In VSN applications, due to the limitations in energy and
processing resources, less complex encoder configurations
are used. To this end, we used the baseline profile of
H.264/AVC that uses only I- and P-frames (no B-frames) and
is suitable for low complexity applications. Note that, similar
to its predecessor, H.264/AVC is a block based hybrid video
encoder that utilizes intraframe and interframe prediction
techniques. There are many parameters that control the
encoding performance in terms of coding complexity and
bitrate. The group of pictures (GOP) size that controls the
number of interframe coded pictures in successive frames is
a parameter that significantly affects the coding complexity
and bitrate.The other factor that controls the complexity and
the performance of the H.264/AVC codec is the number of
block sizes used in the interprediction process. Increasing the
number of block size candidates used in the interprediction
results in a higher compression performance at the expense
of increased complexity. In general, there are seven block
sizes defined for interprediction in H.264/AVC. In this paper,
the complexity of motion estimation (ME) is classified into
different levels of complexity depending on the number of
block size candidates used, as shown in Table 1.

TheH.264/AVC reference software JMversion 18.2 is used
in our experiments. In addition to using only I- and P-frames,
we also used context adaptive variable-length entropy coding
(CAVLC) and one reference frame. Other settings include
search range (SR) for motion estimation equal to 8, disabling
the rate distortion optimization (RDO), rate control, subpel
motion estimation, deblocking filter, and intracoding for P-
frames options. The quantization parameter (QP) used to
encode all videos is set equal to 28. Furthermore, to have
an objective measure for the coding complexity, we use the
number of basic instructions count to encode the video.
This is provided by the instruction level profiler iprof [29].
We developed the coding complexity and bitrate models
by considering the effect of GOP size and the number of
block size candidates used to encode the video.These models
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Table 1: ME complexity level (𝑀
𝐿
) and 𝛿

𝑀𝐿
.

𝑀
𝐿

Block size candidates 𝛿
𝑀𝐿

1 SKIP, 16 × 16 0
2 SKIP, 16 × 16, 16 × 8 0.13
3 SKIP, 16 × 16, 16 × 8, 8 × 16 0.26
4 SKIP, 16 × 16, 16 × 8, 8 × 16, 8 × 8 0.54
5 SKIP, 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4 0.67
6 SKIP, 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8 0.81
7 SKIP, 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, 4 × 4 1

are explained in detail in our previous work in [28]. The
following subsections provide the basic information about
the modeling process.

2.2. Coding Complexity Modeling. The coding complexity of
a video sequence (𝐶

𝑆
) is formulated as follows:

𝐶
𝑆
= 𝐶I ⋅ 𝑛I + 𝐶P ⋅ 𝑛P, (1)

where 𝐶I is the average coding complexity to encode an I-
frame, 𝐶P is the average coding complexity to encode a P-
frame, 𝑛I is the number of I-frames in the sequence, and 𝑛P is
the number of P-frames in the sequence. For a video sequence
with no scene change, the value of 𝐶I can be considered
almost constant. On the other hand, 𝐶P depends on the
complexity level of the ME process. From our previous study,
we noticed that the GOP size does not affect the normalized
coding complexity of P-frames for any ME complexity level
(𝑀
𝐿
). In fact, using some scaling and normalization, 𝛿

𝑀𝐿

can be defined as the fractional increase of normalized 𝐶P at
different𝑀

𝐿
(see Table 1) [28]. The encoding complexity of a

P-frame is then calculated as

𝐶P𝑀𝐿=𝑖
= 𝐶P𝑀𝐿=1

⋅ (1 + 𝛿
𝑀𝐿

(𝑖) ⋅ 𝜔1
) , (2)

where 𝜔
1
denotes the range of normalized 𝐶P values for a

specific video. The value of 𝜔
1
is calculated using a simple

linear formula from the training videos. In this paper, the
range of normalized 𝐶P is modeled as follows:

𝜔
1
= 𝑎 ⋅ 𝐶P𝑀𝐿=1

+ 𝑏, (3)

where 𝐶P𝑀𝐿=1
is the average coding complexity to encode a

P-frame using 𝑀
𝐿
= 1 and 𝑎 and 𝑏 are obtained using the

least square regression technique on the training video data.
Considering that 𝑛I = 𝑁/GOP, where𝑁 is the total number
of frames and 𝑛P = 𝑁 − 𝑁/GOP, the average complexity per
frame is then computed as follows:

𝐶
𝑓
=

(𝐶I + 𝐶𝑃𝑀𝐿=1
⋅ (1 + 𝛿

𝑀𝐿
⋅ 𝜔
1
) ⋅ (GOP − 1))

GOP
.

(4)

2.3. Bitrate Modeling. Similar to the coding complexity
model, the total size of the encoded video sequence (in bits)
is modeled as

𝑅
𝑆
= 𝑅I ⋅ 𝑛I + 𝑅P ⋅ 𝑛P, (5)

where𝑅I is the average size of an I-frame and𝑅P is the average
size of a P-frame. The value of 𝑅P depends on𝑀

𝐿
and GOP

used by the encoder. 𝑅P is modeled as follows:

𝑅P = 𝑅P𝑀𝐿=1
⋅ (𝑓 (𝑀

𝐿
) + 𝑓 (GOP)) . (6)

Here, 𝑓(𝑀
𝐿
) is a decay function with respect to𝑀

𝐿
, which is

modeled using the generalized logistic function. On the other
hand, 𝑓(GOP) is modeled using 𝜔

2
⋅ ln(GOP) [28]. In order

to obtain the parameters for 𝑓(𝑀
𝐿
), we use the least mean

square curve fitting of the normalized𝑅P of the training video
sequences when GOP = 2. Using𝑓(𝑀

𝐿
) obtained in [28], the

average bitrate of a frame (𝑅
𝑓
) is then estimated as

𝑅
𝑓
=

𝑅I
GOP

+ 𝑅P𝑀𝐿=1
⋅ ((𝑝 +

𝑞 − 𝑝

(1 + 𝑒
−𝑟(𝛿𝑀𝐿
−𝑠)
)

)

⋅

(GOP − 1)
GOP

+ 𝜔
2
⋅ ln (GOP) ⋅ (GOP − 1)

GOP
) ,

(7)

where 𝑅P𝑀𝐿=1
is the bitrate of P-frame when GOP = 2 and

𝑀
𝐿
= 1 and 𝜔

2
is the weight for 𝑓(GOP). The value of 𝜔

2

was estimated using least square regression of the training
sequences.

2.4. Implementation of OurModel. In order to implement our
model using the complexity and bitrate modeling, we need
to obtain several variables from each video sequence. To this
end, we encode the first two frames of each video sequence.
For the bitrate model, 𝑅I is assumed to be equal to the bitrate
of the encoded first frame, while 𝑅P𝑀𝐿=1

is equal to the bitrate
of the second frame. In addition, the parameters for (7) used
in this paper are as follows: 𝑝 = 0.92, 𝑞 = 1, 𝑟 = −21.36, and
𝑠 = 0.14 [28].

For the complexity modeling, the iprof tool will provide
us with the complexity of encoding the first two frames of the
video sequence; that is, 𝐶

2−frames = 𝐶I + 𝐶P𝑀𝐿=1
. In order to

obtain the value of 𝐶P𝑀𝐿=1
we need to estimate the value of

𝐶I. We assume that, for the I-frame, the value of 𝐶I can be
estimated from the value of 𝑅I using a linear regression of the
training videos [28]. Thus, 𝐶I is estimated using the formula
𝐶I = 0.0637⋅𝑅I+214.56 in this paper. Furthermore, the value
of𝜔
1
is calculated using (3) and the following parameters: 𝑎 =

0.0135 and 𝑏 = −2.13.

2.5. Proposed Method to Reduce the Estimation Error. In
many real-life captured videos, content may change during
a 10 s video shot. For example, Figure 2 shows frames 1, 70,
and 100 of the camera1 shot3 video sequence. It can be seen
that the content at the start of the video (frame number 1)
differs significantly from the content towards the end of the
video (frame number 100). On the other hand, Figure 3 shows
frames 1, 60, and 110 of the camera2 shot2 video sequence,
where the content at the start differs significantly from the
ones captured at a later time, that is, frames 60 and 110.
Looking at the two figures, it is clear that obtaining themodel
parameters from the first two frames at the beginning of
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(a) (b) (c)

Figure 2: Content changes during a 10 s camera1 shot3 video sequence. (a) Frame 1; (b) frame 70; (c) frame 100.

(a) (b) (c)

Figure 3: Content changes during a 10 s camera2 shot2 video sequence. (a) Frame 1; (b) frame 60; (c) frame 110.
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Figure 4: Flowchart for complexity and bitrate estimation error calculation.

the video may lead to a large estimation error. In order to
tackle this problem, we divide the 10 s video into a number
of subshots. In each subshot, bitrate and coding complexity
estimation are performed. Figure 4 shows the flowchart of the
proposedmethod to reduce the coding complexity and bitrate
estimation error used in this paper. In that figure, the variable
frame num is the current frame number, while 𝑘 denotes the
length of a subshot in terms of the number of frames. Note
that since the video is divided into ⌈𝑁/𝑘⌉ subshots, the first
two frames of each subshot are encoded to obtain the required
parameters for the model.

In [30], the estimation error is calculated as the average
estimation error of all the subshots. However, in order to
provide a fair comparison, we calculate the estimation error
from the complexity per second (𝐶ps) and average bitrate
(𝑅av), defined as follows:

𝐶ps =
𝐹
𝑟

𝑁

⌈𝑁/𝑘⌉

∑

𝑖=1

𝐶
𝑖

𝑓
⋅ 𝐾
𝑖
,

𝑅av =
𝐹
𝑟

𝑁

⌈𝑁/𝑘⌉

∑

𝑖=1

𝑅
𝑖

𝑓
⋅ 𝐾
𝑖
.

(8)

Here, 𝐹
𝑟
is the frame rate, while 𝐾

𝑖
is calculated as follows:

𝐾
𝑖
=

{

{

{

𝑘, 1 ≤ 𝑖 ≤ ⌊

𝑁

𝑘

⌋ ,

mod (𝑁, 𝑘) , otherwise.
(9)

2.6. Analysis of the Model. In order to estimate the modeling
error, the root mean square error (RMSE) of the coding
complexity and bitrate forGOP = {1, 2, 4, 8, 16, 32, 64}, 𝑀

𝐿
=

{1, 2, 3, 4, 5, 6, 7}, and 𝑘 = {150, 75, 60, 45} are calculated. The
test set (TS) consists of the 16 videos shown in Table 2.

Table 3 shows the coding complexity estimation error
of all test sequences and different values of 𝑘. The table
shows that, in general, the coding complexity estimation error
decreases as we use a larger number of subshots, that is, using
smaller 𝑘 values. We can also see that the proposed method
manages to reduce the coding complexity estimation error
in 11 out of 16 cases when 𝑘 is set equal to 45. On the other
hand, using 𝑘 = 60 frames, the coding complexity estimation
error is reduced in 13 out of 16 cases. In particular, in the
case of video TS9, the coding complexity estimation error for
𝑘 = 150 and 𝑘 = 60 is equal to 69.666 and 37.266, respectively.
This is equal to 46.5% reduction in estimation error. Figure 5
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Figure 5: Measured and estimated coding complexity for different values of 𝑘 and GOP sizes for video sequences (a) TS4 and (b) TS9.

Table 2: Test sequences.

Test sequence Video name
TS1 camera1 shot1
TS2 camera2 shot1
TS3 camera3 shot1
TS4 camera4 shot1
TS5 camera1 shot2
TS6 camera2 shot2
TS7 camera3 shot2
TS8 camera4 shot2
TS9 camera1 shot3
TS10 camera2 shot3
TS11 camera3 shot3
TS12 camera4 shot3
TS13 camera1 shot4
TS14 camera2 shot4
TS15 camera3 shot4
TS16 camera4 shot4

shows the plot of the measured coding complexity and the
estimated coding complexity per second (𝐶ps) for different
values of 𝑘 and varying GOP sizes. Note that, in this figure,
the value of𝑀

𝐿
is set to four.

Furthermore, Table 4 shows the bitrate estimation of all
test sequences and different values of 𝑘. Similar to the coding
complexity case, the table shows that, in general, the bitrate
estimation error decreases as we use smaller 𝑘 values. We can
also see that the proposed method manages to reduce the
bitrate estimation error in 12 out of 16 cases when 𝑘 is set
equal to 45. However, when 𝑘 is set equal to 60, the bitrate
estimation error is reduced in 13 out of 16 cases. The highest
error reduction is obtained in the case of the TS9 video
sequence. In this particular video, the RMSE of the bitrate
model for 𝑘 = 150 is equal to 75.219 kbps. However, when

Table 3: Coding complexity estimation error for different values of
𝑘.

Test sequence 𝑘 = 150 𝑘 = 75 𝑘 = 60 𝑘 = 45

TS1 34.966 35.533 28.523 27.890
TS2 26.722 26.812 26.823 30.280
TS3 48.005 38.997 45.258 35.861
TS4 45.437 36.435 34.667 32.790
TS5 33.850 32.615 37.589 34.662
TS6 37.247 29.967 26.934 26.985
TS7 28.769 36.088 28.459 32.256
TS8 33.145 27.086 27.538 27.052
TS9 69.666 30.149 37.266 39.555
TS10 59.759 29.830 39.279 30.596
TS11 47.022 37.739 35.961 39.236
TS12 41.304 33.905 35.581 31.479
TS13 27.858 32.782 30.906 32.127
TS14 38.642 38.363 31.962 33.426
TS15 36.970 36.930 36.914 36.860
TS16 39.797 39.986 32.818 39.890

𝑘 is set equal to 60 frames, the RMSE of the bitrate model
is reduced to 33.851 kbps. This is equal to 55.7% reduction in
the estimation error. Figure 6 shows the plot of the measured
bitrate and the estimated average bitrate (𝑅av) for different
values of 𝑘 and varying GOP sizes. Note that, in this figure,
the value of𝑀

𝐿
is set equal to four.

The results analyzed in the previous paragraphs show
that, by dividing the video sequences into a number of
subshots, the model estimation error is reduced. The results
also show that the reduction of the estimation error varies
fromone video to another.However, it is observed that setting
𝑘 = 60 provides us with the smallest estimation error. From
this point onward, the power consumption analysis of the
VSN is performed under the assumption that the value of 𝑘 is
set equal to 60 frames.
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Figure 6: Measured and estimated bitrate for different values of 𝑘 and GOP sizes for the video sequences (a) TS4 and (b) TS9.

Table 4: Bitrate estimation error for different values of 𝑘.

Test sequence 𝑘 = 150 𝑘 = 75 𝑘 = 60 𝑘 = 45

TS1 34.518 25.418 25.172 13.673
TS2 19.536 15.413 15.931 7.517
TS3 16.299 8.806 9.189 8.517
TS4 6.920 6.256 6.201 4.397
TS5 8.105 4.326 10.246 8.994
TS6 1.729 3.986 5.002 8.189
TS7 16.081 14.566 13.806 12.671
TS8 23.886 5.123 11.233 11.414
TS9 75.219 39.312 33.851 33.323
TS10 46.566 27.678 28.663 19.118
TS11 11.960 9.755 10.143 9.213
TS12 12.459 5.488 1.949 3.270
TS13 10.359 15.375 20.977 19.560
TS14 18.760 22.383 17.658 15.693
TS15 9.920 9.854 9.747 9.843
TS16 6.576 7.030 6.678 7.041

3. Power Consumption
Estimation and Analysis

The power consumption of a video node in a VSN consists
of encoding energy consumption and communication power
consumption. The power consumption for encoding is esti-
mated as follows:

𝑃
𝑒
= 𝐶ps ⋅ CPI ⋅ 𝐸𝑐, (10)

where CPI is the number of CPU cycles to perform one
basic instruction and 𝐸

𝑐
is the energy depletion per cycle.

On the other hand, the transmission power consumption is
calculated as

𝑃
𝑡
= ∑(𝛼 + 𝛽 ⋅ 𝑑

𝜂
) ⋅ 𝑅av, (11)

where 𝛼 is a constant coefficient related to coding and
modulation, 𝛽 is the amplifier energy coefficient, 𝑑 is the
transmission distance, and 𝜂 is path loss exponent.

For our analysis, we use the topology shown in Figure 1,
consisting of four video nodes and a sink. The parameters
shown in Table 5 are used for the experiments. In order to
analyze the effect of different video sources and encoding
configurations, two sets of experiments are conducted. In the
first experiment, the nodes’ encoder parameter settings are
set to be the same in all scenarios. However, the video sources
used in each scenario vary. On the other hand, in the second
experiment, the nodes are configured to use the same set
of video sources in all scenarios, while the nodes’ encoding
parameter settings and the nodes’ distance to the sink are
varied.

The scenarios’ configuration for the first experiment is
shown in Table 6. In the first scenario, the VSN nodes are
using the videos obtained from the first shot: camera1 shot1,
camera2 shot1, camera3 shot1, and camera4 shot1. On the
other hand, in the second scenario of the first experiment, the
videos used are the videos obtained from the second shot and
so on. Note that, for this experiment,𝑀

𝐿
value is set equal to

six. Figure 7 shows the estimated nodes’ power consumption
in the first experiment. The figure shows that the nodes’
power consumption in each scenario is not the same. We
can also observe that the trend of nodes’ power consumption
profile for each scenario varies. For example, Figure 7(a) that
corresponds to scenario 1 shows that the node that consumes
the highest power consumption is node 3. However, the
difference in terms of total power consumption between node
3 and the other nodes in this scenario is not significant. In the
other scenarios (i.e., scenario 2, scenario 3, and scenario 4),
however, the node that has the highest power consumption
is node 1. It is interesting to see that the encoding power
consumption of each node in each scenario is not the same,
even though all nodes are using the same encoding parameter
settings in this experiment. In addition, the variance of nodes’
total power consumption varies between one scenario and
the other. In terms of VSN’s average power consumption, we
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Figure 7: Nodes’ power consumption in experiment 1: (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.

obtained the following values: 7.756W (scenario 1), 7.843W
(scenario 2), 7.787W (scenario 3), and 7.824W (scenario 4).
These results show that the content captured by each camera
node affects not only the node’s power consumption but also
the VSN’s average power consumption.

In the second set of experiments, the VSN nodes are set
to use the videos from the first shot. However, the nodes’
distance to the sink and the GOP size are varied. 𝑀

𝐿
is set

equal to six, similar to the first experiment.The configuration
used in the second experiment is summarized in Table 7.
Figure 8 shows the estimated nodes’ power consumption in
this experiment. Figures 8(a) and 8(b) show the nodes’ power

Table 5: Parameters used.

Symbol Definition Value
𝐹
𝑟

Frame rate 15 fps
𝑁 Number of frames 150 frames
𝑘 The length of subshot 60 frames
CPI Average cycle per instruction 1.78
𝐸
𝑐

Energy consumption per cycle 1.215𝑒 − 9 J/cycle
𝛼 Energy cost for transmitting 1 bit 1𝑒 − 9 J/b/m4

𝛽 Transmit amplifier coefficient 5𝑒 − 8 J/b
𝜂 Path loss exponent 3.5
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Table 6: Experiment 1 scenarios.

Scenario Test sequences used Distance to the sink GOP size
1 TS1 (node 1), TS2 (node 2), TS3 (node 3), TS4 (node 4) 3m 8
2 TS5 (node 1), TS6 (node 2), TS7 (node 3), TS8 (node 4) 3m 8
3 TS9 (node 1), TS10 (node 2), TS11 (node 3), TS12 (node 4) 3m 8
4 TS13 (node 1), TS14 (node 2), TS15 (node 3), TS16 (node 4) 3m 8

Table 7: Experiment 2 scenarios.

Scenario Test sequences used Distance to the sink GOP size
1 TS1 (node 1), TS2 (node 2), TS3 (node 3), TS4 (node 4) 1.5m 2
2 TS1 (node 1), TS2 (node 2), TS3 (node 3), TS4 (node 4) 1.5m 16
3 TS1 (node 1), TS2 (node 2), TS3 (node 3), TS4 (node 4) 5m 2
4 TS1 (node 1), TS2 (node 2), TS3 (node 3), TS4 (node 4) 5m 16

7

7.2

7.4

7.6

1 2 3 4
Node

Po
w

er
 co

ns
um

pt
io

n 
(W

)

P_encoding
P_transmission

(a)

7

7.2

7.4

7.6

1 2 3 4
Node

Po
w

er
 co

ns
um

pt
io

n 
(W

)

P_encoding
P_transmission

(b)

7

9

11

13

15

17

1 2 3 4
Node

Po
w

er
 co

ns
um

pt
io

n 
(W

)

P_encoding
P_transmission

(c)

7

9

11

13

15

17

1 2 3 4
Node

Po
w

er
 co

ns
um

pt
io

n 
(W

)

P_encoding
P_transmission

(d)

Figure 8: Nodes’ power consumption in experiment 2: (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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consumption when the nodes’ distance to the sink is equal to
1.5m for scenario 1 and scenario 2, respectively. However, the
GOP size is set equal to 2 (scenario 1) and 16 (scenario 2). It
can be seen from these figures that when the distance to the
sink is small, using smaller GOP size will reduce the node’s
power consumption. The VSN’s average power consumption
shown by these figures is 7.388W (scenario 1, GOP = 2) and
7.451W (scenario 2, GOP = 16). The node’s power consump-
tion can be further reduced if the nodes are configured to
use GOP equal to one. In this case, the VSN’s average power
consumption will be equal to 7.316W. Furthermore, Figures
8(c) and 8(d) show the nodes’ power consumption when 𝑑 is
equal to 5m. Similar to the previous case, the GOP size is set
equal to 2 and 16 for scenario 3 and scenario 4, respectively.
It can be seen clearly from these figures that the cost of
transmitting the encoded video increased tremendously as
compared with the first two scenarios when 𝑑 is smaller.
Therefore, when the nodes’ distance from the sink is large, the
node’s power consumption can be reduced if biggerGOP sizes
are used. Comparing Figures 8(c) and 8(d) we observe that
the VSN’s average power consumption for these scenarios is
14.607W (scenario 3) and 8.616W (scenario 4), respectively.
These results show that the node’s VSN power consumption
depends on the encoding configuration used and the distance
between the node and the sink.

4. Conclusion

In this paper, we have proposed a new scheme for estimating
the VSN power consumption.The scheme is based on using a
coding complexity and bitrate model that incorporates some
important encoding parameter settings.Through an adaptive
scheme for adjusting the model parameters, we showed that
the model estimation error could be reduced. Using our
model, we analyzed the VSN node’s power consumption
under different scenarios that involved the use of various
video content, encoding configurations, and nodes’ distance
from the sink. We showed that the VSN nodes’ power
consumption depends on the encoding parameter settings,
the complexity of video content captured by the node, and
the VSN topology. In our future work, in addition to the
encoding parameters, we take into account the spatial and
temporal complexity of the content. We also plan to include
more complex VSN topology in our study, where some nodes
may need to send their data through intermediate nodes.
Thus, in order to find the optimal configuration for eachnode,
the nodes’ reception power consumption needs to be taken
into account. Also, in order to comply with the bandwidth
constraint, we may need to consider using different QP
settings for different VSN nodes.
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