5,056 research outputs found

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    Modelling of wireless sensor networks for detection land and forest fire hotspot

    Get PDF
    Indonesia located in South East Asia countries with tropical region, forest fires in Indonesia is one of big issue and disaster because it happens in almost of every year, this is because of some of region consist of peat land that high risk for fire especially in dry season. Riau Province is one of region that regularly incident of forest fire with affected the length and breadth of Indonesia. Propose development of Wireless Sensor Networks (WSNs) for detection of land and forest fire hotspot in Indonesia as well as one of the main consents in this research, case location in Riau province is at one of the regions that high risk forest fire in dry season. WSNs technology used for ground sensor system to collect environmental data. Data training for fire hotspot detection is done in data center to determine and conclude of fire hotspot then potential to become big fire. The deployment of sensors located at several locations that has potential for fire incident, especially as data shown in previous case and forecast location with potential fire happen. Mathematical analysis is used in this case for modelling number of sensors required to deploy and the size of forest area. The design and development of WSNs give high impact and feasibility to overcome current issues of forest fire and fire hotspot detection in Indonesia. The development of this system used WSNs highly applicable for early warning and alert system for fire hotspot detection

    Simulation-driven emulation of collaborative algorithms to assess their requirements for a large-scale WSN implementation

    Get PDF
    Assessing how the performance of a decentralized wireless sensor network (WSN) algorithm's implementation scales, in terms of communication and energy costs, as the network size increases is an essential requirement before its field deployment. Simulations are commonly used for this purpose, especially for large-scale environmental monitoring applications. However, it is difficult to evaluate energy consumption, processing and memory requirements before the algorithm is really ported to a real WSN platform. We propose a method for emulating the operation of collaborative algorithms in large-scale WSNs by re-using a small number of available real sensor nodes. We demonstrate the potential of the proposed simulation-driven WSN emulation approach by using it to estimate how communication and energy costs scale with the network’s size when implementing a collaborative algorithm we developed in for tracking the spatiotemporal evolution of a progressing environmental hazard

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Optimal sensors positioning to detect forest fire ignitions

    Get PDF
    Forests have been harassed by fire in recent years. Whether by human action or for other reasons, the burned area has increased harming fauna and flora. It is fundamental to detect an ignition early in order to firefighters fight the fire minimizing the fire impacts. The proposed Forest Monitoring System aims at improving the nature monitoring and to enhance the existing surveillance systems. A set of innovative operations is proposed that will allow to identify a forest ignition and also will monitor the fauna. For that, a set of sensors are being developed and placed in the forest to transmit data and identify forest fire ignition. This paper addresses a methodology that identifies the ideal positions to place the developed sensors in order to minimize the fire hazard. Some preliminary results are shown by a random algorithm that spread points to position sensor modules in areas with high risk of fire hazard.This work has been supported by FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/5757/2020.info:eu-repo/semantics/publishedVersio

    SEN-Iot: A Smart Emergency Notification System Suitable for Developing Countries using Internet of Things

    Get PDF
    Research has shown that disaster effects on properties and lives can be drastically reduced through wide dissemination of information on the impending danger to people at the appropriate time. Generally, the emergency alert systems are usually proactive systems; they are meant to gather data in surrounding using the necessary tools, alert the specified listeners about an impending danger and gives suggestion on the necessary actions to be taken in each situation. In addition, some emergency alert systems also activate automatic responses. Furthermore, the integration of Internet of things (IoT) technology with emergency notification systems is rapidly attracting new discovery in this domain. In this paper, an effective smart emergency notification system named SEN-IoT was design using IOT technology. SEN-IoT was modeled to manage domestic hazard with a scope of water, fire and gas leaks; by creating an emergence notification and immediate response systems. The SEN- IOT was implemented using arduino, sensors and the GSM module. The system was tested for maintainability, functionality, efficiency, usability and reliability, and results revealed that SEN-IoT can effectively handle domestic hazard

    A Fuzzy Decision in Smart Fire and Home Security System

    Get PDF
    There has been a major rise in the fire incidents occurring over the past few years in the Pacific Island Countries (PICs) and especially property fires are a major concern. Often it is noticed that these usually lead to loss of homes, personal belongings and even lives of people. Objective of this paper to present a monitoring device that is able to detect the presence of a gas leak and take action before there is an actual fire. To optimize the decision of the system, a fuzzy logic based smart rules are developed to avoid false alarming. The prototype system is designed considering cost, simplicity and reliability. Further, the proposed system helps to reduce fire accident by triggering alarm well-in advance and therefore it can react as an early warning system
    corecore