41 research outputs found

    Remote Control and Monitoring of Smart Home Facilities via Smartphone with Wi-Fly

    Get PDF
    Due to the widespread ownership of smartphone devices, the application of mobile technologies to enhance the monitoring and control of smart home facilities has attracted much academic attention. This study indicates that tools already in the possession of the end user can be a significant part of the specific context-aware system in the smart home. The behaviour of the system in the context of existing systems will reflect the intention of the client. This model system offers a diverse architectural concept for Wireless Sensor Actuator Mobile Computing in a Smart Home (WiSAMCinSH) and consists of sensors and actuators in various communication channels, with different capacities, paradigms, costs and degree of communication reliability. This paper focuses on the utilization of end users’ smartphone applications to control home devices, and to enable monitoring of the context-aware environment in the smart home to fulfil the needs of the ageing population. It investigates the application of an iPhone to supervise smart home monitoring and control electrical devices, and through this approach, after initial setup of the mobile application, a user can control devices in the smart home from different locations and over various distances

    Comparison PID and MPC Control, applied to a binary distillation column

    Full text link
    Using binary distillation column in the industry is currently imperative, the reason why the control parameters that are highly nonlinear necessary to apply classic strategies as advanced control and raised here. These techniques are the PID controller and the MPC the data that are to perform the calculations are of IFAC event whose mixture is alcohol with water. Finally with the help of software MATLABreg / Simulink simulations for comparing which of the two drivers is the best delivery results when controlling the composition on the bottom, top and pressure in binary distillation column performed

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Task allocation to actors in wireless sensor actor networks: an energy and time aware technique

    Get PDF
    AbstractTask allocation is a critical issue in proper engineering of cooperative applications in embedded systems with latency and energy constraints, as in wireless sensor and actor networks (WSANs). Existing task allocation algorithms are mostly concerned with energy savings and ignore time constraints and thus increase the makespan of tasks in the network as well as the probability of malfunctioning of the network. In this paper we take both energy awareness and reduction of actor tasks’ times to completion in WSANs into account and propose a two-phase task allocation technique based on Queuing theory. In the first phase, tasks are equally assigned to actors just to measure the capability of each actor to perform the assigned tasks. Tasks are then allocated to actors according to their measured capabilities in such a way to reduce the total completion times of all tasks in the network. The results of simulations on typical scenarios shows 45% improvement in the makespan of tasks in a network compared to the wellknown opportunistic load balancing (OLB) task allocation algorithm that is generally used in distributed systems. It is shown that our algorithms provide better tradeoffs between load balancing and completion times of all tasks in a WSAN compared to OLB

    Software infrastructure for wireless sensor and actuator networks

    Full text link
    In the development of large ad-hoc Wireless Sensor and Actuator Agent Networks (SANETS), a multitude of disparate problems are faced. In order for these networks to function, software must be able to effectively manage: unreliable dynamic distributed communication, the power constraints of un-wired devices, failure of hardware devices in hostile environments and the remote allocation of distributed processing tasks throughout the network. The solutions to these problems must be solved in a highly scalable manner. The paper describes the process of analysis of the requirements and presents a design of a service-oriented software infrastructure (middleware) solution for scalable ad-hoc networks, in a context of a system made of mobile sensors and actuators. © 2011 IEEE
    corecore