83,318 research outputs found

    Improve Performance Wireless Sensor Network Localization using RSSI and AEMM

    Get PDF
    Improve wireless sensor network localisation performance using RSSI and an advanced error minimisation method (AEMM). WSNs remain domain-specific and are typically deployed to support a single application. However, as WSN nodes become more powerful, it becomes increasingly important to investigate how multiple applications can share the same WSN infrastructure. Virtualisation is a technology that may allow for this sharing. The issues surrounding wireless sensor node localisation estimation are still being researched. There are a large number of Wireless Sensor Networks (WSNs) with limited computing, sensing, and energy capabilities. Localisation is one of the most important topics in wireless sensor networks (WSNs) because location information is typically useful for many applications. The locations of anchor nodes and the distances between neighbouring nodes are the primary data in a localisation process. The complexity and diversity of current and future wireless detector network operations drive this. Several single schemes have been proposed and studied for position estimation, each with advantages and limitations. Nonetheless, current methods for evaluating the performance of wireless detector networks are heavily focused on a single private or objective evaluation. Accurate position information in a wireless detector network is critical for colourful arising operations (WSN). It is critical to reducing the goods of noisy distance measures to improve localisation accuracy. Existing works (RSSI) are detailed and critically evaluated, with a higher error rate using a set of scenario requirements. Our proposed method (AEMM) is critical for detecting and dealing with outliers in wireless sensor networks to achieve a low localisation error rate. The proposed method (AEMM) for localisation and positioning nodes in wireless sensor networks supported by IOT and discovering the appropriate position of several nodes addresses all of the issues in WSN

    Wireless Sensor Network Security Model for D2P Attacks Using Zero Knowledge Protocols

    Get PDF
    Wireless sensor networks (WSNs) are innovative large-scale wireless networks that consist of distributed, lowpower, small-size devices using sensors to cooperatively collect information through infrastructure less ad-hoc wireless network. These small devices used in wireless sensor nodes are called sensor nodes. They are envisioned to play an important role in a wide variety of areas ranging from critical military surveillance applications to forest fire monitoring and building security monitoring in the near future. In these networks, a large number of sensor nodes are deployed to monitor a vast field, where the operational conditions are most often harsh or even hostile. Since these networks are usually deployed in remote places and left unattended, they should be equipped with security mechanisms to defend against attacks such as node capture, physical tampering, eavesdropping, denial of service, etc. Unfortunately, traditional security mechanisms with high overhead are not feasible for resource constrained sensor nodes

    A Performance Study of Proactive, Reactive and Hybrid Routing Protocols using Qualnet Simulator

    Get PDF
    The advancement in information technology and the need for large-scale communication infrastructures has triggered the era of Wireless Sensor Networks (WSNs). Mobile ad-hoc network (MANET) is a network of wireless mobile nodes which communicate with each other without any centralized control or established infrastructure. Routing is the process of selecting paths in a network along which data is to be sent. Routing is a critical task in MANET where the nodes are mobile. Dynamic and reliable routing protocols are required in the ad-hoc wireless networks, as they have no infrastructure (base station) and their network topology changes. There are various protocols for handling the routing problem in the ad-hoc wireless network environment. In this paper focus is given on studying the performance evaluation of various routing protocols using Qualnet simulator 5.0.2. The performance of the proactive, reactive and hybrid protocols are analyzed with different node densities for mobile and stationary nodes. The metrics used for the performance evaluation include average jitter, throughput, packet delivery ratio and average end to end delay

    QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks

    Get PDF
    A wireless sensor/actuator network (WSAN) is a group of sensors and actuators that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Actuators react to this information by performing appropriate actions. WSANs thus enable cyber systems to monitor and manipulate the behavior of the physical world. WSANs are growing at a tremendous pace, just like the exploding evolution of Internet. Supporting quality of service (QoS) will be of critical importance for pervasive WSANs that serve as the network infrastructure of diverse applications. To spark new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSANs. A brief overview of recent progress is given.Comment: 12 pages, 1 figure; revie

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Scaling Laws for Infrastructure Single and Multihop Wireless Networks in Wideband Regimes

    Full text link
    With millimeter wave bands emerging as a strong candidate for 5G cellular networks, next-generation systems may be in a unique position where spectrum is plentiful. To assess the potential value of this spectrum, this paper derives scaling laws on the per mobile downlink feasible rate with large bandwidth and number of nodes, for both Infrastructure Single Hop (ISH) and Infrastructure Multi-Hop (IMH) architectures. It is shown that, for both cases, there exist \emph{critical bandwidth scalings} above which increasing the bandwidth no longer increases the feasible rate per node. These critical thresholds coincide exactly with the bandwidths where, for each architecture, the network transitions from being degrees-of-freedom-limited to power-limited. For ISH, this critical bandwidth threshold is lower than IMH when the number of users per base station grows with network size. This result suggests that multi-hop transmissions may be necessary to fully exploit large bandwidth degrees of freedom in deployments with growing number of users per cell.Comment: 5 pages, 3 figure
    • …
    corecore