11,849 research outputs found

    Outdoor to Indoor Penetration Loss at 28 GHz for Fixed Wireless Access

    Full text link
    This paper present the results from a 28 GHz channel sounding campaign performed to investigate the effects of outdoor to indoor penetration on the wireless propagation channel characteristics for an urban microcell in a fixed wireless access scenario. The measurements are performed with a real-time channel sounder, which can measure path loss up to 169 dB, and equipped with phased array antennas that allows electrical beam steering for directionally resolved measurements in dynamic environments. Thanks to the short measurement time and the excellent phase stability of the system, we obtain both directional and omnidirectional channel power delay profiles without any delay uncertainty. For outdoor and indoor receiver locations, we compare path loss, delay spreads and angular spreads obtained for two different types of buildings

    Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication.

    Get PDF
    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120(o) with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10(-3) over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems

    SiGe HBT X-Band LNAs for Ultra-Low-Noise Cryogenic Receivers

    Get PDF
    We report results on the cryogenic operation of two different monolithic X-band silicon-germanium (SiGe) heterojunction bipolar transistor low noise amplifiers (LNAs) implemented in a commercially-available 130 nm SiGe BiCMOS platform. These SiGe LNAs exhibit a dramatic reduction in noise temperature with cooling, yielding Teff of less than 21 K (0.3 dB noise figure) across X-band at a 15 K operating temperature. To the authors’ knowledge, these SiGe LNAs exhibit the lowest broadband noise of any Si-based LNA reported to date

    A fully integrated 24-GHz phased-array transmitter in CMOS

    Get PDF
    This paper presents the first fully integrated 24-GHz phased-array transmitter designed using 0.18-/spl mu/m CMOS transistors. The four-element array includes four on-chip CMOS power amplifiers, with outputs matched to 50 /spl Omega/, that are each capable of generating up to 14.5 dBm of output power at 24 GHz. The heterodyne transmitter has a two-step quadrature up-conversion architecture with local oscillator (LO) frequencies of 4.8 and 19.2 GHz, which are generated by an on-chip frequency synthesizer. Four-bit LO path phase shifting is implemented in each element at 19.2 GHz, and the transmitter achieves a peak-to-null ratio of 23 dB with raw beam-steering resolution of 7/spl deg/ for radiation normal to the array. The transmitter can support data rates of 500 Mb/s on each channel (with BPSK modulation) and occupies 6.8 mm /spl times/ 2.1 mm of die area

    W-band waveguide-packaged InP HEMT reflection grid amplifier

    Get PDF
    This letter presents a 79-GHz broadband reflection-type grid amplifier using spatial power combining to combine the power of 64 unit cells. Each unit cell uses a two-stage cascade configuration with InP HEMTs arranged as a differential pair. A broadband orthogonal mode transducer (OMT) separates two orthogonally polarized input and output signals over a 75 to 85GHz range. In conjunction with the OMT, a mode converter with quadruple-ridged apertures was designed to enhance the field uniformity over the active grid. Measurements show 5-dB small signal gain at 79GHz and an 800-MHz 3-dB bandwidth. The amplifier generates an output power of 264mW with little evidence of saturation

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community
    • …
    corecore