2,704 research outputs found

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Improving latency tolerance of multithreading through decoupling

    Get PDF
    The increasing hardware complexity of dynamically scheduled superscalar processors may compromise the scalability of this organization to make an efficient use of future increases in transistor budget. SMT processors, designed over a superscalar core, are therefore directly concerned by this problem. The article presents and evaluates a novel processor microarchitecture which combines two paradigms: simultaneous multithreading and access/execute decoupling. Since its decoupled units issue instructions in order, this architecture is significantly less complex, in terms of critical path delays, than a centralized out-of-order design, and it is more effective for future growth in issue-width and clock speed. We investigate how both techniques complement each other. Since decoupling features an excellent memory latency hiding efficiency, the large amount of parallelism exploited by multithreading may be used to hide the latency of functional units and keep them fully utilized. The study shows that, by adding decoupling to a multithreaded architecture, fewer threads are needed to achieve maximum throughput. Therefore, in addition to the obvious hardware complexity reduction, it places lower demands on the memory system. The study also reveals that multithreading by itself exhibits little memory latency tolerance. Results suggest that most of the latency hiding effectiveness of SMT architectures comes from the dynamic scheduling. On the other hand, decoupling is very effective at hiding memory latency. An increase in the cache miss penalty from 1 to 32 cycles reduces the performance of a 4-context multithreaded decoupled processor by less than 2 percent. For the nondecoupled multithreaded processor, the loss of performance is about 23 percent.Peer ReviewedPostprint (published version

    Cross-layer optimization for cooperative content distribution in multihop device-to-device networks

    Get PDF
    With the ubiquity of wireless network and the intelligentization of machines, Internet of Things (IoT) has come to people's horizon. Device-to-device (D2D), as one advanced technique to achieve the vision of IoT, supports a high speed peer-to-peer transmission without fixed infrastructure forwarding which can enable fast content distribution in local area. In this paper, we address the content distribution problem by multihop D2D communication with decentralized content providers locating in the networks. We consider a cross-layer multidimension optimization involving frequency, space, and time, to minimize the network average delay. Considering the multicast feature, we first formulate the problem as a coalitional game based on the payoffs of content requesters, and then, propose a time-varying coalition formation-based algorithm to spread the popular content within the shortest possible time. Simulation results show that the proposed approach can achieve a fast content distribution across the whole area, and the performance on network average delay is much better than other heuristic approaches

    Anticipating Vehicle-Level EMI using a Multi-Step Approach

    Get PDF
    A multi-step procedure for anticipating vehicle-level EMI is proposed in this paper. This approach uses multi-conductor transmission line (MTL) modeling to calculate current distributions along the cable bundle. A common-mode circuit is extracted from the MTL modeling, and is employed in full-vehicle full-wave modeling to determine radiation and interference. In this paper, mode-dispersion and mode-conversion phenomena are investigated, and the ambiguous definitions of the common-mode voltage and common-mode impedance are discussed

    Characterization and finite element analysis for soft magnetic materials used in automotive applications

    Get PDF
    This project aims to develop and optimize soft magnetic materials for use in solenoids for automotive components such as: electric injectors, electric valves, electric pumps... etc. The work seeks to produce soft magnetic materials with higher magnetic permeability to produce higher magnetic forces in solenoids. Powder metallurgy was used to produce the magnetic solenoid parts with a wide array o f possible material combinations. Different mixtures o f Fe-Si, Fe-Co and Fe-Si-Co were developed. A cold-isostatic compacting technique was used with a pressure of 180 MPa. Then the samples were sintered twice at a temperature o f 1315 °C for 45 min after compacting, and after the final machining. Density, compression, hardness and microstructure were investigated for all samples before and after the second sintering. The results showed that the mechanical properties and the microstructure were improved after the second sintering. The magnetic density and intensity (B-H) was determined for each material. A sample o f each new material was sent to an American Lab. Finite element simulations were carried out using commercial software (ANSYS) to simulate the magnetic field o f a common rail electro-injector solenoid. The maximum magnetic force was determined for each developed material. Different models were built-up by varying the magnetic material properties and the working parameters such as the coil turn - current for a fixed gap between the armature and the back iron

    Spacelab system analysis Marshall Avionics System Testbed (MAST)

    Get PDF
    A synopsis of the visits to avionics test facilities is presented. A list of recommendaions for the MAST facility is also included

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Distributed Beamforming of Two Autonomous Transmitters

    Get PDF
    The distributed beamformer is a scheme which provides spatial diversity to combat the undesired effects of the wireless channel. The distributed beamformer requires strict carrier frequency and phase synchronization in order to maximize SNR at a destination for fixed transmit powers. This project investigated the synchronization of two such transmitters in a wired single path channel with off-the-shelf integrated circuits. Additionally, a stable hardware platform for an acoustic (wireless) implementation of such a distributed beamformer was provided
    • 

    corecore