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Abstract

Interconnection problems have natural applications irddeagn of integrated cir-
cuits (or chips). A modern chip consists of billions of tretsrs that are con-
nected by metal wires on the surface of the chip. These metes\are routed
on a (fairly small) number of layers in such a way that eleelty independent
nets do not intersect each other. Traditional manufaguechnology limits the
orientations of the wires to be either horizontal or vetticaand is known as
Manhattan architecture.

Over the last decade there has been a growing interest imajearehitectures,
where more than two perpendicular orientations can be userbfiting. This

development has made fixed orientation interconnectioblenas (where an ar-
bitrary set of fixed orientations can be used) interestiogfa research point of
view. In particular, the problem of computing minimum leimgtetworks with

fixed orientations — the so-called fixed orientation Steinee problem — has
received significant attention.

This doctoral dissertation is a collection of twelve resbgrapers and a survey on
the fixed orientation Steiner tree problem and some of itegdizations. One of
the main contributions is a linear time algorithm for compgt Steiner minimum
tree for a given full topology. Also, a linear programmingrfalation is presented
for the problem. For the general problem an exact algorithah tomputes op-
timal solutions to problem instances with thousands of {sois described and
implemented. A novel paradigm for routing a chip using a galnerchitecture is
implemented and tested on a set of benchmark instancegphesech documents
the advantages of using more than two fixed orientationsimasign.

The last part of the dissertation is concerned with gereatains that are moti-
vated by chip design. Firstly, a catalog of problems that lsarsolved on the
so-called Hanan grid is presented. Next, generalizatieladed to signal delay
and group interconnections are studied, and finally, ptagseof the rotational
Steiner tree problem are given.

The results of the dissertation represent a significantfetef@ard, both concerning
theory and algorithms, for the fixed orientation Steinee fpeoblem. In addition,
the work maintains a close link to applications and genea#ibns motivated by
chip design.






Preface
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1 Introduction

In this section we set the scene for the dissertation. Wedntre the chip de-
sign problem, and in particular the routing problem in pbgkchip design. The
routing problem is one of the main motivations for studying tectilinear Steiner
tree problem, which together with the Euclidean Steinez pblem form the
foundation of the research presented in the dissertationov&rview of impor-
tant theoretical results and algorithmic developmentgteel to the Euclidean and
rectilinear Steiner tree problems concludes the intradoct together with an
outline of the complete dissertation.

1.1 Chip design

Chip design — or very-large-scale integration (VLSI) desig is the process of
creating complex transistor-based integrated circuitsp @esign consists of sev-
eral interdependent steps, each of which can be formulatadage, and in most
cases, NP-hard optimization problem. Due to the size oecuesigns, where
several billion interconnected transistors must be plameé chip surface, the
problem is usually solved hierarchically and broken intaianber of (basically)
independent steps.

Integrated circuits are fabricated on silicon wafers (alatled substrate). By
marking different areas of the substrate using photolitaplgy, patterns/tracks
consisting of polysilicon, insulator or metal can be defsukion the substrate
(Figure 1). In this way transistors and wires connectingritean be built on
a very small scale on the surface of the substrate. Currehhtdogy makes it
possible to construct patterns/tracks less than 50 namoseide.

The construction of an integrated chip begins by descrilivegbehavior of the
chip. Logic synthesiss the process of specifying the logic functions of the chip
and their interrelations. It is done using a hardware dpson language (HDL).
Logic optimizatiorturns the description into a compact and efficient — but logi-
cally equivalent — description. The result isatlist which describes how a set
of standard components such as NANDs or NORs are interctethe€he final
step of logic synthesis is the mapping of each standard coerdo a specific
implementation (or physical drawing); the choice of impétation depends on
requirements related to area consumption, load capaeitand timing. The re-



Figure 1: Small integrated circuit with three metal layers (insutdtas been removed). The
sand-colored structures at the top are metal interconnBut layers are connected using vias
(vertical pillars). The reddish middle structures are gidigon gates, and the solid at the bottom
is the substrate.

sult is a netlist where eadatetinterconnects a set ofiodulegor cells) — each of
which has a given physical realization.

The process of locating the modules and wires on the chipsaiduch that, e.qg.,
area usage and signal delay is minimized, is cafibgisical design The first
step of physical design is usualiporplanning where major parts of the circuit
are placed on the chip surface. (For an integrated circust GPU, such major
parts could be arithmetic logic unit, branch predictoreaetc.) In theplacement
step each of the modules is located on the chip surface. Tdwemplent prob-
lem is a multi-objective problem, where area usage, wirgtleand signal delay
are the primary objectives. These objectives are usuahybawed into a single
quality measure calledetlength The problem of meeting timing (or clock rate)
constraints is calletiming optimizationand is often performed by adjusting the
netlength of critical nets and reoptimizing the placemerttar the new netlength
objective.

The final step of physical design iisuting, where the wires interconnecting the
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Figure 2:A placement and a routing of a small circuit. The circuit h@srodules, 22 nets and
58 pins. The horizontal blue wires and vertical red wiresanulifferent metal layers. Vias are in-
dicated by an “X". (Figure reproduced by courtesy of Rede#nmstitute for Discrete Mathematics,
University of Bonn.)

modules are located on the chip surface and assigned toediffémetal) layers.
Wires on a given layer have a preferred direction which isegithorizontal or
vertical (Manhattan routing). Each net of the netlist sddanterconnect a given
set ofpins/terminalson the chip surface, and wires from different nets should not
intersect each other. The main objective of routing is fir&ll obtain a feasible
routing and secondly, to minimize total wire length and sigelay. Figure 2
illustrates a small chip where placement and routing has pegormed.

Routing is performed with the help of a (flat) three-dimensiarid graph, where
the distance between neighbouring grid lines is the minimuaith of a wire plus
the minimum distance between wires. In older technologiedutes and wires
were aligned perfectly on the grid graph, but in currentgiesi modules and wires
can be placeaff-grid. Modern routing algorithms therefore only implicitly use
the grid graph.



Routing millions of nets in a grid graph with billions of nales a challenging
task. The problem is therefore divided into at least two stgfmbal routingand
detailled routing The global routing problem is a coarse version of the ra@utin
problem, where the chip surface is divided into axis-aligectangular regions.
The height and width of a region is typically 50-100 grid 8ne the grid graph.
In the global routing grid graphthe vertices are the regions, and two vertices are
connected by an edge if the two regions are neighbours. Téesdd the global
routing grid graph have associated lengths and capacitieste the capacities
estimate the maximum number of wires than can be routed leetiveo neigh-
bouring regions. The global routing problem is, in its siegtlform, a so-called
Steiner tree packing problem, where trees should be “paddkdide global routing
grid graph such that the capacities of the edges are respecte

The output of the global routing problem is a “global routcwridor” for each

nets, that is, a coarse description of the wiring of each hredetailed routing

the exact wiring of each net is determined — and in such a watyttie output of
global routing is respected. Using the output from globatirgg both minimizes
the risk of congestion in detailed routing and speeds upilddteouting, since
only a relatively small part of the full grid graph needs todessidered. Due to
the size of the detailed routing problem, the problem is radiyrsolved one net
at at time — and in most cases one point-to-point connectiat ame. While

global routing is a multi-objective problem where congastitiming and wire

length is considered, detailed routing is primarily comest with feasibility, and
the only real optimization involved is (implicit) shortgsath computation in the
grid graph.

The literature on physical design of integrated circuitgast. Some fairly recent
books and theses include — in chronological order — Lengdi2&], Kahng and
Robins [113], Pecht and Wong [160], Sarrafzadeh and Wonij][18erez [83],
Sait and Youssef [175], Sherwani [185], Vygen [204] and $axet al. [182]. An
early tutorial on the routing problem is Hightower [94], amadre recent surveys
can be found in Mohring et al. [147], Cong et al. [63] and R4$62].

The list of combinatorial problems in chip design recentynpiled by Korte and
Vygen [117] illustrates the challenges in the field. The atgfconsider the chip
design problem to be one of the most important applicati@asin (discrete)
mathematics. In particular, efficient algorithms are neettehandle problems
with millions of modules and nets.



1.2 Steiner tree problem

The routing problem in chip design motivates the study aériconnection prob-
lems in the plane. In this section we introduce 8teiner tree problem— the
problem of interconnecting a given set of points in the plape tree of mini-
mum length. Algorithms for this problem play a fundamentdérin chip design
routing. We briefly present the history and research deveésp on the major
variants of the Steiner tree problem, namely EvelideanSteiner tree problem,
therectilinear Steiner tree problem and the Steiner tree problegraphs

History of the Euclidean Steiner tree problem

The roots of the Euclidean Steiner tree problem go back tm&eearly in the 17th
century [118, 229]. The problem was presented as a chalieraeelebrated es-
say on maxima and minima: “Let he who does not approve of myaekattempt

the solution to the following problem: Given three point$he plane, find a fourth
point such that the sum of its distances to the three givemgda@ a minimum!”

Torricelli proposed a geometric solution to the problenobefl640 by construct-
ing equilateral triangles and corresponding circumseghuircles on the sides of
and outside the given triangle. The circumscribing cirateersect at the fourth
point, which today is called the Fermat-Torricelli point +tbe Steiner-Weber
point or just the Steiner point — of the given three pointg(fFe 3).

The Fermat problem can be generalized in several ways. Otoealbow more
than three given points, but still consider the problem aofiifig a single point
that minimizes the sum of distances to the given points.Heumore, each of the
distances can be weighted with some positive number. Thisigm is called the
generalFermat problem; a nice overview of properties related te groblem,
including some elegant duality results, are presented bhnKi18].

Another generalization is th8teiner tree problem— the main topic of this dis-
sertation. Here a séY of n points are given in the plane, and the problem is to
compute a shortest network that interconnects these pghhdge that such a net-
work will always be a tree, and that the Fermat problem is ffeeisl case where
n = 3.) The Steiner tree problem appears to have been suggestéeé fost time

in 1934 by Jarnik and Kossler [107], and a famous mathesatok by Courant
and Robbins [69] gave the problem its name. Although Jakelm&twas a well-
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Figure 3: Construction of the Fermat-Torricelli point of three givpaints. The circles cir-
cumscribing the equilateral triangles on the sides of aridide the given triangle intersect at the
Fermat-Torricelli point. Cavalieri argued that the segte@onnecting the given points with the
Fermat-Torricelli point meet ait20° angles. The fact that the Simpson lines, which connect the
third corner of the equilateral triangle to the oppositeegipoint, also meet at the Fermat-Torricelli
point was shown in 1750 by Simpson. In 1834 Heinen provedhigaiength of the Simpson lines
are equal to the sum of distances from the given points to ¢nea&t-Torricelli point.

known geometer in the 19th century, he made no significartibotions to the
problem.

The first breakthrough on the algorithmic side was made il 1§@Melzak [145],
who gave a finite construction for the problem of computingualielean Steiner
tree for a given tree structure (or topology) — resulting fimée-time algorithm

for solving the problem. Several theoretical contribusi@md generalizations to
higher dimensional spaces were given in 1968 by Gilbert aoiiP[85]; they
also coined the nant&teiner pointdor the vertices in the shortest tree that are not
among the given points. The problem reached the generalkpnldl989 through

a popular paper in Scientific American written by Bern andhara [10].



Rectilinear Steiner tree problem and the Hanan grid

Returning to the routing problem in chip design, recall thetfundamental prob-
lem is to connect a sét of terminalsusing a minimum amount of wire. However,
due to manufacturing constraints in traditional chip teabgies, wires can only
run in horizontal and vertical orientations (Manhattantimog). Ignoring the as-
signment of wires to (metal) layers, this correspond toréotilinear Steiner tree
problem— or the problem of computing a minimum length network undier/t;
metric.

Already in 1966 Hanan [88] presented the first thorough stufdye rectilinear
Steiner tree problem. One of Hanan’s key contributions washbw that there
exists an SMT in thédanan griddefined by the terminals. The Hanan grid for
the terminal setV is obtained by drawing horizontal and vertical lines thrioug
each point inNV. Correspondingly, thélanan grid graphGG(N) is defined as
follows: The set of intersections in the Hanan grid are theices, and a pair
of vertices is connected if and only if the correspondingnséction points are
adjacent in the Hanan grid. The weight of an edg&i@ (N) is the (Euclidean)
distance between the corresponding Hanan grid intersectiGomputing a tree
of minimum total edge-weight itcG (V) that interconnects the vertices v is
the same as solving the rectilinear Steiner tree problegu(Ei4).

Zl.
@ ~4

Z3

Figure 4: Hanan grid example fon = 4 terminals (only line segments within the bounding
rectangle are drawn). A Steiner minimum tree (SMT) is drawthwold lines. Note that the
single Steiner point¢ shares coordinates with the terminajsandz;.

The Hanan grid graph Steiner tree problem is a special instahthe more gen-
eral Steiner tree problem in grapti87]: Given an undirected grapfi = (V, E)
with positive edge-weights and a non-empty 8eC V' of terminals, find a mini-
mum edge-weight tree i@ that interconnectd/. Note that the edge-weights need
not be related to any familiar distance metric.
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The rectilinear Steiner tree problem can therefore be dohgea graph problem
with at mostn? vertices an®n(n — 1) edges, where = |N|. Early algorithms
for the general graph problem include the spanning tree eration algorithm
of Hakimi [87] and the dynamic programming algorithm of Dy and Wag-
ner [70]. More recent algorithms use integer programmirrgnfdations which
are solved by branch-and-cut [164, 165]. Despite of thetemce of efficient re-
duction methods [202, 218], solving the rectilinear Steitnee problem via the
Hanan grid graph is not competitive with the so-called Gaiost approach (see
Section 1.3).

On the other hand, a number of generalizations of the neetl Steiner tree
problem can be solved in the underlying Hanan grid. Ganlely@ohoon [78]
showed that the rectilinear Steiner tree problem with lieetar obstacles can
be solved in the Hanan grid given by the terminals and theessrof the ob-
stacles. Zachariasen [232] presented a catalog of prokieathave an opti-
mal solution in the Hanan grid, including so-called weightistacle, group and
prize-collecting variants. Snyder [189] generalized Hesm@aesults to higher di-
mensional spaces, and Du and Hwang [73] generalized th# fegber to any
d-dimensional normed space with a unit sphere that is a synopetytope with
2d extreme points (see Section 2 for definitions).

1.3 Fundamental properties and algorithmic developments

In this section we define some notation and sketch the algoiitdevelopments
related to the Steiner tree problem. Further details cambed in the following
books, tutorials and surveys (in chronological order): Hwand Richards [100],
Hwang, Richards and Winter [101], Ilvanov and Tuzhilin [10Bieslik [54], Har-
ris [89], Promel and Steger [168] and Cieslik [56].

Full topologies and fulsome Steiner trees

The graph structure of a tréé(i.e., the pattern of adjacencies of the vertices for
a given labelling of the terminals) is referred to astdpology7. A treeT or

its topology7 is said to beull if all its terminals have degrek if every Steiner
point furthermore has degree 3, théns called afull Steiner topology

We define &teiner tredo be a tree that cannot be shortened by any (small) pertur-

8



bation of its Steiner points. A shortest tree with a giverotogy is called docally
minimaltree. A locally minimal tree — which by definition is a Steirteze —
can be found efficiently since the minimization problem ievex in the locations
of the Steiner points (a local minimum is also a global minimuWe return in
Section 3.1 to the problem of computing a locally minimaktrer abusing the
notation slightly, arSMT for a given topology

A locally minimal tree having a full Steiner topology is aadl afull Steiner tree
(FST) In 1967 Cockayne [59] made the observation that a Euclid&m is a
union of FSTs (Figure 5). Cockayne also gave an algorithnefamerating full
Steiner topologies by showing a connection to balancedhgiagsis structures.

Figure 5:A Euclidean Steiner minimum tree (SMT) for a set of pointsesgnting 532 cities in
the United States. Note that most full Steiner trees (FSia) £, 3 and 4 terminals.

A tree T or its topology7 is said to befulsomeif 7' contains the maximum
possible number of full Steiner trees for any SMT on the teahset of . If we
perturb the Steiner points in a fulsome SMT (without chagdhre length of the
tree), then we cannot make a Steiner point coincide in ositiith one of the
terminals. Clearly, for any set of terminals there alwayistsxan SMT in which
every FST is fulsome.



The notion of fulsome FSTs plays an important role when prgsgtructural prop-
erties ofrectilinear SMTs. Basically, fulsomeness limits the set of SMTs that
needs to be considered, and this makes it possible to provide powerful char-
acterizations. Hwang [97] proved that a rectilinear FST lmamassumed to have a
certain canonical form where all the terminals are conrmkicte@ chain-like fash-
ion to a backbone — the so-called Hwang-topology [231, 233].

Minimum spanning trees and the Steiner ratio

A minimum spanning tree (MST) for a sat of n points in the plane is a shortest
network which spang’” and doesiotintroduce Steiner points. Minimum spanning
trees in edge-weighted graphs can be computed in polyndimiaessentially in
linear time in the number of edges [66]); by constructing¢beplete graph on
the set of pointsV, a MST in the plane can be computed(rin?) time using,
e.g., Prim’s algorithm for the corresponding graph problem

By exploiting the geometry of the problem, Euclidean andiliaear MSTs in the
plane can be constructeddnn log n) time [98, 167]. One classical approach is to
use the dual of the Voronoi diagram far, the Delaunay triangulation, to identify
a subgraph withO(n) edges of the complete graph @nthat contains a MST
for N. Another possibility is to use the well-separated pair dggosition data
structure [34]; Narasimhan and Zachariasen [152] showaitthis data structure
allows the efficient computation of Euclidean and rectéin® STs in the plane
and in higher dimensions. This approach further has therddga that only minor
adaptions are needed to handle new metrics.

Clearly, SMTs are in general shorter than MSTs for the sam@nal set/V, since

SMTs are allowed to contain Steiner points. The infimum oVleleaminal sets

N of the ratio between the SMT length of and MST length ofV is denoted
the Steiner ratio Gilbert and Pollak [85] conjectured in 1968 that this vaisie
\/3/2 for the Euclidean problem. A proof of this conjecture wasegiby Du and
Hwang in 1992 [72]. The variational approach of Rubinsteid ahomas [174]
played an important role in proving the Steiner ratio cotyjee.

The Steiner ratio for the rectilinear problenei&3 [97]; hence, a rectilinear SMT
is at most33.3% shorter than a corresponding rectilinear MST. A EuclidesiTS
is at most1 3.4% shorter than a corresponding Euclidean MST. Steiner tnedsru
the rectilinear metric thus have a relatively greater lanigiprovement potential.

10



Hardness, approximation and exact algorthms

The Euclidean and rectilinear Steiner tree problems werengnthe early prob-
lems that were shown to be NP-hard — and thus essentiallyraiting the hope
that polynomial-time algorithms exist for the problemsr&aGraham and John-
son [80] proved in 1977 that there exists no fully polynontiaie approximation
scheme (FPTAS) for the Euclidean problem unless P = NP. A FP$Aan algo-
rithm that for every fixed > 0 computes &1 + ¢)-approximation in polynomial
time in the length of the input antl/e. Even though the Euclidean problem is
NP-hard, the decision version is not known to be in NP. On therchand, as a
result of the Hanan grid property, the decision version efréctilinear problem
is NP-complete [81].

A polynomial-time approximation scheme (PTAS) is an altjon that for every
fixede > 0 computes &1 + ¢)-approximation in polynomial time in the length of
the input (but not necessarily ir/¢). It was for a long time a major open problem
whether there existed a PTAS for the Steiner tree problemosimel geometric
problems in the plane. In contrast, the Steiner tree prolohegnaphswas known
to be APX-complete, and hence does not admit a PTAS unless P; thid best
approximation ratio is currently 1.55 [173].

In 1996 Arora [4] gave the first PTAS for the Euclidean Steitmee problem in
the plane — basically as a corollary of a similar result fa Euclidean traveling
salesman problem in the plane. The running time of Aroragimal algorithm
has later been improved by Arora [5] and Rao and Smith [170F Rao-Smith
algorithm is optimal in the sense that the asymptotic rugtime bound matches
the Q(n logn) lower bound for the algebraic computation tree model.

Motivated primarily by applications in chip design, a rardéeuristics have been
proposed both for the Euclidean and rectilinear Steinergreblems in the plane.
An overview is given in the book by Hwang, Richards and Wirid)1]; also,
the papers [48, 49, 111, 236] document some of the more recehsuccessful
contributions.

The work on super-polynomial time exact algorithms has aksen substantial.
Already in 1970, Cockayne [60] presented one of the first @m@ntations of an
exact algorithm for the Euclidean problem. Since then, theadled Geosteiner
approach suggested by Winter [216] in 1985 has by far pravée the most suc-
cesful [61, 62, 89, 207, 208, 209, 220, 231]. The idea is torerate full Steiner
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trees (FSTs) followed by concatenation into a complete SMdéay, Euclidean
and rectilinear Steiner tree problem instances with séttssasand terminals can
be solved to optimality.

1.4 Overview of introduction to dissertation

The purpose of the introduction to the dissertation is t@ @survey on the lit-
erature on the fixed orientation Steiner tree problem. Theesus intended to
be self-contained and comprehensive, but not particutadiinical. The twelve
research papers that form the body of the dissertation ateded in a natural
way, albeit with some emphasis on the results from the twehpgers.

We begin by surveying known results on structural propgitieSection 2. Then
we move on to present algorithmic developments for consirg@ Steiner tree
for a given topology and for the general case in Section A&lRirin Section 4, we
present applications in chip design and various genetelizmmotivated by chip
design — and in particular contributions related to tjemeralfixed orientation
problem. Each section ends with a conclusion that sumnsatieeexisting work
and future challenges.
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2 Theory

In this section we define the uniform and fixed orientatioriréetree problems
and present some of the fundamental properties that arerkionshese problems.
These properties are mainly related to structural propedf optimal solutions,
e.g., properties related to angles and directions of edges ioptimal solution.
Also, the existence of optimal solutions in the so-calledegalized Hanan grid is
discussed.

2.1 Uniform and fixed orientation Steiner tree problem

The generalization of the Euclidean Steiner tree problewthier metrics in the
plane was discussed in some early works of Melzak [145] aruk&me [59]. One
generalization is to let the distance between two pointedémn the orientation
of the line segment between the points. Here the orientafiadine (segment) is
the anglex it makes with the x-axis (wherfe@ < o < ).

In anormed(or Minkowski) plane the ordinary (Euclidean) unit circkegeneral-
ized to be the boundaly = 9D of any compact, convex and centrally symmetric
domainD. The distance between two poinisandq is obtained by placing the
center ofC atp, drawing a ray- with base irp and containing, and identifying the
intersectiony’ of r with C. The distance betweerandq is now|pq|c = |pq|/|pd|,
where| - | as usual denotes Euclidean distance. (Note that the pairttseounit
circleC in fact have distance 1 from the centerdof

A normed plane istrictly convexif C is strictly convex, i.e., if the line passing
through any pair of points andy on C meetsC only atz andy. Equivalently,
the triangle inequality is strict for non colinear pointsaistrictly convex normed
plane. Asmoothnormed plane is one for which each boundary poinCdras a
unique tangent. The well-knowh, metrics are strictly convex and smooth for
1 < p < oo, but the rectilinear metricl(;) is neither strictly convex nor smooth
(Figure 6a).

In this section we consider the Steiner tree problem in ndrpianes wher¢

is a centrally symmetripolygon The best known example of such a plane is
the rectilinear plane. An important generalization of thetitinear plane is tha-
geometry plane, in whicfi is a regula\-gon for some integex > 2 (Figure 6b):
the corresponding metric is also denoteduhdorm orientatiormetric [179].
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a) b) 0) d)

Figure 6: Examples of polygonal unit circles. a) Rectilinear (2 petieular orientations).
b) Uniform orientation metricX = 4). c¢) Fixed orientation metrico( = 3). d) Weighted fixed
orientation metric.

WhenC is an arbitrary polygon whos&r vertices are inscribed in a Euclidean unit
circle, we have thdixed orientationmetric, or (unweightedy-geometry plane
(Figure 6¢). Finally, in thewveighted fixed orientatiometric (or weightedr-
geometry plane), there are no restrictions on the locatbusrtices ofC — apart
from C being convex and centrally symmetric (Figure 6d).

The directions given by the vectors pointing from the cetighe2o vertices of

C are calledegal directions The orientations given by (pairs of opposite) ver-
tices ofC are denotedegal orientations In the first systematic treatment in the
algorithmics literature on geometric problems relatedutoneighted) fixed ori-
entation metrics, Widmayer et al. [214, 215] defined the fi@gdntation metric
using legal orientations: The distance betwgeandq is the shortest geometric
path consisting of line segments in legal orientations .otfiyhe orientation of
the line throughp andg coincides with a legal orientation, then the shortest path
is simply a straight line betweenandgq. In this case we say that the connection
betweenp and ¢ is astraight edge (In the definition of|pq|c given above this
corresponds to the case where the pgirtoincides with a vertex of.) On the
other hand, if the orientation of the line througland¢ does not coincide with
a legal orientation, then any zigzag-path consisting a¢ Begments having the
immediate preceding and succeeding legal orientatioricaiilstitute a shortest
path [215] (Figure 7a and 7b). In fact, such a shortest patimection, orbent
edge can be assumed to consist of at most two line segments (hiegal orien-
tations) joined by @orner point(Figure 7c).

Given a polygonal unit circl€ and a set of terminal®/, the fixed orientation
Steiner tree problenis to construct a shortest possible interconnection of the
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C1

C2

c)

Figure 7: Distances in fixed orientation metrics. a) Given legal dagions. b) Zigzag-path
between two pointg andg consisting of line segments in legal orientations (here-aadled Z-
shaped zigzag-path). c) Bent edges betweandg consisting of exactly two line segments, one
containing corner point; and the other containing corner poinat

points in N under the metric given by (or in the o-geometry plane). In the
uniform orientation metric (oA-geometry plane), the problem is naturally called
theuniform orientation Steiner tree problems usual, an optimal solution is de-
noted aSteiner minimum tree (SMTJhe Steiner tree problem has been shown to
be NP-hard both in the rectilinear plane £ 2) [81] and in the octilinear plane
(A = 4) [186]. Brazil [22] surveys the developments for the unifioorientation
problem up to 2001.

2.2 Fundamental structural properties

One particular difficulty of the Steiner tree problem is taatSMT may contain
junctions, or Steiner points, that are not among the givemiteals. Consider
a Steiner point with neighbourse, ..., x,, in an SMT (wheren > 3). The
Steiner point is an optimal solution to the general Fermablam for the points
x1,...,x, — also called a Fermat-Torricelli point (see Section 1.2)e §eneral
Fermat problem has a long history and is of particular irstene location sci-
ence [118]. A nice survey on results pertaining to this peobin general normed
planes and spaces is given by Martin et al. [144].

In this section we first present bounds on the degrees andsfuglSteiner points,
both for general weighted fixed orientation metrics and fogcsal cases of the
metric. Related degree and angle bounds can be obtainegrfoingls, but from
an algorithmic point of view, properties related to Steipeints are substantially
more interesting.
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The second topic of this section is the so-called centroagh@rty, which both is
a theoretically beautiful, but also algorithmically udgbwoperty of solutions to
the Fermat problem. Then we describe zero-shifts, whicHeargth-preserving
perturbations of Steiner points in SMTs. Zero-shifts ardipalarly interesting

for fixed orientation metrics, since these are not stricdpwex, and therefore
generally result in an infinite set of SMTs for a given set ofrtimals. Finally,

at the end of the section we briefly survey results on the &teitio for fixed

orientation metrics.

Degree and angle conditions

A Steiner configuratiors a star with centes and leaves, .. ., z,, that is part of
some SMT withs as Steiner point (wherg x4, ..., z,, are distinct) . Note that

in a Steiner configuration, the centeis a Fermat-Torricelli point fog+, . . ., ,,.

For unit circleC, let s(C) denote the maximum degree of a Steiner point; hence
under the metric given bg, the sizem of any Steiner configuration & < m <
s(C), since Steiner points by definition have degree at least 3.

Theorem 2.1 For any unit circleC we haves(C) < 4, and for asmoothunit
circle C we haves(C) = 3.

For the (smooth) Euclidean metric the bound of 3 follows indrately from the
fact that edges meet aR0° angles, and for thé,; metric the bound of 4 was
shown already by Hanan [88] (a cross forms a degree 4 Steamdigaration).
Cockayne [59] proved that(C) = 3 for smooth and strictly convex unit circles,
and Alfaro et al. [2] showed that if the unit circle is stricttonvex (but not nec-
essarily smooth), then(C) < 4. (Liu and Du [139] independently proved that
s(C) = 3 for all smooth and strictly convek, metrics, that is, whet < p < c0.)
Cieslik [52] gave a simple proof of the fact that for arbigramit circles (and
every terminal set) there alwayxistsan SMT for whichs(C) < 4. Lawlor
and Morgan [119] showed tha{C) = 3 for all smooth unit circles. Finally,
Swanepoel [193] proved Theorem 2.1 in full generality, andddition, he gave a
precise characterization of unit circles that permit a degr Steiner configuration
(so-called X-planes).

Since polygonal unit circles are neither smooth nor strictnvex, all we can
infer from Theorem 2.1 is that Steiner points have degree 8.om order to
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characterize this more precisely, we now consider the mgetngles at Steiner
points for the uniform orientation metric (or kxgeometry). Letv = 7/ be the
angle between neighboring orientations (e.g.Xet 4 we havev = 7/4 = 45°).

Theorem 2.2 In A-geometry, the minimum meeting angle at a Steiner point is
[2A/3 — 1]w, while the maximum meeting angle[s\/3 + 1 |w.

Note that meeting angles ikrgeometry are somewhat poorly defined, since one
may say that they depend on the actual embedding of the ediymsever, the
above theorem holds both when edges are considered to lghstime segments
between their endpoints, and when they are embedded ugiabdaentations
only.

The first proof of Theorem 2.2 was given by Sarrafzadeh andg/J/o80], albeit
not covering the case whereis multiple of 3 correctly. Alternative (and cor-
rect proofs) using various proof techniques were given b Kidl5] (only for
A = 4), Li etal. [129] (only lower bounds), Brazil et al. [24], Snepoel [193],
Hayase [90], and II'yutko [105].

Since2)\/3 - w = 27/3 = 120°, Theorem 2.2 states that the minimum angle
is the largest multiple o that is strictly less than20°; and similarly, that the
maximum angle is the smallest multiple ofthat is strictly greater thah20°.
Thus, as\ — oo, the minimum and maximum angles both converge towand

as could be expected.

Obviously, if the minimum anglé2)/3 — 1]w is strictly greater tha®0° then
the maximum Steiner point degree is 3. Direct computati@wstthat degree 4
Steiner points are only possible fdr= 2, 3, 4 and6. Thus we have the following:

Corollary 2.3 In A-geometry, Steiner points have degree 3, except when
2,3,4 and6 (where Steiner points with degree 4 exist).

If we think of edges as embedded using legal orientatiores; tor A = 3k, a
meeting angle can either &r/3 — w, 27/3 or 27 /3 4+ w, while for A # 3k,
only two meeting angles are possible. In some sense thergresager flexibility
when\ is a multiple of 3 — something that will be discussed in furttetail in
Section 3.2.

The lower bound on meeting angles in Theorem 2.2 is stilldvedr terminals,
but the upper bound is not relevant as terminals can haveddgss than 3 in an
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T3

Figure 8:Direction sets with 6 directions (left) and 4 directiongfr).

SMT. For general unit circles thgegreeupper bound for terminals is the same
as for Steiner pointgxceptin \-geometry forA = 3; in this case a terminal can
have 6 neighbours (star with six edges separatethb)y{52, 193].

Degree properties of Steiner points and terminals for SMTsgher-dimensional
spaces have been studied by, e.g., Cieslik [53] and Swahg@# 194]. One

of the interesting results is that for arbitrary smooth dnalls in d-dimensional
spaces, the maximum degree of Steiner points and termgwals 1. On the other
hand, for the non-smooth,, metric, the maximum degree of both Steiner points
and terminals i24, so polyhedral unit balls significantly increase the nundfer
possible Steiner tree topologies.

Direction sets

Consider a Steiner pointwith three neighbours;, x; andzs in some SMT (in
o-geometry). If we think of the edges:, sz, andsxs as pointing outwards from

s, then the line segments of each edge use one of the legalidirec Consider
the set of legal directions used by all three edges of theespanding Steiner
configurationS (Figure 8). A Steiner configuratiof is maximalif the set of
legal directions used b§ does not form a strict subset of the directions used by
some other Steiner configuration. We defindir@ction setto be the set of legal
directions used by some maximal Steiner configuration [30].

Each edge in a Steiner configuration contributes to a doedet with one di-
rection (straight edgejr two adjacent directions (bent edge). Thus a direction
set contains from 3 to 6 directions. It turns out that a diogcset with 3 direc-
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tions (corresponding to a Steiner configuration with stragdges only) cannot
exist: such a direction set can always be supplemented wiast one direction,
hence contradicting maximality [30]. Therefore, direntgets contain from 4 to
6 directions.

If an edge in a Steiner configuration contributes two (adjgcdirections to a
direction set, the first one (in counter-clockwise ordeddaaoted grimarydirec-
tion while the other is denotedsecondarydirection. Single-direction edges can
be labeled either primary or secondary.

Whenever an edge contributes two directions these areaadjasn we immedi-
ately obtain an upper bound 6f(c3) on the number of direction sets. However,
the actual number of direction sets is much smaller:

Theorem 2.4 In o-geometry the number of direction setsdéos). In addition,
the collection of direction sets can be identifiedd(r) time (which is optimal).

As pointed out by Brazil et al. [24], fok-geometry this theorem follows almost
immediately from the upper and lower bound on meeting an@lkeorem 2.2).
Consider two adjacent directions and a Steiner configurdtioz,, o, x3} with
an edgesz; that uses these two directions. Afis not a multiple of 3, then
since there are only two feasible meeting angles, both eslgeand sz3 must
be straight. Hence fox not being a multiple of 3, a direction set contains 4 direc-
tions only — one direction set for each pair of adjacent dioes (see Figure 8,
right). For A being a multiple of 3, both edges:, and sz3 can be bent while
fulfilling the upper and lower bounds on the meeting angleserce a direction
set contains 6 directions X is a multiple of 3. Again, only one direction set is
possible if we fix a pair of adjacent directions. Since thee2a pairs of adjacent
directions, the theorem follows. Furthermore, th2selirection sets can trivially
be constructed i (o) time.

For generab-geometry, proving Theorem 2.4 is a bit more involved. Thaopr
uses a geometric characterization of Fermat-Torriceilnsooriginally given by
Chakerian and Ghandehari [35] for smooth and strictly cenvat circles: For
a Steiner configuratiofis, z1, x5, x3}, if @ unit circle is placed with its centre at
s andly, I, andl3 are the tangents of the unit circle where the rays-> x,

s — xo ands — x3 intersect the unit circle, theh, I, and/; form a triangle
whosecentroidcoincides withs. We say that the tangents [, andi; have the
centroid-property
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Du et al. [71] used the centroid-property to prove that ifdivection of edgesx;
is fixed, then the directions of edges, and szs are uniquely determined (for
smooth and strictly convex unit circles). Based on a shghtkaker version of
the centroid-property from Martini et al. [144] that holds §eneralunit circles,
Brazil and Zachariasen [30] showed that if two adjacentatiibas are fixed —
corresponding to the case where edgeis bent — then edger, (and edgezs)
can use at most two fixed adjacent directions. Hence the &rsop Theorem 2.4
follows. (Note that direction sets with 5 directions existirgeometry.)

Based on the centroid-property, Pagh [157] gavg(a?) time algorithm to con-
struct all direction sets in-geometry. The running time was improvedddo)
by Brazil and Zachariasen [30].

Our interest in direction sets stems from the fact that adirfér points in a full
Steiner tree (FST) use tlsamedirection set; more precisely, we have the follow-
ing theorem [30]:

Theorem 2.5 Given a fulsome FST im-geometry, there existssangledirection
set that is used bgverySteiner point in the tree.

(Recall that an SMT is fulsome if it contains the maximum pmesnumber of
full components for any SMT on the same terminal set.) Foramanit circles,
including the Euclidean metric, it is known that the edgesdtill SMT only

usethree different orientations [71, 139]. Theorem 2.5 can be cagred as a
generalization of this result to fixed orientation metriagd it turns out to be
crucial in the design of efficient algorithms to construcfB$Section 3.1).

Zero-shifts and one bent edge property

The fixed orientation metric is not strictly convex, so in gal there are infinitely
many SMTs for a given set of terminals. In this section we syrproperties
pertaining to fulsome FSTs that are part of some SMT.

A zero-shiftin an FSTT' is a perturbation of one or more Steiner points such that
the perturbation does not increase the length.aZero-shifts were introduced by
Du and Hwang [73] for\ = 3, and originally used as a technical tool in the quest
for better bounds on the size of the generalized Hanan giifl,[122, 123], see
also Section 2.3. One of the by-products of this work was dewing:

20



Theorem 2.6 In o-geometry, every fulsome FST can be embedded in such a way
that the FST has at most one bent edge.

This theorem was proved for = 3 by Du and Hwang [73] in 1992, fok =

4 by Lin and Xue [132, 135] in 1998, and finally for arbitradyby Brazil et
al. [24] in 2000; the full generalization te-geometry was given by Brazil and
Zachariasen [30] in 2009.

The general technique to prove Theorem 2.6 is to show théieifet exist two
bent edges; ande, in an FST, then we can perturb the Steiner points on the
path connecting;; ande, in such a way that eithet; or e; becomes straight
(and without introducing additional bent edges). In facg lave the following
theorem:

Theorem 2.7 Lete; ande, be two edges in a fulsome F3Tin o-geometry such
thate; has an exclusively secondary componentatas an exclusively primary
component. Then there exists a zero-shift acting on the&tpoints on the path
frome; to ey in T, such that the shift can continue to be performed until eithe
has no exclusively secondary component;dnas no exclusively primary compo-
nent. Furthermore, this shift preserves the direction dkahight edges except
(possibly)e; andes,.

Zero-shifts can also be used to prove that FSTs with oth@iag@operties exist.
As an example, foh = 3 or A = 6 itis always possible to transform an FST using
zero-shifts to another FST where every Steiner point hasedeg [129]. More
elaborate characterizations are presented and utiliz8dctions 3.1 and 3.2.

A fundamental zero-shifs zero-shift that cannot be decomposed into two zero-
shifts each of which acts on a subset of the Steiner poinéslamt by the funda-
mental zero-shift (and at least one of which acts on a prageset of those Steiner
points). Any zero-shift can be decomposed into fundameetal-shifts. Brazil et

al. [28, 29] showed that in-geometry and foA being a multiple of 3, zero-shifts
perturbsingle Steiner points; for not being a multiple of 3, fundamental zero-
shifts perturbtwo neighbouring Steiner points. In generageometry, the type

of fundamental zero-shift depends on the number of direstio the underlying
direction set: For size 4 direction sets 1-point pertudoatido not exist, while for
size 5 and 6 direction sets 1-point perturbations do ex@t [3
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Steiner ratio

Consider interconnecting a set of terminAlsinder a metric given by an arbitrary
unit circleC withoutbeing allowed to use Steiner points. This corresponds té com
puting aminimum spanning tree (MS1TQr V — a problem that is polynomially
solvable (see Section 1.3).

Let |[SMT: (V)| and|MST:(N)| denote the length of an SMT and an MST, respec-
tively, for N under the metric given by. Clearly|SMT:(N)| < |[MST:(N)| since

an SMT is a shortest possible interconnectiomof Now the question is: How
much shorter can an SMT be relative to an MST for the same setrmiinals?

Define
_|SMTe(N))]

[MSTe(N))]
to be the ratio between the length of an SMT and an MSTMoil he Steiner ratio
pc for the metric given by unit circl€ is defined as

pe(N)

pc = 1gfpc(l\/')

That is, the Steiner ratio is the smallest possible ratiovbet the SMT and MST
lengths for any set of terminals. In this section we brieflvey the results on the
Steiner ratio for\-geometry and-geometry.

Let p, be the Steiner ratio in-geometry. Consider the rectilinear plane=¢ 2).
For the set of terminal$(—1,0), (0,—1),(1,0),(0,1)}, the SMT is a cross of
length 4, while an MST has length 6 (all terminals are sepdrhy a distance of
at least 2). Thus we haye < 4/6 = 2/3. Furthermore, as shown in the seminal
paper by Hwang [97], we also hayg > 2/3, so for A = 2 the Steiner ratio
problem is fully solved.

For the general Steiner ratio problemirgeometry, Sarrafzadeh and Wong [180]
gave the inequality

S Vo T
Pr =97 OSo)
which follows from
ISMT\(N)| > |[SMT(N)] (1)
> %MSTOO(NM (2)
V3 7
> 5 cos 5y [MST(V)] (3)
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Here|SMT,(N)| denotes the length of an SMT fd¥ as\ — oo, which cor-
respond to the Euclidean metric; the second inequalitp¥adl from the Steiner
ratio theorem for the Euclidean metric [72]. It follows frdhis lower bound that
ps > 3/4; a matching upper bound can be obtained by placing threertalsron
every second vertex of the regular hexagon (which is theaingie for A = 3).

The exact Steiner ratio is not known for all values)o{see Open Problem 1
on page 70). In Table 1 we summarize the results known\fgeometry. It is
interesting to note that the Steiner ratio is not a monotdlyjiencreasing function
of \. However, both the lower and upper bound approg@i2 as\ — oo as
could be expected.

Metric Steiner ratio References
A = 2 (rectilinear) 2 [97]
A\ = 3 (hexagonal) 3 [122]
A = 4 (octilinear) 2072 [184]
A =3 mod 6 73 oS 7y [122]
A =0mod 6 v [122]
General\ (lower bound)| max{Z, ? cos 7% [71, 180]
General\ (upper bound) min{ @‘1, ? Cosl%} [58, 71, 180]
A — oo (Euclidean) v [72]

Table 1:0verview of the results on the Steiner ragipfor A\-geometry.

For generab-geometry the bounds on the Steiner ratio are the same asftiros
arbitrary normed planes, since any norm can be approxinatettarily closely
by a weighted fixed orientation metric. In normed plag¢s is a tight lower
bound on the Steiner ratio [79] (the bound is achieved in,, ¢tg rectilinear
plane). The best known upper bound(ig13 — 1)/3 =~ 0.8686 [71], but it is
conjectured that the (tight) upper bound/8/2 ~ 0.8660 — the Steiner ratio for
the Euclidean metric [72].

Results on the Steiner ratio for other metric spaces areegadvby Cieslik [55,
57]. ForL, metrics it is known that the Steiner ratio is in the interf@aB, v/3/2],
where the lower bound is attained for= 1 andp = oo, while the upper bound
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is attained for the Euclidean metrig [139]. That thelL, and L., metrics have
identical Steiner ratios follows from the fact that affin@guivalent unit circles
achieve the same Steiner ratio; also, if two unit circlestanost the same shape,
then their Steiner ratios have almost the same value [5&Uitively, this is the
reason why the Steiner ratio for — oo approaches the Steiner ratio for the
Euclidean metric.

2.3 Generalized Hanan grid

For the rectilinear Steiner tree problem it is known thatreéhexists an SMT in

the Hanan grid (see Section 1.2). Sarrafzadeh and Wong fd@0}ed out that

when going from two to three orientations in the plane, trestist terminal sets

for which every SMT has Steiner points that a@ in the corresponding Hanan
grid.

A natural question is therefore: Does there exist a “smailtl gtructure in which

an SMT for the general fixed orientation problem always cafobed? As for

the rectilinear problem, the existence of such a grid — wimicluces a weighted
planar graph — would make it possible to reduce the fixed taten problem to

the Steiner tree problem in graphs. In this section we suthveyesults pertaining
to this reduction.

For any set of point®, defineGG(P) to be the set of intersection points obtained
by drawing lines in all legal orientations through everymian P. Define the
generalized Hanan gri€xG; as follows: For terminal seV, GG,(/N) = N and
for i > 0 recursively defindGG;(N) = GG(GG;_;(N)) (Figure 9). Note that
GG/ () coincides with the vertices of Hanan grid for the rectilineeetric.

Theorem 2.8 For each set ofi terminalsN there exists an SMT fa¥ such that
all Steiner points are ilGG,,_»(N).

This theorem has a fairly long history, and over time it hasbghown to hold for
increasingly larger classes of fixed orientation problefiee generalized Hanan
grid was introduced in 1992 by Du and Hwang [73], and they edothat The-
orem 2.8 holds fon = 3 (uniform metric with three orientations). In fact, they
proved that for\ = 3, one can perform zero-shifts (by moving one Steiner point
at a time) until each FST contains at most one bent edge. Boedim then easily
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Figure 9:Generalized Hanan gri@ G (N) (left) andG G (N) (right) for A = 4, and a sefV
with 5 terminals. Only lines segments that are within thertabng box of the terminals are drawn.

follows since in such an FST there must exist a Steiner pothat is connected
with straight edges ttwoterminals; henceis in GG (V). By removing the two
terminals and their straight edges, and consideritogoe a (pseudo) terminal, the
argument can be repeated for all (up 4o} 2 Steiner points.

Du and Hwang also conjectured that for any 0 there exists a fixed orientation
metric and a terminal séY such that all SMTs fofrV have some Steiner poinbt
in GG;(N). In other words, they conjectured that the bouné2 in Theorem 2.8
cannot be reduced to a constant.

The journey towards proving Theorem 2.8 was as follows. B61Roh [115] and
Lee et al. [123] independently proved that the theorem holds = 4 by showing
that it is always possible to perform zero-shifts such tlwahe Steiner point is
connected to two terminals using straight edges only. 1161%%® and Shen [122]
generalized the result to any (or uniform orientation metric) using the same
proof technique. Finally, in 2001 Li et al. [130] showed tiitorem 2.8 holds for
all unweighted fixed orientation metrics, and in 2009 Bramnidl Zachariasen [30]
proved that the theorem also holds for the weighted case —hande for any
metric given by a polygonal unit circle. The result is notatbexplicitly in [30],
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but the theorem follows from the fact that there always exast SMT for which
every FSTs has at most one bent edge (Theorem 2.6).

The bound provided by Theorem 2.8 can be improved for speeisgs of the
fixed orientation problem. Fok = 3 (three uniform orientations) a bound of
[(n — 2)/2] follows from the fact that for. > 4 it is possible to perform zero-
shifts in such a way thdtvo Steiner points simultaneously are connected to two
terminals using straight edges only [225]. For three aabjtorientationsd = 3)
only a weaker bound of(n — 1)/2] is known [130, 131], and for four uniform
orientations { = 4), the best known bound {2n/3] — 1 [132, 135]. The bounds
for A = 3 ando = 3 are known to be tight; furthermore, it is known that the bound
for A = 4 must be strictly greater thdrin — 2)/2] [130, 131].

It has been conjectured that the bound in Theorem 2.8 can fr@vad [22, 132,
135]. There are nevertheless arguments that support thesid@gact, and we
conjecture that the bound in Theorem 2.8 is tight (Open [erali).

From an algorithmic point of view, Theorem 2.8 has limited ggce the number
of vertices iINGG;(N) is Q(n'"'o?) for [N| = n, which is Q(n""'c"~2) for

i = n — 2. Even for small problem instances, the generalized Hanigngtoo
large to be useful (see Figure 9).

2.4 Conclusions

The theoretical results that were presented in this setizwe played a central
role in the development of efficient algorithms for the Séeitree problem in
fixed orientation metrics. It is, however, interesting tdenthat while early con-
tributions focused on proving results related to the gdiz@@dHanan grid, recent
contributions have focused more on proving structuralltesudependent of their
Hanan grid applicability, e.g., results related to therdstion of orientations in
full Steiner trees. The exact value of the Steiner ratio fbuiform orientation
metrics is still among the future challenges — as well ashirrgeneralizations
of the results to unit circles that have a mixture of polydaral strictly convex
boundary. From a practical point of view, however, the $ematio is less im-
portant due to significant progress in approximation andtadgorithms over the
last decade.
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3 Algorithms

In this section we survey the range of algorithms that havenlgoposed for
computing Steiner minimum trees (SMTs) under uniform anddiwrientation
metrics. The survey does not cover all algorithms that haenlspecifically de-
vised for therectilinear Steiner tree problem; rather, we focus on algorithms that
coverotheruniform and fixed orientation metrics. In most cases therélyos
described work under all fixed orientation metrics.

In the first section we consider the problem of constructingsMT for a given
topology, that is, when the interconnection pattern of teats and Steiner points
is known. We then move on to give an algorithm for construgtime so-called
flexibility polygon, which is a representation of all SMTg fa given topology.
Finally, we present heuristics and exact algorithms forNifehard general case
(i.e., when the topology is unknown).

Before we embark on the journey of algorithms for the SMT pgof let us con-
sider an elementary problem — namely the one of computindethgth of an
SMT for two terminalsp andq. This is obviously the same as computing the
distance betweemandq. As pointed out by Shen [184], distances underuthie
form orientation metric (or il\-geometry) can be computed in constant time, i.e.,
independent of. The problem reduces to identifying the two legal orieiotiasi
that are immediate preceding and succeeding legal oriensatio the orientation
of the straight line betweep andq. Due to the regularity of the legal orienta-
tions in the uniform case, this is easy to do in constant tiH@wvever, achieving
constant time appears to be more difficult under a general fixientation metric
(Open Problem 3); a running time 6f(log o) can be achieved by binary search
on the sorted set aof legal orientations. In many applicationscan be assumed
to be bounded by a constant, and in this case distances ciafi{trbe computed

in constant time.

3.1 Steiner tree problem for a given topology

The problem of constructing an SMT for an arbitrary givendlogy can be seen
as a further generalization of the general Fermat problenefg/the topology is
a star). In this section we present efficient algorithms forstructing SMTs for
a givenfull Steiner topologyi.e., where all terminals are leaves and all Steiner
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points are degree 3 interior vertices. We restrict our &tiano topologies where
Steiner points have degree 3, since degree 4 Steiner pailytagpear in very re-
stricted and well-defined cases [30, 54, 56, 193]. The pt&tn to full topologies
is no limitation either, as any topology is a union of full tdpgies.

For a given (full Steiner) topolog¥, the length|T|. of a Steiner tree” with
topology 7, seen as a function of the location of the Steiner point%'ofs a
convex function (sincé” lies in a normed plane). However, this convexity is not
strict; it may be possible to move Steiner points in an SMThaitt changing the
length of the tree. A Steiner trég is said to beocally minimalif there is no
perturbation of its Steiner points which reduces the legth. Thus, if 7" is an
SMT for a given topology, it is locally minimal — and vice varsNote that a
locally minimal tree is not necessarily an SMT for the teratgthat its spans.

The problem of locating Steiner vertices in a tree with a gisgology (in a gen-
eral metric space) was considered in an early paper by SearkdbRousseau [176].
They gave dynamic programming algorithms for some specatios, including
Hamming distance and higher-dimensional rectilinear it®trFor a survey on
algorithms and complexity results related to the consiwaaif shortest networks
under given tree topologies — covering a range of differesitrivs — consult the
survey by Jiang and Wang [108].

Euclidean problem

The classical Melzak-algorithm [145] computes a full Edean SMT for a given
full Steiner topologyZ in O(2") time (wheren is the number of terminals), or
decides that no such tree exists.

The idea of the algorithm is to ro@t in one of the terminals, and identify a pair
of terminalsz; andz; with maximal depth that share an (interior) Steiner pejnt
such a pair always existsif > 3. Consider the oriented linethroughz,; andz,
(Figure 10). Since the Euclidean metric is convex, the tgioints has a unique
location in the SMTT for topology7. Assume that lies on the right hand side
of [. Now we may replace; andz; by the third point: on the equilateral triangle
with z;z5 as one of the sides and such thas on the left hand side @f The point
z Is called theequilateral pointof z; andz,.

Melzak’s key contribution was to show that if we solve the nemblem with
n — 1 terminals, the Steiner poistcan be identified by locating the intersection
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Figure 10:Recursion step of the Melzak-algorithm. Terminalsand z, are replaced with the
new terminak and the problem is solved recursively.

between the SMT for the smaller problem with the circle tigtou;, 2z, and z
(assuming that the SMT for the smaller problem exists). ldenecursing on the
smaller problem eventually results in the trivial problefrconstructing an SMT
for two terminals; the length of the so-called Simpson lirgween these two
terminals is the length of the SMT for the given topology. Tl running time
of O(2") follows from the fact that in each recursion step, the Stgneént could
be on either side of the line through the terminals — and tgerghm has no
means of deciding the correct side.

Hwang [99] improved the running time of the Melzak-algomittho (optimal) lin-
ear time©(n) by proposing a clever method to identify the correct sidehef t
Steiner point in each step. Furthermore, this test couldds®pned in constant
time.

The Melzak-algorithm only works if the topology mon-degeneratehat is, if no
Steiner points overlap with each other or with terminal$igd¢orresponding SMT.
For the more general problem, where degenerate SMTs areeal]dHwang and
Weng proposed the so-called “luminary algorithm”, whiclves the SMT prob-
lem for a given topology irO(n?) time; the average running time @(n log n),
where the average is taken over all full topologies for theo§éerminals [223].
Another general method to solve the degenerate problene isaifative approach
by Smith [188], which also can be generalized to higher dsmars and other
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metrics. This method is quite practical, but has the weaktiest it only con-
verges with high probability.

In the fixed orientation problem the exact angles aroundn8tgpoints are not
known in advance (as in the Euclidean problem). As a consegdhere are
several candidates for “equilateral” points in each reoarstep. As shown by
Brazil et al. [24], the Melzak-approach results in an expaiad-time algorithm
for the fixed orientation problem. Until now it has not beersgible to improve
the running time using this approach.

Linear programming

The fact that the unit dis® for the weighted fixed orientation metric is linearly
constrained (and convex) makes it possible to computergistausing linear pro-
gramming — and hence to compute SMTs for (any) given topolmggolving a
linear programming problem.

In 1999, Thurber and Xue [199] gave a linear programming tdation for the
A = 3 case, and in 2002, Xue and Thulasiraman [224] generalizeébtimula-
tion to the general uniform orientation metric. Zachanmag234] pointed out a
nontrivial error in this formulation, and presented a new aarrect formulation,
which is briefly presented here.

Letu;, ! = 0,...,20 — 1, be the2o vectors that define the vertices of the unit
circle C = 9D (in counter-clockwise order around the circle). The suscesf
unit vectoru, is the vectom,, ;, wherel + 1 = 0 whenl = 20 — 1. Assume that
we would like to compute the distangey|. between two pointg andq under the
metric given byC. Let {«,, 5} be the unique solution to

q=p+oaw+ GBu (4)
for eachl = 0,...,20 — 1. Using fairly simple arguments, Zachariasen [234]

showed that

— 5
Ipgle le{O{{l.?é};fl}(al + 5) (5)

and therefore that,, = |pq|c can be computed by solving the following linear
program:

minimize d,,
subjectto oy + 5 < dp, 1€{0,...,20 -1}
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Note thatn; andg; depend linearly on the coordinatesadindg. By applying the

constraints in the above formulation for each of the edgekergiven topology,

an SMT for this topology can be computed in polynomial tinretfie size of the
input). Clearly, degenerate and non-tree topologies csm la¢ handled by this
formulation.

A special case of the above problem, the (separable) resiliproblem [32],
is known to be the dual of a transshipment problem. Similameations are
currently unknown for the general problem.

Linear time algorithm for general o-geometry

In order to compute an SMT for a given full Steiner topologyirear time, it

IS necessary to use an algorithmic approach that is diffdrem the Melzak-

algorithm. In this section we present the historical tinmeland some of the
technical results leading up to the following theorem.

Theorem 3.1 Given a full Steiner topolog¥ with n terminals and a weighted
fixed orientation metric withy legal orientations, then irO(on) time we can
either construct a full and fulsome SMT with topology7, or decide that no
such tree exists.

Hwang [97] proved the theorem for the rectilinear methc{ 2) in 1976. Hwang
showed that there always exists a rectilinear SMT for whinehfull Steiner trees
take on restricted canonical forms — so-called Hwang togielo— where all
terminals are connected to a backbone in a chain-like fashidomputing an
SMT for such a topology can trivially be done in linear time.

In 1997, Lietal. [127, 128] gave an interesting structueaiult for the hexagonal
metric (\ = 3). They showed that there always exists a full SMT with a gngl
bent edge and such that every Steiner point has edges niakihgith each other.
Albeit not pointed out by Li et al., this immediately gives@ir?) time algorithm

for computing an SMT for a given full Steiner topology: Cheascandidate for
the bent edge (there a€&n) such edges), root the topology in this edge and use
a Melzak-approach to construct each of the subtrees in arbatp fashion. By
using a more clever implementation, similar to the one dleedrbelow, linear
running time can be obtained.
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For the case wherg is a multiple of 3, Nielsen et al. [155] in 2002 obtained a
linear time algorithm for constructing an SMT for a givenlf8teiner topology
by showing that there always exists an SMT where every Steioiat coincides
with the Steiner point for the correspondiggclideanSMT; hence by using the
Melzak-Hwang algorithm to locate the Steiner points, Imemning time can be
achieved.

A proof of Theorem 3.1 for aliniformorientation metrics was given by Brazil et
al. [27] in 2006. The concept of “forbidden subpaths” [25] gyed a crucial
role in achieving this fast algorithm. Brazil and Zachaeia$30] proved Theo-
rem 3.1 in full generality by using the same algorithmic agmh, but by sim-
plifying several of the underlying technical results — andhaut reference to
the results related to forbidden subpaths. In the remaiofignis subsection, we
sketch some of the key ideas of this algorithm.

As a consequence of Theorem 2.7, it follows that there alveajss a so-called
canonical SMTdefined as follows:

Definition 3.1 Given an ordering of the edges in a full Steiner topol@gyan
SMTT for topology7 is said to becanonicalwith respect to that ordering if’
contains at most one bent edge and all primary edgdsaime before secondary
edges ofl” under the ordering.

Hence, in a canonical tree there exists a so-cdhaaksition edggwhich is pos-
sibly a bent edge), such that all edges that appear beforteathgtion edge wirt.

the given ordering arprimary (straight) edges and all edges that appear after the
transition edge arsecondary(straight) edges.

The concept of canonical SMTs forms the cornerstone ofifwe:) algorithm for

constructing a full and fulsome SMT for given topology. Maecifically, the
algorithm attempts to construct an SMT for each directidr{cfewhich there are
©(o), see Theorem 2.4). Given a direction set, the SMT — if it existis then
constructed irO(n) time. Here we first outline a simpte(n?) algorithm for this
problem, and then we briefly explain ha\(n) running time is obtained.

Consider any fixed ordering of the edges of the topol@gyNow, assuming that
a full and fulsome SMT exists, there must also exist a cabiiee? under the
given ordering. Assume that edge numbeunder the ordering is the transition
edge. Then all edges numbered lower tlhaare primary edges and all edges
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Figure 11:lllustration of a tre€l” with the depth-first order canonical form rooted-aPrimary
edges are drawn as bold edges, and the remaining edges aneagcedges.

numbered higher thah are secondary edges. It turns out that this information
is sufficient to make it possible to construct each of two sedst relative to the
transition edge in a bottom-up manner(xin) time [27, 30]. Enumerating over
all choices for the transition edge results i0&n?) algorithm.

Turning the quadratic time algorithm into a linear-timealthm requires that we
carefully choose an ordering of the edges. A depth-firstrandef the edges from
a given (terminal) root results in a powerful and useful cacal form (Figure 11).
By applying appropriate preprocessing, each transitige@an be tested in con-
stant time, resulting in a linear-time algorithm for comsting a full and fulsome
SMT for a given topology.

3.2 Flexibility polygon

SMTs in fixed orientation metrics are usually not unique. Nimgue SMTs are
flexiblein the sense that we may choose among several (lengthwis#yegood)
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embeddings of these SMTs. Hence, flexibility is a measurbeéktent to which
edges and Steiner points in the minimum length network cgreterbed without
increasing the length of the network. This has importantiegions in solving
multi-objective optimisation problems in chip design,ahxing minimization of
negative effects of properties such as congestion or siglaly as a secondary
objective [18, 19, 163].

In this section we characterize flexibility formally by defig theflexibility poly-
gonfor a given topology (and for each of the Steiner points irs tispology).
This concept was introduced by Brazil, Winter and Zachand&8, 29], and they
furthermore gave an efficient algorithm to construct theilfidiky polygon. The
original algorithm [29] was only given fok-geometry, but it can easily be gen-
eralized to arbitrary weighted fixed orientation metricsapyplying the structural
results from Brazil and Zachariasen [30].

The results related to the flexibility polygon subsume softe@earlier work on
flexibility. For the A\ = 3 case, and considering the problem of constructing an
SMT with three terminals and one Steiner point, Yan et al5]Zhowed that the
set of feasible Steiner points forms a region bounded by ailatgral triangle
(Figure 12). Li et al. [128] gave a simple algorithm to couastrthis triangular
region based on finding median points and so-called miditai®n lines. More
generally, Shen [184] and Hayase [90] independently shawatdwhen) is a
multiple of 3, the feasible region (called a “public domain”[184] and a “dia-
mond area” in [90]) is a convex polygon with up to six verticefien A is not a
multiple of 3, then the SMT for three terminals is unique amel fieasible region
contains a single point.

The fact that the feasible region for Steiner points is a egrpolygon is not
surprising given that the problem of constructing an SMT dagiven topology
can be solved by linear programming, where the coordinaté&teaner points
are variables [224, 234]. Even if linear programming in piphe can be used to
construct feasible Steiner point regions, this would noabeefficient as direct
computation as shown below.

For a set of terminalsV and a full Steiner topology” for N, we denote by
S(N,T) the setof all full and fulsome SMTs interconnecting with topology
7. Theflexibility polygonfor a terminal setV and a full Steiner topology is
defined to be thenion of the embeddings of all SMTs if(N, 7). It turns out
that this union forms a simply connected region with a pohajdoundary whose
vertices include the terminal§ [29]. Some examples of flexibility polygons for
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Figure 12:Triangular flexibility polygon for three terminals anid= 3. The Steiner point may
be placed anywhere in the gray-shaded region.

the cases wherk = 4 and\ = 6 are shown in Figure 13.

In the remainder of this section we briefly discuss the follmytheorem by Brazil,
Winter and Zachariasen [29]:

Theorem 3.2 Given a full Steiner topolog§¥ with n terminals and a weighted
fixed orientation metric witlr legal orientations, the flexibility polygon far can
be computed iV (on) time.

The first step of the algorithm is to compute an SV Dy applying Theorem 3.1.
The SMTT implicitly identifies a direction set that is used by evergiSér point
in T'. Recall that a direction set consists of three sets of daest Each set con-
tains either one or two directions; in the latter case onaary and one secondary
direction, and in the former case one direction that can teght of as being both
primary and secondary (see Section 2.2). It should be nbs#adBMTs that use a
direction set with 5 or 6 directions usually have much moralfiéty than SMTs
that use a direction set with 4 directions. (As an exampleT S A-geometry
where) is a multiple of 3 usually have more flexibility since for teeSMTs the
corresponding direction sets have 6 directions.)

Consider a counter-clockwise outer walk'Bf beginning and ending at the same
terminal. This defines a set obncave paths 7' that have terminals as endpoints
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Figure 13:Examples of\-SMTs and flexibility polygons. Notice that a flexibility paon may
have overlapping boundary segments, indicating that pastsme edges may exhibit no flexibility
at all.

and Steiner points as interior points. In other words, tregepaths between
terminals where at each intermediate Steiner point theémight outgoing edge is
taken.

For each concave path we now seek an embedding of the SMTusla¢pthe path
as far as possible to the right, defining a so-catigiitmostconcave path. This
means that for each edgeon the rightmost concave path there is no alternative
embedding where the same edge is to the right.oft can be shown that the
collection of these rightmost concave paths defines thebiléyipolygon.

Consider a concave path= vyv; . .. v,_1v, CONNecting two terminals; andvy.

We define an ordering of the edgesioby making a depth-first traversal from.

At every Steiner point;, the subtree of rooted atv; (and not intersecting) is
traversed before the edgg; . ; is traversed. The main technical result is now that
the SMT that has the canonical form given by this ordering@sfthe embedding
of the rightmost concave path from to v, [29].

In order to compute these rightmost concave paths effigi¢hd algorithm first
constructs all primary and secondary subtreeg afhat is, embeddings that con-
sist of primary resp. secondary directions only. This caadmmplished i (n)
time even though there a€&(n) potential subtrees. The algorithm works bottom-
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up by maintaining a queue of subtrees that can be constrat&diven point in
time.

The final construction of rightmost concave paths, and hémedexibility poly-
gon, is achieved essentially by traversing a primary selssgfar as possible along
a concave path — and then switching to a secondary subtresdratthe opposite
end of the edge where the primary subtree ends. The conetrustly requires
one outer walk ofl” and constant time for each edge traversed — in tOfai)
time.

For a given Steiner point in 7, the union of all feasible positions afin the
SMTsinS(N,T) is denoted the flexibility polygon for Steiner pointGiven the
flexibility polygon for 7', the flexibility polygon fors can be constructed in con-
stant time and has at most six vertices [29]. Examples of Bexibility polygons
are shown in Figure 14.

Figure 14: Examples of flexibility polygons (dark-shaded) for Steipeints (. = 6). The
flexibility polygon on the left has 6 vertices, while the flbiity polygons on the right have 3, 4
and 5 vertices, respectively.

3.3 Heuristics for the general case

In this section we give a survey on heuristics for the gerekél problem: Given
a setVN of n terminals, construct a shortest interconnection of theiteals under a
fixed orientation metric (thus the topology of the tree isnmkn). Recall that this
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is an NP-hard problem — therefore heuristics that quicklystauct near-optimal
solutions are valuable in an application setting.

From a theoretical point of view, SMTs can be approximatduytiarily closely.
The polynomial-time approximation scheme (PTAS) of ArdsaWorks for any
fixed orientation metric, and therefore it is possible tostouct a solution to the
SMT problem that is within a factor af + ¢ from optimality in polynomial time
for any fixede > 0. However, the degree of the polynomial for small values of
is too large to make this algorithm practical.

Almost all practical alternatives to the Arora algorithmewsminimum spanning
tree (MST) for the terminals as a starting point. The reasmasgwofold. Firstly,
an MST forn terminals can be computed efficientlydhn log n) time under any
fixed orientation metric [215] (see also Section 1.3). Sdbgras a consequence
of the known lower bounds on the Steiner ratio (see Sectidy RISTs are prov-
ably good approximations to the Steiner tree problem; an MSat most50%
longer than an SMT under any fixed orientation metric [71, /&)]. Further-
more, in practice MSTs are significantly better approxiomatithan their corre-
sponding (worst-case) Steiner ratios indicate. Henceirsgawith an MST and
iteratively performing operations on the tree that redin=eléngth of tree is an
obvious choice.

Since all the surveyed heuristics have the same theoregoabximation guar-
antee — namely the guarantee provided by an MST — we instaapga® their

experimental behaviour. In Table 2 we present the averadjgction over the

MST length for uniformly distributed terminal sets of sizeand 50 (as reported
by the authors). It should be noted that the table does nottrépe running times
of the heuristics which varies significantly.

Optimal embedding of MST

Consider an MST' for a set of terminal$V. Recall that each edge of 7" can be
embedded (or drawn) in the plane using at most two adjacgat tgientations;
any (monotone) zigzag-path consisting of line segmentspgahese two legal
orientations is a shortest path under the fixed orientatiettim(see Section 2.1).
For a given embedding @f, line segments from different edgesiofnay overlap;

if we drop all but one of the overlapping line segments, weanla Steiner tree for

N. An optimal embeddings one where the resulting Steiner tree has the shortest
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Algorithm A=3 A=4
Optimal embedding of MSTs [95, 136] | 2.5% [136]| -
Delaunay-based heuristic [187] - 4.0% [184]
Iterated 1-Steiner heuristic [112] 3.4% [137]| 4.1% [115]

Edge insertion heuristic [36] 3.4% [129]| 4.1% [129]
Edge-based heuristic [14] - 4.3% [111]
Greedy triple contraction [238] - 4.4% [111]

Hierarchical construction [179] -
Simulated annealing based heuristic [128.1% [128]] -
Steiner tree conversion [46] - 3.6% [46]

SMT 4.1% [154]| 4.5% [154]

1.8% [184]

Table 2: Overview of results for practical heuristics for computingxagonal and octilinear

Steiner trees. The table presents average length redsatien the corresponding MST for uni-
formly distributed terminal sets of size around 50. For ealglorithm there is a reference to the
orignal paper describing the algorithm (or algorithmicdyle

possible length — or where the total overlap is as large asilpleg Figure 15).

The first heuristic designated for genekagjeometry was based on optimal MST
embedding. In 1991, Burman et al. [33] presented a polynletinie algorithm
to compute an optimal embedding fdr= 4. Their algorithm is a generalization
of a similar algorithm for the rectilinear problem [95]. Here present the main
ideas of the original algorithm.

Consider an MSTI'. We say thafl’ is separablef only adjacentedgespq and
pq’ in T can possibly be embedded with overlap. Ho et al. [95] prohatithere

Figure 15:Examples of embedding of an MST far= 3. The topology of the MST is given by
the dotted lines. The embedding on the right is shorter tharinbedding on the left.
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always exists a separable MST for the rectilinear problgém=(2), and further-
more, that such an MST can be computedifn logn) time. This fact makes it
possible to devise an efficient algorithm to compute an ogit@mbedding of a
rectilinear MST.

A Z-shapetembedding is one where each edge is drawn using at most theee |
segments (note that the embeddings in Figure 15 are Z-shapéarns out that
there always exists an optimal embedding of an MST which shaped. Ho et
al. [95] gave aO(n") algorithm to construct an optimal Z-shaped embedding —
and hence an optimal embedding — for the rectilinear problémsing similar
techniques, Lin et al. [136] gave@(n?) time algorithm to construct an optimal
embedding of an MST fok = 3; an improved)(n) time algorithm was given by
Lin and Xue [134]. We conjecture that it is possible to cansta separable MST

in O(nlogn) time and to construct an optimal embeddingif) time under any
fixed orientation metric (Open Problems 4 and 5).

Delauney triangulation based heuristics

In 1981, Smith, Lee and Liebman [187] proposed a &t log n) heuristic for
the Euclidean problem. This heuristic uses the (EuclidBatgunay triangulation
to identify triplets and quartets of terminals for which $h&MTs are constructed,;
these SMTs form building blocks for a heuristic solution. eTBMTs are then
greedily, as in Kruskal’s MST algorithm, combined with M8&diges to form a
Steiner tree.

Lee et al. [123] implemented this algorithm far= 4; only the construction of
small SMTs was modified to take the new metric into accounteyTdiso used
the Euclidean Delaunay triangulation to identify triplated quartets. Shen [184]
implemented the algorithm usinggeometry Delaunay triangulations. Shen also
presented a local refinement and a simulated annealing bgatthm where the
first greedy solution is iteratively improved by insertingal SMTs. (This is sim-
ilar to the approach independently proposed by Winter amth@igasen [230, 236]
for the Euclidean problem). Another Delaunay-based hecrigs suggested by
Ho et al. [96] as part of a full-chip routing algorithm.
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Iterated 1-Steiner heuristics

The idea of the iterated 1-Steiner heuristic is to iterdgivdentify a Steiner point
s such that the length of an MST fa¥ U {s} is minimized. (The so-called
1-Steiner tree problem was originally considered for theli#ean problem by
Georgakopoulos and Christofides [82].) Kahng and Robing][fplesented sev-
eral variants of this approach for the rectilinear problem.

The first application to general-metrics was given by Koh [115], who used
the generalized Hanan grid to identify Steiner point caatlid for\ = 4. A
quadratic-time algorithm to solve the 1-Steiner problemXce= 3 was given by
Lin et al. [137]; they also presented experimental resoitsHe iterated 1-Steiner
heuristic forA = 3. A related heuristic based on inserting Steiner points into
MSTs was given by Hayase [91].

Edge-based heuristics

Instead of inserting Steiner points into the tree, Chao asd B6] suggested
an edge-insertion heuristic for the rectilinear problerhe Tdea is to insert a new
edge into the current tree, and delete the longest edge fretodp that is created.
Li et al. [129] extended the method to insert more than one edgt time. Also,
Steiner points were relocated to optimal positions afteheasertion, so that the
tree becomes locally minimal.

Another edge-based heuristic was proposed for the resditiproblem by Bo-
rah et al. [14, 15]. This algorithm is basically a Steinermpansertion heuristic;
however, two of the three vertices involved in the insersbiould be connected
by an edge in the tree. This reduces the number of possipledriin fact, there
are at most(n) relevant triples and these can be identifiedifm log n) time.
This approach was used by Madden and Koh [116] in their fdagibtudy of
non-Manhatten architectures, but no detailed resultd#reéductions over MST-
length were given. Kahng et al. [110, 111] presented expanrtai results for the
heuristic for\ = 4. Zhu et al. [239] proposed a variant of the edge-based method
where a spanning graph is used to reduce the number of caeslida edges to
insert.
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Greedy triple contraction heuristics

The greedy triple contraction algorithm of Zelikovsky [238r the Steiner tree
problem in graphs was the first to improve the (trivial) apgomation bound pro-
vided by the minimum spanning tree. In addition to being thgcally inter-
esting, this algorithm also has practical potential for pating Steiner trees in
fixed orientation metrics. Kahng, Mandoiu and Zelikovsk§(1111] presented
an efficient variant of Zelikovsky’s original algorithm; parimental results were
presented for the rectilinear and octilinear problem. $traightforward to extend
the algorithm to any fixed orientation metric.

The idea of the algorithm is to insert triples (Steiner ppios edges to neighbour-
ing vertices) in a greedy manner, where the longest edgég itwo loops created
are removed from the tree. Tlgain of a triple is the net effect of the insertion:
The edge length of the removed edges minus the edge lenglie ofiple. The
algorithm iteratively chooses a triple with maximum gainda&ontracts it, that is,
collapses the three vertices and the Steiner point intogesimrew terminal. In the
variant suggested by Kahng et al., triples are insertdzhtohes hence reducing
the running time significantly. A set @(nlogn) candidate triples is identified
in O(nlogn) time; this set includes the so-called empty triples whichtaples
that do not have any terminals within their bounding reckangrinally, an effi-
cient data structure to identify the longest edge on the Ipaitfveen two terminals
is given. The total running time of the algorithmdxn log” n), which makes it
applicable to large-scale problem instances.

Similar to the edge-based heuristic, Zhu et al. [239] prepos variant of the

greedy triple contraction heuristic where a spanning giapised to reduce the
number of candidates for triples to insert. This algorithamstructs slightly

shorter trees than the algorithm by Kahng et al., but at tls¢ aeba significant

increase in asymptotic running time.

Other heuristics

In this section we briefly describe other heuristic appreachat do no fit into the
classes given above.

In the hierarchical construction heuristic [180], a bindgcomposition is made
from the MST-topology. This decomposition then guides ddyotup tree con-
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struction — which involves adding edges (and embeddingbedd edges) that
minimize total length. Sarrafzadeh and Wong [180] presketgperimental re-
sults for the rectilinear problem only, but a general aldnon for the uniformly
oriented problem was described and analyzed. The heuwsiscimplemented
for A = 4 by Shen [184], who also discussed how small optimal SMTsctbel
computed using the generalized Hanan grid.

Li et al. [127, 128] suggested a simple simulated annealegiktic for A = 3:
Select a random sét of n — 2 Steiner points from the Hanan grid (far= 3),
and compute an MST folV U S. Simulated annealing steps are performed by
relocating Steiner points to adjacent Hanan grid vertices.

In the octilinear heuristic by Chiang and Chiang [44, 46§ ittea is to compute
a rectilinear Steiner tree and then convert all rectiliresiges to octilinear edges.
Also, Steiner points are moved to optimal locations underdttilinear metric.
The topology of the tree is not changed.

Finally, Coulston [68] proposed a heuristic for hexagonplrtitioned space; the
unweighted case of this problem corresponds to the hexagootalem (A = 3).
A genetic algorithm that combines full Steiner trees waslemented for the
problem.

Summary of heuristic performance

As indicated by Table 2, the edge-based heuristic and tleslgiteiple contraction
heuristic outperform the other heuristics wrt. qualityeBvnore noteworthy, these
two heuristics also have good running time behaviour (gfghe running time of
the optimal embedding heuristic is hard to beat). The edged heuristic has
quadraticO(n?) running time, while the greedy triple contraction heuddtas
sub-quadrati© (n log? n) running time behaviour.

Given the excellent performance (both wrt. quality and dpead the ease with
which the greedy triple contraction heuristic can be appleeother metrics and
more general interconnection problems, this heuristictrhasconsidered to be
the “champion” among practical heuristics for the fixed ota&tion Steiner tree
problem.
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3.4 Exact algorithms for the general case

Since the fixed orientation Steiner tree problem is NP-haetg is little hope that
there exists a provably efficient exact algorithm. Howefaarrestricted problem
instances polynomial-time algorithms do exist. As an exanipn and Xue [133]
devised a linear-time algorithm for the problem of compgtam hexagonal SMT
when the terminals are distributed on the boundary of a eeguéxagon; Lin
and Xue also observed experimentally thatidor 10, all computed SMTs were
minimum spanning trees (see Open Problem 6).

In this section we present twwracticalapproaches for computing SMTSs for gen-
eral problem instances. These algorithms have no provaisy gunning time
bounds, but as we shall see, the so-called Geosteiner abpnmaks very well in
practice. Using the Geosteiner approach, itis possiblerapeite SMTs for prob-
lem instances with randomly distributed terminal sets — eaal-life problem
instances from chip design — with several thousand terminal

Enumeration of full topologies

The problem of computing a Steiner tree for a given full Stetopology was con-

sidered in Section 3.1. One straightforward approach torspthe general case is
to enumerate all full topologies, and for each of these tomaman SMT. (Here

we assume that we use an algorithm that also considers detgt@pologies —

such as the linear programming approach presented in 86t

Enumeration of full topologies was proposed as a solutiothotefor the Eu-
clidean problem by Smith [188], who also gave an eleganiesstation of full
topologies. Consider the unique topolo@yfor three terminals consisting of a
Steiner point that is connected to three leaf terminals. W4udling a fourth ter-
minal ¢ to this topology, we may view this as “joining” to one of the edges
uwv in 73 by removinguv and connecting a Steiner poiatto ¢, u andv. By
generalizing this argument, it is easy to see that a topolpgwyith n > 4 ter-
minals can be represented byha— 3 vectorV(7,) = (v4,vs,...,v,), Where

1 <w; < 2¢— 5. (This also shows that the number of full Steiner topologies
terminalsis3 - 5- - - (2n — 5), a function which grows super-exponentiallyrir)

Based on an efficient application of this representationyrbér and Xue [199]
in 1999 implemented the first exact algorithm for the hexadometric A = 3).
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Their branch-and-bound algorithm works as follows. Fisgiame that an upper
boundUB on the length of an SMT exists — as provided by a heuristic otkth
Also assume that the terminals are ordered by some ordesitegree. Let7, be

a topology on the firsk terminals ¢ < n), and letV (7;) = (v4,vs,...,vx) be
the corresponding vector. If an SMT for topolo@y has length greater than or
equal toUB, then no matter how,, is extended by joining terminals (as given by
the ordering), this cannot result in a tree with a shortegtletthanUB. Thus we
need not consider any vector for the complete problem wegfipfv,, vs, . . ., vx),
essentially cutting off a whole branch in the search tree.

Using this approach, Thurber and Xue were able to solve th& iblem for
10 terminals in seconds. Computing an SMT for 20 termina& several hours,
and was not feasible in all cases. The branch-and-bound&cpeved to be very
effective; as an example, approximately 2 million full téggies for 10 terminals
were reduced to around 350 topologies for which linear @ogning was ap-
plied to compute an SMT. Even though the branch-and-boupdbaph helps, the
running time growth of full topology enumeration makes tppr@ach infeasible
even for moderately sized problem instances.

Geosteiner approach

Recall that an SMT is a union of full Steiner trees (FST), whace SMTs where
all terminals are leaves and all Steiner points are interetices. Instead of
enumerating full topologies, it turns out to be much moreceffit to enumerate
FSTs and then combine these to form an SMT for the completef setminals;
this is called the&seosteiner approacim the following.

The Geosteiner approach has its origins in the work on thédaan problem by
Cockayne [60] (in the 1970s) and Winter [216] (in the 19804)re recently, sig-
nificant improvements were obtained, allowing the solutbkuclidean and rec-
tilinear Steiner tree problem instances with several thndgerminals [89, 206,
207, 208, 209, 220, 231].

Nielsen, Winter and Zachariasen [154] adapted the Gea@stajpproach to the
uniform orientation A-geometry) Steiner tree problem. The efficiency of the
approach depends critically on the characterization oboexal forms given by
Brazil et al. [27] (see Section 3.1). Here we describe thenrna®as of the FST
enumeration (or generation) algorithm proposed by Nieétex. [154]. It should
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be noted that the so-called concatenation phase of theatalgor the combina-
tion of FSTs into a complete SMT — is independent of the uryaleglmetric, and
was solved using the branch-and-cut algorithm proposeddayr&/[206].

Consider any FSTF in A\-geometry. We may assume that all Steiner points of
F have degree 3, and that has at most one bent edge (see Section 2.2).cLet
be the corner point of the bent edge. HAfhas no bent edges then lebe the
middle point of an arbitrary straight edge Bf) If we split /" at ¢, we obtain two
so-calledhalf FSTs— each of which is an FST with straight edges that has one
“dangling” extension ray (Figure 16). The base of the extengy is called the
root of the half FST. Note that any FST can be obtained bynpgtwvo half FSTs;
the intersection between the extension rays defines theicpaint of the single
bent edge in the FST. Also, any half FST can be obtained bynjgitwo half
FSTs; here the intersection becomes the root of the half REhaew extension
ray is added with the new root as its base (Figure 16).

A

15

T1

Figure 16:Half FSTST; andT, with rootsr; andr; are joined to form a larger half FST with
rootr. The dashed arrow is the extension ray of the new half FST.

Inthe FST generation algorithm, half FSTs are generateddrgasing size (which
is the number of terminals spanned). A single terminal witheatension ray
forms a size 1 half FSTs. Clearly there &kn such half FSTs. A size 2 half
FST can be obtained by joining two size 1 half FSTs, and moneigdly, a size
half FST can be obtained by joining a sizéalf FST with a size — j half FST
(wherej ranges from 1 tdi/2]). The power of this idea comes from theuning
techniques employed. These are techniques that can eteranaalf FST from
consideration since it can be shown that the half FST cammpgbt of any SMT.
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Elementary pruning is based on for example angle propedieSMTs in \-
geometry (see Section 2.2), and on properties such as tleephaperty which
basically states that terminals cannot be too close to loigg® Bottleneck dis-
tance properties — which bound the edge lengths in an SMT dgdge lengths
in a corresponding MST — are powerful fargeometry (as they are for the Eu-
clidean and rectilinear metric). However, these prunimfptéques alone are not
sufficient to solve large-scale problem instances.

The concept of canonical forms facilitates pruning basedc ateverly chosen
canonical form. The idea is to choose a canonical form thabesested bottom-
up in the algorithm, that is, which has effect even for smalf FSTs. This can
be achieved by using the edge ordering that comes from a -fiegithraversal
starting in the lowest indexed terminal of each FST (undgrgaven ordering of
the terminals). Why is this canonical form effective? Cdesia pair of half FSTs
that are to be joined. Either the lowest indexed terminam®ig the terminals
spanned by the two half FSTs, or it is “outside” (and thus wwkm). In the
former case, we know which terminal has the lowest index,thrsdrestricts the
distribution of directions in the merged half FST. In thedatcase, even more
restrictions can be enforced; if neither the restrictionthe former nor the latter
case can be fulfilled, the resulting half FST can be pruned.

The resulting number of generated FSTs is almost linearantjpe, and the size
of the largest generated FST is practically bounded by atanhasn increases.
Using this algorithm, Nielsen et al. [154] were able to satwedomly generated
problem instances with up to 1000 terminals in less than @ue for A < 8. A
single problem instance with 10000 terminals was solvedss than two days for
A= 4.

Independently of the work of Nielsen et al. [154], Coulstéi][implemented a
similar algorithm for\ = 4. The algorithm could handle problem instances up to
around 25 terminals — mainly since some of the more sophistitpruning tech-
niques were not used, among these pruning tests based amaarforms. More
recently, Pagh [157] adapted the Geosteiner approach tgdheral weighted
fixed orientation metric. Since no pruning tests based owmaal forms were
employed, this algorithm did not scale well either.
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3.5 Conclusions

The progress in algorithms for solving fixed orientationitstetree problems has
been enormous over the last decade. For the problem of corg@aut SMT for a
given topology, new algorithmic approaches were neededlt@ she problem in
linear time. Similar techniques were capable of computegfiexibility polygon
within the same asymptotic running time bound.

For the general SMT problem (where the topology is unknowe)l-known tech-

niques from the Euclidean and rectilinear problems coulddsgpted to the fixed
orientation problem. However, the adaptation of the Géwosteapproach would
not have been particularly successful without the charaetiton provided by
canonical forms.

One of the future challenges is to fill the gap between thermotyial-time ap-

proximation scheme of Arora [5], and the plethora of pradtieeuristics for the
problem. It would be useful to have practical heuristicshwitirameterized ap-
proximation bounds.
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4 Applications and generalizations

In the first decades of very large scale integrated (VLSIp gnoduction Manhat-
tan routing was the standard. Two layers were used for (Bignang, one for
horizontal and one for vertical wires; vias were used to eashmwires running in
perpendicular directions. (The de-facto rule that wirea@mgle layer all run in
the same direction is sometimes denotedaiegerreddirection constraint.)

During the 1990s advances in manufacturing technologiegenttapossible to
produce chips with more than two interconnect layers. Thesgsed number of
layers opened up the possibility of using alternative dioss as to improve the
quality of the routing with respect to congestion, delay aoder usage. As a
general rule, decreasing total wire length improves aBégality measures, and
may even lead to a reduced chip size.

In this section we first discuss some early contributionasteel to non-Manhattan
routing. The application to printed circuit boards and etemouting is described
first. Then we move on to discuss advantages and disadvardagervasive use
of non-Manhattan wiring, that is, for general full-chip tomg. We conclude the
section by describing a number of selected generalizatibtie fixed orientation
Steiner tree problem that are motivated by application$ip design.

4.1 Printed circuit boards and channel routing

The first application of non-Manhattan routing in printeccait design appears
to be due to Heiss [92]. In 1968, he gave an extension of tlesiclal Lee algo-
rithm [120] that enablediagonalrouting (Figure 17). Heiss also gave a general-
ization to more than two routing layers (where two layergespond to the two
surfaces of a double sided printed circuit board). MoremtdgeStan et al. [191]
presented two other generalizations of Lee’s algorithm.

Another alternative to Manhattan routing was given by Clnawid[38] in 1979.
Chaudhuri introduced routing with three uniform orierdas (corresponding to
A = 3) for both printed circuit boards and channel routing. The neetric was
denoted the “Steiner metric” to distinguish it from the useatilinear (or Man-
hattan) metric. For printed circuit boards, Chaudhuri desd a general routing
scheme for two layers, and he presented a method to deal wathbroblem of
routing three orientations on only two layers.
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CIRCUIT BOARD PLOT

Figure 17:Printed circuit board with diagonal routing (from Heiss [92

The other problem that Chaudhuri considered wascti@nnel routing problem
Channel routing was one of the basic problems in chip degdo the late 1990s.
In the technology of the time, cells were placed on rows oncthig surface,
and routing was performed in the area between these rowsa{m channels).
A channel consists of two horizontal shores, where the teaigito be intercon-
nected are located. Usually, each net consists of ternfirmasboth shores; hence
the interconnection for each net has to cross the channel.

In the traditionalManhattan routing modekouting is performed on a rectilinear
grid with horizontakracksand verticacolumngFigure 18). The number of tracks
is called thewidth of the channel. The main objective of the channel routindppro
lem is to minimize the number of tracks needed for the roudisghis minimizes
the area used by the channel. This is in general an NP-haldepno Since the
objective is not to minimize the length of the nets (indivatly or jointly), chan-
nel routing may result in long connections for some of thesnétor a detailed
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Figure 18: Channel routing models: Manhattan, diagonal, times squeeagonal and octo-
square.

introduction to the theory and algorithms for the Manhatteodel, see [9, 126].
In the following we discuss some of the alternatives to theMstan model that
have been considered in the literature.

In thediagonal routing modelthe rectilinear grid is simply rotateth° — hence
there are still only two orientations [140, 141, 143] (Figu8). One of the im-
mediate advantages of this model is that short two-terniri@tconnections only
require one layer change as compared to the Manhattan mbée¢\wwo changes
always are needed — except when the two terminals can be ceaey a direct
vertical connection. Thus fewer vias are in general needeemthis model.

Returning to the problem studied by Chaudhuri [38], wheredhuniform orien-
tations are employed, one may distinguish between two cdeethe first case,
the so-calledimes square modgebne of the three orientations is the (usual) hor-
izontal track, and the other two orientations are denotglot iand left tracks, re-
spectively [20, 142, 190, 195, 196]. In the second casehelragonal modebne

of the three orientations is vertical [21, 166] (Figure 18ne of the advantages
of the latter is that terminals can be spaced at the sameahtdat separates the
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wires in the grid; this is not possible under the times squaoelel. Both mod-
els can be shown to have superior properties when compatkd tdanhattan or
diagonal models.

Finally, theocto-square modeherges the Manhattan and diagonal models. This
model thus has four uniform orientations (corresponding 04, see Figure 18).
This model is discussed in a series of papers [9, 37, 39, B),1177, 205, 212,
226]. Although this model clearly has the advantage of havirore available
orientations, it also has the disadvantage that the nee#iti and diagonal wires
cannot possibly have the same separation. A slightly @éffemodel was dis-
cussed by Chiang and Sarrafzadeh [45], who introdd&edvires locally to avoid
so-called knock-knees in the wiring.

One particular subproblem which appears in the channeingyroblem — as

well as in a more general setting — is the so-caldng problem: Assuming
a layout (of some nets) in the plane, assign each edge of ybetl#o a unique

layer such that the connectivity of the nets is preserved ealges of distinct nets
do not overlap on the same layer. Lipski and Preparata [18&]emted the first
systematic treatment of this problem, and gave a simpleactenization of two-

layer wirability of arbitrary layouts. Tollis [200, 201] &éended the theory to all
uniform grids; these are grids where the degree of each grid pointeis, end

where the edges are uniformly distributed around each gpiicl [fthere exist ex-
actly four such uniform grids — corresponding to two, thifeey and six uniform

orientations).

It is unclear to what extent the proposed models and algosthave found their
way into the design of real chips. Channel routing essdytisdcame obsolete
during the 1990s as a result of the new sea-of-cells tecggolahere cells could
be placed (more or less) freely on the chip surface; also;tbneecell routing be-
came possible. In the next subsection we discuss generaVlaahattan routing
which is relevant for current day technology.

4.2 General routing in chip design

The application of multiple orientations to the generaltiogy problem in chip
design was already anticipated by Widmayer et al. [214, 2159]985. In the
early 1990s, Burman et al. [33] and Sarrafzadeh and Wong] [§&&e the first
practical applications of-geometry to general routing in chip design. During the
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following decade a series of heuristics — mostly with inapan from rectilinear
and Euclidean counterparts — were proposed for solving thie& tree problem
in uniform and fixed orientation metrics (see Section 3.3).

In 2000 Koh and Madden [116] presented the first in-depthystdithe feasibility
of large-scale non-Manhattan routing architectures. gsimulation on realis-
tic benchmarks they showed that average wire length reshehetween % and
11% could be obtained for hexagonal routing £ 3) for a complete chip. Sim-
ilarly, reductions betweefi% and17% could be obtained for octilinear routing
(A = 4). It should be noted that these improvements were obtanoed the same
placement of cells on the chip.

Choi et al. [47] presented a similar analysis for octilineasting that confirmed
the reductions in wire length; however, these reductiongwetained at the cost
of an increase in the number of non-routed nets and an ireredke number of
vias.

X architecture

The commercial interest in non-Manhattan routing can baesgised with the for-
mation of the X-Initiative in 2001 [222], a consortium of s@ére and chip com-
panies that supported the development of the so-cXllacthitectureg[197, 198].
The X architecture essentially adds diagonal wires to tiathl Manhattan archi-
tecture (corresponding to= 4). However, in order to make this work in practice,
a number of difficulties had to be adressed [102].

One of the major problems with the X architecture is thatdeui routing does
not work in practice; rectilinear and diagonal wires do navénthe same sepa-
ration (see Figure 18, octo-square model). This eithertesu problems with
signal integrity or delay (if diagonal wires are too closdaw thin), or results in
suboptimal use of routing area (if only every second diaon& is used or the
separation between rectilinear wires is increased). Oh#igo to this problem
— but an algorithmically challenging one — is to drop the pre¢d direction
constraint and to allow all directions on all layers; thislenotediquid routing.
This allows for directional changes on a single layer, anddramatically reduce
the number of vias.

Ho et al. [96] suggested a multilevel approach for the X dedhiure. A multilevel
algorithm consists of two main steps: coarsening followdihcoarsening. The
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coarsening step is similar to the use of a global routingritlym, but is iteratively
employed. The algorithm of Ho et al. on average reduced wingth by 18.7%
for a set of benchmark instances when compared to Manhaitzing.

Y architecture

As a reaction to the shortcomings of the X architecture, Gieah [40, 41, 42, 43]
in 2003 took one step back and investigated the use of herhgauting (corre-
sponding toA = 3); they coined this the architecture The advantage is that
gridded routing is in fact possible for this architectunecs all parallel wires have
the same separation (see Figure 18, times square or hexagodal). There-
fore, from an algorithmic point of view, this architecturasha major advantage
over the X architecture. Based on simulations under réabsenarios, Chen et
al. [42] estimated that the Y architecture improves wirgtérin the rangé — 8%
over Manhattan architecture, while the X architecture iolstamprovements in
the range — 11%. If the effect of decrease in routing area can be fully wiizo
make the chip smaller, wire length improvements of appraxaty23% and29%
are possible for Y and X architecture, respectively.

Although it is clear that both the X and Y architecture have plotential to de-
crease wire length significantly, it is (as of this writing)alear how many chips
have been produced with these architectures. The first coohehip (from
Toshiba) using the X architecture was produced in 2004, and at leastcbip
(from ATI2) followed in 2005.

General architecture

In general architectureny number of uniform orientations can be used for rout-
ing. Since each routing layer has a preferred directiontdts# number of avail-
able orientations usually depends on the number of layeosveMer, since more
than 10 routing layers are already common, the number ofedlailayers is not

a limiting factor.

The problem of balancing the use of routing resources onvhiedle layers was
studied for the Manhattan architecture by Yildiz and Mad[##v, 228], and for

lwww.semiconductor.net/article/CA513393.html
2www.edn.com/article/CA608028.html
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general architecture by Agnihotri and Madden [1]. The idga imake the routing
cost on each layer (as seen by the routing algorithm) depeigeocongestion on
the layer. By iteratively adjusting the routing cost on etgfer, congestion can
be lowered on highly utilized layers.

Paluszewski et al. [158, 159] presented a completely @iffeapproach to deal
with congestion when many routing layers are available.idiba is to exploit the
fact that SMTs usually can be embedded in many different waysgeometry.

The novel idea suggested by Paluszewski et al. [158, 159) is¢ a pure geo-
metric approach for routing. In the first phase of the al¢ponit SMTs and their
flexibility polygonsare computed for each net on the chip; recall that a flexybilit
polygon is a geometric representation of all SMTs for a givein(see Section 3.2).
Each flexibility polygon is assigned a weight that is equah®routing area used
by the SMT divided by the area of the flexibility polygon (herecdegenerate flex-
ibility polygon with no flexibility has weight 1). Note thahé weight represents
the average probability that routing resources are neemteal given point in the
flexibility polygon.

Based on the weights of the flexibility polygons;@ngestion maps constructed

for the whole chip area (Figure 19). The congestion map gilesestimated

routing resources needed for each point of the chip areaid&aeof the algorithm

is now to move wires away from highly congested areas. Thisiie by picking a

flexibility polygon with least flexibility in a highly congeésd area and performing
the actual routing for this SMT — and in such a way that it agotdngested

areas if at all possible. This is repeated until all SMTs arged, and results in a
so-callednitial routing.

The next step of the algorithm is to remove overlapping wiines still may be left
in the initial routing. This is achieved using traditionablkk routing techniques.
Finally, liquid routing is applied to reduce the number cdsi This means that
wires may be assigned to non-preferred layers. Experimvatiithe new method
show that it is indeed an advantage to use flexibility polygjarthe initial routing
phase. The initial routing has significantly less overlagntbne produced using a
standard routing technique, and the final routing also es=swire length. When
using 5 or 6 layers, architectures with> 4 reduce total wire length withi— 18%
when compared to Manhattan routing. Thus, this prototyg@ementation is a
witness of the potential of applying a general architectarthe routing problem
in chip design.
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Figure 19: Congestion map (from [158]). Blue and white areas haveslttingestion, green
areas some congestion, while red areas have high congestion

4.3 Generalizations motivated by chip design

In this section we present a number of generalizations obtemer tree problem
that are motivated by chip design. The presentation is nopcehensive and does
not cover all the literature, but it does cover the most ingoadrgeneralizations.
Other generalizations can be found in, e.g. [215].

Wire length estimation

In the placement phase of chip design, wire length can bmastd using a num-
ber of differeninetlength modelsThe purpose of a netlength model is to quantify
the quality of a given placement; total wire length is uspalprimary objective,
but other objectives such as signal delay and power consomalso play an
important role.

Each net of the chip (in Manhattan architecture) is a rexdr tree spanning a set
of terminalsN. A rectilinear SMT obviously has minimal length, but is NBrti
to compute. Therefore, computational methods that quickly estimate SMT
length — and that can be incorporated directly and efficyeintio the objective
function of the placement algorithm — are of great interest.

Consider the smallest axis-parallel rectangle that coaf#j the so-calledhound-
ing box BEN) of N (Figure 20, left). LetBB(/N)| be the perimeter length of
BB(N). In therectilinear metricit is easy to see that the half-perimeter length
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$|BB(V)| is a lower bound on the SMT length fa¥. Also, the placement prob-
lem under this model can be solved by linear programminggét it is a solution
to the dual of a transshipment problem [32].

2 R &

Figure 20:Bounding boxes fon = 2 (left) and\ = 4 (right) for the same set of terminals.
Each of the lines (in legal orientations) that define the llmmboxes are shown.

Consider the worst-case relative erpgn) of the half-perimeter estimate for a set
of n terminals under the rectilinear metric. It is easy to seejtd = 5(3) = 1,
that is, the estimate is exact far= 2 andn = 3. Chung and Hwang [51] studied
the properties ofi(n) for smalln. Using fairly involved arguments they showed
thatp(n) < 2 for n < 10 (i.e., the SMT length is at most twice the value of the
lower bound forn < 10). More generallyp(n) grows as©(y/n) [50, 51]; the
best known upper bound %s{x/n - 2]+ % and is due to Brenner and Vygen [31].
Therefore, the half-perimeter estimate becomes arbitrbad in the worst-case
asn increases. (For uniformly distributed terminals, the &ted error is also
©(y/n) in the limit [84].)

Now consider an arbitrary (weighted) fixed orientation neatrith o legal orien-
tations given by unit circlee. Let BB.(/N) be a smallest convex polygon with
sides ino-geometry that containd’. The polygon is a “constrained” convex hull
of N where the sides have restricted orientations; noteBBat/V) has minimum
perimeter among all such polygons. This generalized bagnoox can be com-
puted inO(on) time as follows. For each of th&r legal directions, identify a
terminalt such that the right half-plane (as seen frolend relative to the given
direction) includes all terminals. Clearly, terminatan be identified irO(n)
time. The intersection of thege half-planes defineBB: (V) (see Figure 20).

As in the rectilinear case, the half-perimeter len§ifBB. (V)| is exact forn = 2,
but not in general for. > 2. Furthermore, we have the following:

Theorem 4.1 The half-perimeter length|BB (V)| is a lower bound on the SMT
length for N under any fixed orientation metric.
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Wei, Dong and Hong [210] experimentally validated this midor A = 3, but
provided no proof. Here we sketch a proof of the theorem (e [469] for a
similar proof for the Euclidean case). LEtbe an SMT forN. Consider an outer
walk of 7. This outer walk visits the terminals on the boundanB& (V) in
order along the boundary. Consider two consecutive boyrtdaminalsu andwv.
The main observation is that the path betweeand v along the boundary is a
shortest pathn o-geometry. Since the path i betweenu andv is at least the
shortest distance betweerandv, we havelBB:(N)| < 2|T’|c. Thus the theorem
follows.

It is easy to see that the asymptotic results for the reeslirmetric generalize to
arbitrary \-geometry, since\-metrics are bounded by constant factors from each
other. The same holds for unweighted fixed orientation ro®triFor arbitrary
weightedixed orientation metrics, the constants in the asymptatimiols depend
on the skewness of the unit disk.

One straightforward way to improve the half-perimeterraate is to scale it with
a function that depends om. More precisely, a function of the forrd'\/n,
where(C' is an appropriate constant, is typically chosen. The consétor C
is found using statistical methods by performing experite@m uniformly dis-
tributed and/or real-life problem instances. Wei, Dong &twhg [210] studied
the half-perimeter estimate for = 3. They developed an improved wire length
estimation method denoted APWL-Y by performing more sajptased scaling
of the half-perimeter estimate. In their method, the sgafiot only depends on
n, but also on the “aspect ratio” of the bounding box, thatis,amount of skew-
ness of the bounding box. Based on comprehensive expesm&fet et al. [210]
conclude that the error of the improved wire length estinmtess than 5% on
average. This error is similar to the error obtained by caingla minimum span-
ning tree (MST) for the terminals; however, computing theaength estimate is
much faster than computing an MST.

A number of other methods can be used to esimate wire lengththE rectilin-
ear metric, Brenner and Vygen [31] compare the followingralative estimates:
MST length [171], star length (solution to the general Ferprablem forN) and
clique length (sum of distances over all pairs of pointsafd by some function
of n). Brenner and Vygen [31] argue that the cligue model is mppt@priate in
placement algorithms that only consider two-terminal @ations, that is, where
a fixed topology must be assumed for each net of the chip.
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Delay-driven routing

In the chip routing problem the task is to interconnect thimteals of every net
of the chip. For each néY, one of the terminals € N is thesource while the
remaining terminals inV are thesinks The electrical signal should propagate
from the source to the sinks via the constructed tree. TheiSthiner tree is in
fact directed — or a so-calle8teiner arborescence

One of the important objectives that should be taken int@@actin the routing
phase of a net is theignal delayfrom the source to the sinks. In particular, if
the net is part of theritical signal pathof the chip, then the signal delay of the
constructed tree has a direct influence on the clock-rateédormance) of the
chip. Signal delay is related to the length of the paths frioenstource to the sinks,
SO minimizing total path length often improves the signdageroperties of the
tree. However, the actual signal delay has more complexvimlraand depends
not only on the length of the path itself, but also on the langjft the subtrees
that are rooted on the path. Furthermore, for a simple twoiteal connection,
signal delay increases quadratically with the length otthenection. The popular
Elmore delay model [74, 86, 113, 161] serves as a good estimiatr computing
the signal delay. The slightly simpler distributed RC delaydel is easier to use
for optimization, but serves best as an upper bound on tlag §&b]. An overview
of models and techniques for optimizing delay can be foun# 113]. The
problem of minimizing Elmore delay is still a major algomtiic challenge in chip
design [117].

In the remainder of this subsection we consider some simpléut still useful
— models that can incorporate delay into Steiner tree dlyoms. The simplest
model is to assume that the delay of a wire is linear in itstleniggnoring all other
objectives, a shortest path tree would provide minimumydeéfowever, shortest
path trees usually have unacceptable high total lengthte(Mat a shortest-path
tree in the Euclidean metric is a star centered at the sQurterefore, so-called
shallow-lighttrees [7] have attracted considerable interest. Thesaege that
both have short paths from their source to their sinks (ahallsw”) and that
have small total length (are “light”).

The two objectives, path length and total length, can be doechin a number
of different ways, e.g., by bounding both objectives, byrimting one objective
while minimizing the other, or by minimizing a weighted sufrboth objectives.
This can be achieved by combining Prim’s algorithm for cangtng minimum
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spanning trees with Dijkstra’s algorithm for constructsigrtest path trees [3, 64,
114, 151]. Shallow-light Steiner trees can also be obtayealdding appropriate
shortest paths to a heuristic SMT [64]. Most of the algorihior constructing
shallow-light trees can easily be extended to any fixed taten metric as they
are in their core graph based.

For most nets on the chip, an SMT has sufficiently good delagegaties. Further-
more, SMTs in fixed orientation metrics are usually not uri¢gee Section 3.2),
and the SMTs for a given terminal set may have varying delapgnties (Fig-

ure 21).

1 T ]

Figure 21:Two rectilinear SMTs for the same set of terminals. The SMTharight has better
signal delay properties than the SMT on the left.

The construction of (short) rectilinear Steiner trees Hratgood with respect to
some other objective than length was considered by Boede[#ilal2, 13] and
by Bozorgzadeh et al. [18, 19]. Boese et al. introduc&labal Slack Removal
algorithm that attempts to improve the delay properties Steiner tree without
increasing its length. Peyer et al. [163] took this idea dee $urther and con-
sidered the problem of constructing rectilinear SMTs widmgsecondarydelay-
related objective. More specifically, they focused on thebfgm of constructing
a rectilinear SMT with the weighted sum of path lengths ass#ndary objec-
tive (i.e., path lengths from a given source to a set of sinks)optimal solution
to this problem exists in the Hanan grid for the terminal 232], but Peyer et
al. [163] proved the following stronger result:

Theorem 4.2 The Steiner points of an optimal solution to the rectilin&aeiner
tree problem with weighted sum of path lengths secondamctibpmustoverlap
with vertices of the Hanan grid for the terminal set.

Adding the secondary objective to the problem thus forces3teiner points to
belong to the Hanan grid. Contrary to the rectilinear profleo structural results
are known for the same problem under other fixed orientatietrios; however,
it is easy to see that every FST of an optimal solution can bieeeloled in such
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a way that the FST has at most one bent edge (see Theorem Z2&onj)écture
that there exist strong characterizations based on theepbio¢ canonical forms
(Section 3.1).

For the rectilinear problem, Peyer et al. [163] presentdti bgact and heuristic
algorithms. The heuristic algorithm, denotBatended Global Slack Removal
(XGSR) is also capable of minimizing EImore delay as a secondajgctite.
Experiments with real-life chip instances with 4 to 40 terais were presented.
(Note that rectilinear SMTs with 2 or 3 terminals are alwagsmal wrt. weighted
sum of path lengths.) On average, XGSR constructed secpatpactive optimal
trees for 98.4% of the problem instances; only 52.0% of tlublem instances
were optimal before applying XGSR. Figure 22 shows two héalrectilinear
SMTs — one of which is secondary objective optimal.

Group interconnections

During the routing phase of chip design, it is usually asslithat each pin of the
net is a single point. Thus computing a minimum length irgarection is the
same as computing a Steiner minimum tree for the pins of theHwmvever, on a
real chip a pin typically consists of several rectangledi(@m segments), and any
point on this set of rectangles suffices as a connection .p@hs fact motivates
the study of so-calledroup Steiner trees, where each “terminal” consists of a set
of rectangles. The roots of this problem go all the way badWétrak [146], who
discussed the Euclidean group problem (where the groupsoarex sets in the
plane).

As shown by Zachariasen and Rohe [235], the rectilinear gmoblem with
rectangles reduces to the rectilinear group problem withtppas the problem can
be solved in the Hanan grid of the corner points of the givetarggles. So from
here on we consider the following definition of the rectiangroup Steiner tree
problem: Given a set of groupg = { Ny, Ny, ..., Ni }, where each groufy;, i =
1,...,k, is a finite set of points in the plane, construct a shortedtlirear tree
which spans at least one point from each group. Such a tredlésl@rectilinear
group Steiner minimum tree (RGSMA)real-life RGSMT is shown on Figure 23.

This problem is NP-hard even for very restricted cases, wigen all the termi-
nals are required to lie on two parallel lines [103] or wheeitstr points are not
allowed [104]. In contrast to the ordinary Steiner tree peoh no polynomial-
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SMT (503) XGSR (359)

Figure 22:Real-life chip net example with 8 terminals. Both trees amilinear SMTs. The
weighted sum of path lengths is given for each tree. The th¢eimed by XGSR is secondary
objective optimal.

time approximation scheme or even constant-approximaigorithm is known
for the problem. For the more general group Steiner treelnoln graphsit is
known that the problem cannot be approximated better thaotarin & in poly-
nomial time, assuming B NP [75, 104]. However, this does not exclude the
existence of better approximation algorithms for geometariants of the prob-
lem. Scultze [183] gave a constant-factor algorithm for Buelidean problem
where the groups are contained in disjoint regions with ledr‘fatness” (disks
or squares have for example bounded fatness).

Practical heuristics for the rectilinear group Steinee peoblem were first consid-
ered by Reich and Widmayer [172]. These algorithms wereraxgatally eval-
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Figure 23: Rectilinear group Steiner minimum tree (real-life chiptarsce from [235]). The

line segments within each group (marked by a “bubble”) agetekally equivalent, and the tree
should span at least one point from each group.

uated in [104] and appeared to compute good solutions. @thaetical heuristics
showing good performance have been proposed [8, 93].

As mentioned above, the rectilinear group Steiner treelprolzan be reduced
to the group Steiner tree problem in the Hanan grid graphHergiven points.

Furthermore, it is easy to transform the group problem tetdenary Steiner tree
problem in a graph by introducing so-called super-ternsit@the graph problem.
Therefore, the problem can be solved using any exact ahgofir the Steiner tree
problem in graphs.

Zachariasen and Rohe [235] gave a first (tailored) exactigtgo for solving the
rectilinear group Steiner tree problem. They presentelnigaes to reduce the
given set of points, that is, to remove points in the gralp§om consideration by
showing that an RGSMT exists that does not use these poilgs, &generalized
version of Zachariasen’s [231] full Steiner tree generatitgorithm was used to
reduce the Hanan grid graph — hence speeding up standarchkaad-cut algo-
rithms for solving the corresponding graph problem. Corapanhal experiments
on real-life and random problem instances with up to 100 gsovere performed.
The techniques employed resulted in a speed-up approaahingder of magni-
tude, and increased the range of practically solvablelifeaproblem instances
from around 40 groups to beyond 70 groups.

Except from the above mentioned work on the rectilinear jgmob no literature
appears to exist on the group problem for fixed or uniformrdggon metrics.
One particular difficulty is that no computationally effistereduction to a graph
problem exists, as the ordinary problem does not reduce tdya@mially-sized
graph problem (see Section 2.3). From an approximatiorri#thgo point of view,
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it is likely that all fixed orientation metrics have the sansgraptotical upper and
lower bounds on their approximation ratio. However, as famrout above, no
non-trivial/specialized upper or lower bounds are culyekriown.

Obstacle-avoiding interconnections

When solving the routing problem in chip design, certainarg of the chip sur-
face may be forbidden — or may have certain restrictionsh$egions are usu-
ally denotedobstacles Obstacles typically consist of pre-placed macros or other
circuits (Figure 24). In older technologies, where the nami available lay-

ers was limited, routing across pre-placed circuits wasossfble. These circuits
formed hard obstacles. In newer technologies, where the number of daiger
higher, it is possible to route wires across pre-placeditscHowever, the length

of wires across suchoft obstacles must usually be bounded, since there is no
room for placing buffers/repeaters in areas with obstgdS].

lﬁgﬂ,ﬂm it E ;

...:!' "y

|
I
2 %ﬂlﬂ" |||||.|r i
T LU -"'.n.||. "
‘ || || i
: i I

Figure 24: Typical distribution of obstacles on two real-life chipsPi¢tures reproduced by
courtesy of Research Institute for Discrete Mathematicsyéfsity of Bonn.)

An obstacle-avoiding Steiner minimum tree (OSMT) is a ties interconnects
a given set of terminals using minimum total length whileidumy a set of given
hard obstacles (Figure 25). The problem with hard, polydg#teounded obsta-
cles has by far received the most attention in the literatanel in the follow-
ing we focus on this particular problem. (Studies of othetaras can be found
in [121, 124, 148].)
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a) b) c)

Figure 25:Soft and hard obstacles. a) A rectilinear SMT that ignorestestacle. b) A rectilin-
ear SMT that respects a soft obstacle by bounding (the leafyjthe part of the tree that overlaps
with the obstacle; note that the tree is not an SMT for terfsing) An hard obstacle and an
obstacle-avoiding rectilinear SMT.

The construction of obstacle-avoidirstportest pathgorms a building block in
the construction of obstacle-avoiding Steiner trees. Atsisbobstacle-avoiding
path can be found in the so-called visibility graph [6, 2Mfich has the set of
terminals and obstacle corners as vertices, and an edgedietwo vertices if
it does not properly intersect one of the given obstacles.ef\al. [221] defined
the so-called track-graph for the rectilinear problem, ahdwed that obstacle-
avoiding rectilinear shortest paths can be computed aftigieising this graph.
Widmayer [213] gave ai®(nlogn) time construction of a rectilinear shortest
path preserving graph of size(n logn), wheren is the number of terminals and
obstacle corners.

Ganley and Cohoon [78] observed that the obstacle-avoidiatjinear Steiner
tree problem can be solved in a subset of the Hanan grid (sei®®d.2) of
the terminals and obstacle corners — thus providing an effigieduction to the
Steiner tree problem iplanar graphs Muller-Hannemann and Schulze [149] also
gave an approximative reduction from the obstacle-avgidatilinear Steiner tree
problem to the Steiner tree problem planar graphs. For tletidean problem,
Provan [169] gave an approximative reduction to an alm&stgy graph problem
and derived a fully polynomial-time approximation schefRETAS) for the spe-
cial case where the terminals lie on a constant number ofdayrpolygons and
interior points. Provan also defined the so-called pathveohull — as a general-
ization of the convex hull of the terminals in the obstacksefcase — and showed
that there exists an OSMT in this region. Winter [217] exe&shdhe notion of
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visibility graphs to accomodate the construction of Eweid OSMTSs.

In addition to these graph problem reductions, a number sijdated heuristics
and exact algorithms have been considered for the obstsoiding problem.
Winter and Smith [219] gave a polynomial-time algorithm fbe construction
of a Euclidean OSMT for 3 terminals and one convex obstacéehZriasen and
Winter [237] experimented with an exact algorithm basedhenGeosteiner ap-
proach (see Section 3.4), and were able to solve Euclidednigon instances with
up to 150 terminals.

For the rectilinear problem, Ganley and Cohoon [78] madesexgents with a
greedy Steiner pointinsertion heuristic. Feng et al. [T#] din et al. [109] devised
O(nlogn) time heuristics for the obstacle-avoiding problem\igeometry.

The polynomial-time approximation scheme (PTAS) of Ardhfpr the ordinary

Steiner tree problem does not work when hard obstacles esempi. It was for a
while an open problem whether a PTAS existed for the obstaabeding problem.

Recently, Borradaile et al. [16, 17] showed that the Stelirger problem in planar
graphs admits a PTAS. Muller-Hanneman and Tazari [150¢ ubes result to

design a PTAS for the obstacle-avoiding problem under arfpum orientation

metric. (It appears that this approach also works for anylforgentation metric.)
The result is obtained by reducing the geometric problemrmtaggproximatively
equivalent problem in a planar graph and applying the PTABoofadaile et al.

Rotational Steiner tree problem

Given some fixed orientation metric, suppose that we are iftedrto rotate the
coordinate system (or the unit circle), that is, to rotatéeglal orientations simul-
taneously. Let the rotation angle bec [0, 7[. What is the value oft minimizing
the length of the SMT?

Clearly thisrotational Steiner tree problems a harder problem than the ordinary
Steiner tree problem, since the ordinary problem just spwads to solving the
problem forae = 0. In this section we give some structural propertiesadé-
tionally optimal SMTsvhich are trees that have minimum length over all possible
a € [0, 7[. (Infact, itis easy to see that we need only consider thevaté, 7/\|
in A-geometry due to the symmetry of the unit circle.) The masulitfor general
o-geometry is the following:
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Theorem 4.3 In o-geometry, a rotationally optimal SMT has at least one FST
that has no bent edges and that uses at rtiosteorientations.

The proof works by contradiction. If all FSTs contain bengesl, then the length
of the tree as a function af turns out to bestrictly concave This property was
proved by Nielsen et al. [156] for the rectilinear probleime fact that rectilinear
FSTs can be assumed to have Hwang-topology (see SectioartaBled a fairly
straightforward proof. Similarly, for the problem ik-geometry where\ is a
multiple of 3, the property that the Steiner points of an F&m be assumed to
coincide with the Steiner points for the corresponding Eleeln FST [155] made
it possible to give a fairly simple proof for this special e423].

The proof of Theorem 4.3 for gener&lrequires a more careful study of how the
length of an FST changes under rotation of the legal oriemtat The proof given
by Nielsen et al. [23] is in fact so general that it also covbesfixed orientation
problem. It should be noted that the property that the lemghstrictly concave
function ofa only helps to prove that there are no bent edges in at least®ndn
order to prove that there are at most three orientationgethdts of Section 2.2
on zero-shifts and direction sets are employed. The thrieatations must all
have either primary or secondary orientations; fobbeing a multiple of 3 this
means that there must be at least one FST that has exactigtieeesnbedding as
a Euclidean FST with the same topology (i.e., with edges imgat120° angles).

Experimental results presented in [23] indicate that mdeied possible to achieve
non-trivial length reductions when rotating the legal ntaions. On the other
hand, these reductions (as could be expected) become ibéglidhen the num-
ber of terminals increases or when the number of legal atemts increases.
Nielsen et al. [23] conjectured that the structural resafisrotational optimal
SMTs may turn out to give further insight into the problem etermining the
Steiner ratio ilZ\-geometry for all\ (see Section 2.2).

Other generalizations

In this last subsection we briefly mention some other geizatedns of the Steiner
tree problem that have been studied. Melzak [145] and Unaleivw203] con-
sidered the problem of minimizing lengfilus a constant times the number of
Steiner points; by increasing the constant, a tree with f&steiner points is ob-
tained. Further generalizations were given by Melzak [148], who studied a
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general geometric problem where a weighted sum of the lesgth of degrees
of terminals, sum of degrees of Steiner points and numberta@ah& points is
minimized.

Frommer et al. [77] considered an interconnection problemere the cost of
edges depend on their location in the plane (i.e., both om dmentation and
on their specific location).

Finally, Sarrafzadeh et al. [178] studied rectilinlaating Steiner trees. In this
problem multiple Steiner trees share a terminal that is ol@varlhis problem is
relevant in the placement phase of chip design. The proldeaifind the position
of the terminal that minimizes overall tree length.

4.4 Conclusions

One of the major challenges of applying non-Manhattan gchires to routing in
chip design is the necessity kiduid routing — namely that multiple orientations
must be allowed on a single layer in order to reduce the numibéas. Without
liquid routing, the advantages of multiple orientations guickly eaten up by
layer change costs.

One particular problem for the X architecture, which is n@tgent in the Manhat-
tan or the Y architecture, is that gridded routing does nakwe the orientations
do not have the same separation. Thus traditional gridebemeing algorithms
must be abandoned.

Despite these challenges, there is no doubt that futurgristied circuits are going
to use more than two orientations for routing — in one way ardkther. Hence
the theory and the algorithms developed will most likelyyda important role in

the future.
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Final remarks

The Steiner tree problem in Minkowski (and other) spaces dissussed in the
book by Hwang, Richards and Winter from 1992 [101, page 28¥i interesting
remark is the following:

“What has been missing in the literature is the invention fitent algorithms
to construct a full SMT for a given topology, like what the k& FST algorithm
does for the Euclidean plane. ... Therefore, finding the8eiesit algorithms
for small numbers of terminals becomes a priority task tacktthe Steiner tree
problem for general metric spaces.”

In Brazil's survey from 2001 on the uniform orientation platn [22], the first of
three open problems is the following:

“Given A > 3 and a terminal setV, does there exist a polynomial-time algorithm
for finding a Steiner minimurk-tree for any given Steiner topology ov?”

The contributions of this dissertation answer Brazil’s gjien in the affirmative,
and even generalize the result to arbitrary (weighted) fomehtation problems.
The dissertation is also a significant contribution to thaegal problem men-
tioned by Hwang, Richards and Winter.

The second open problem mentioned by Brazil is related tgeheralized Hanan
grid (see our Open Problem 2). Our dissertation gives nacdaeswers to this
qguestion, butitis likely that the theory developed willypkacrucial role in solving
this open problem. In contrast to Brazil, we conjecture frtegorem 2.8 is tight.

The third and final open problem mentioned by Brazil is on ttear@r ratio for
general uniform orientation metrics (see our Open Problemlime will show
whether this dissertation has provided significant redoltshe solution of this
problem.

Solving open problems is just one part of the story. Perhia@sriost significant
contribution of our dissertation is its capability to lirketory with algorithms, and
to link algorithms with applications. The scope of the ditstgon — namely fixed

orientation interconnection problems — is not particyldatoad, but the results
cover the full spectrum from theory to applications.
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Open problems

Open Problem 1 Determine the exact Steiner ratio for almetrics (see Sec-
tion 2.2).

Open Problem 2 Prove that the bound given by Theorem 2.8 is tight, that is,
it is sufficientand necessargo consider thex — 2 generalized Hanan grid for a
general fixed orientation metric.

Open Problem 3 Prove (or disprove) that the distance between two pointsund
a general (weighted) fixed orientation metric can be contpirteeonstant time.
(A logarithmic running time can easily be achieved by perfimig a binary search
on the sorted set of given legal orientations.)

Open Problem 4 Give aO(n logn) time algorithm to constructseparableViST
for n terminals under any fixed orientation metric (see Secti@h 3.

Open Problem 5 Give aO(n) time algorithm to construct an optimal embed-
ding for a separable MST for terminals under any fixed orientation metric (see
Section 3.3).

Open Problem 6 Prove (or disprove) that the SMT for a set of 10 or more
terminals on the boundary of a hexagon under the hexagortacre = 3) is a
minimum spanning tree for the terminals (see Section 3.3).
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Summary (in Danish)

| forbindelse med design af integrerede kredslgb (chipdyan der en raekke
sakaldte forbindelsesproblemer. En moderne chip bestere milliarder tran-

sistorer, som skal forbindes med metalledninger pa chippwerflade. Disse
metalledninger lzegges i et (lille) antal lag, saledes #taagige elektriske net
ikke overlapper med hinanden. Den traditionelle fremegkteknologi kan kun

handtere horisontale og vertikale forbindelser pa ohispoverflade — og bliver
betegnet Manhattan-arkitektur.

De seneste 10 ar har interessen for generelle arkitekturer mere end to ori-
enteringer kan benyttes til at forbinde transistorernegvatigende. Denne ud-
vikling har resulteret i en betydelig forskning i forbindesproblemer med faste
(men ellers vilkarlige) orienteringer. Minimering af findelsernes leengde — det
sakaldte Steiner problem med faste orienteringer — haetvgenstand for saerlig
opmeerksomhed.

Denne doktorafhandling bestar af 12 forskningsartiklensen oversigtsartikel
om Steiner problemet med faste orienteringer — med noglestsf generalis-
eringer. Et af hovedbidragene er en lineaer-tids algorithee kan konstruere et
minimalt Steiner tree for en given topologi. Desuden visésaame problem
kan lgses ved hjeelp af lineser programmering. For det géagmeiblem, hvor

topologien er ukendt, praesenteres en eksakt algoritmekatetagse problemet
med flere tusinde punkter til optimalitet. Der preesentetasyeparadigma for

konstruktion af netforbindelser pa en chip under en gersekitektur med faste
orienteringer. Resultaterne dokumenterer, at der er ktadele ved at benytte
mere end to orienteringer i chip design.

Afhandlingen afsluttes med en beskrivelse af en reekke géseringer af Steiner
problemet, der udspringer fra chip design. Der preesengtrestalog af proble-
mer, som kan lgses pa det sakaldte Hanan gitter. Desudemdiies generali-
seringer, som kan handtere signalforsinkelser og gruppifdelser. Til sidst
gives en raekke egenskaber for Steiner problemet med titaation af de faste
orienteringer.

Resultaterne udger et veesentligt teoretisk og algoritiigiag til forstaelsen af
Steiner problemet med faste orienteringer. Desuden fokusdhandlingen pa
anvendelser i chip design.
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