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Abstract

Interconnection problems have natural applications in thedesign of integrated cir-
cuits (or chips). A modern chip consists of billions of transistors that are con-
nected by metal wires on the surface of the chip. These metal wires are routed
on a (fairly small) number of layers in such a way that electrically independent
nets do not intersect each other. Traditional manufacturing technology limits the
orientations of the wires to be either horizontal or vertical — and is known as
Manhattan architecture.

Over the last decade there has been a growing interest in general architectures,
where more than two perpendicular orientations can be used for routing. This
development has made fixed orientation interconnection problems (where an ar-
bitrary set of fixed orientations can be used) interesting from a research point of
view. In particular, the problem of computing minimum length networks with
fixed orientations — the so-called fixed orientation Steinertree problem — has
received significant attention.

This doctoral dissertation is a collection of twelve research papers and a survey on
the fixed orientation Steiner tree problem and some of its generalizations. One of
the main contributions is a linear time algorithm for computing a Steiner minimum
tree for a given full topology. Also, a linear programming formulation is presented
for the problem. For the general problem an exact algorithm that computes op-
timal solutions to problem instances with thousands of points is described and
implemented. A novel paradigm for routing a chip using a general architecture is
implemented and tested on a set of benchmark instances; the approach documents
the advantages of using more than two fixed orientations in chip design.

The last part of the dissertation is concerned with generalizations that are moti-
vated by chip design. Firstly, a catalog of problems that canbe solved on the
so-called Hanan grid is presented. Next, generalizations related to signal delay
and group interconnections are studied, and finally, properties of the rotational
Steiner tree problem are given.

The results of the dissertation represent a significant stepforward, both concerning
theory and algorithms, for the fixed orientation Steiner tree problem. In addition,
the work maintains a close link to applications and generalizations motivated by
chip design.
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Preface

This dissertation is submitted in partial fulfillment of therequirements for the
doctoral dissertation at the Faculty of Science, University of Copenhagen.

The work of the dissertation developed over the last 10 years. After finishing my
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crete Mathematics, University of Bonn (headed by Prof. Bernhard Korte) for a
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The twelve research papers, referred to as [23, 27, 29, 30, 152, 154, 155, 159, 163,
232, 234, 235], are listed among the other references in the introduction (page 71)
and separately on page 94. The papers were published from 2001 to 2009, but the
bulk of the research was made in the period 1999–2007.

I am most indebted to all my coauthors. In particular I thank my oldest colleague
and Ph.D. supervisor, Pawel Winter (coauthor on 5 papers), my Steiner tree friend
and colleague in Melbourne, Marcus Brazil (coauthor on 4 papers) and Benny K.
Nielsen, former Ph.D. student (coauthor on 3 papers). DavidGrove Jørgensen,
Giri Narasimhan, Martin Paluszweski, Sven Peyer, Andre Rohe, Doreen Thomas,
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Prof. Bernhard Korte and Prof. Doreen Thomas for making these visits possible.
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1 Introduction

In this section we set the scene for the dissertation. We introduce the chip de-
sign problem, and in particular the routing problem in physical chip design. The
routing problem is one of the main motivations for studying the rectilinear Steiner
tree problem, which together with the Euclidean Steiner tree problem form the
foundation of the research presented in the dissertation. An overview of impor-
tant theoretical results and algorithmic developments related to the Euclidean and
rectilinear Steiner tree problems concludes the introduction — together with an
outline of the complete dissertation.

1.1 Chip design

Chip design — or very-large-scale integration (VLSI) design — is the process of
creating complex transistor-based integrated circuits. Chip design consists of sev-
eral interdependent steps, each of which can be formulated as a huge, and in most
cases, NP-hard optimization problem. Due to the size of current designs, where
several billion interconnected transistors must be placedon a chip surface, the
problem is usually solved hierarchically and broken into a number of (basically)
independent steps.

Integrated circuits are fabricated on silicon wafers (alsocalled substrate). By
marking different areas of the substrate using photolithography, patterns/tracks
consisting of polysilicon, insulator or metal can be deposited on the substrate
(Figure 1). In this way transistors and wires connecting them can be built on
a very small scale on the surface of the substrate. Current technology makes it
possible to construct patterns/tracks less than 50 nanometers wide.

The construction of an integrated chip begins by describingthe behavior of the
chip. Logic synthesisis the process of specifying the logic functions of the chip
and their interrelations. It is done using a hardware description language (HDL).
Logic optimizationturns the description into a compact and efficient — but logi-
cally equivalent — description. The result is anetlist, which describes how a set
of standard components such as NANDs or NORs are interconnected. The final
step of logic synthesis is the mapping of each standard component to a specific
implementation (or physical drawing); the choice of implementation depends on
requirements related to area consumption, load capacitance and timing. The re-

1



Figure 1: Small integrated circuit with three metal layers (insulator has been removed). The
sand-colored structures at the top are metal interconnect.The layers are connected using vias
(vertical pillars). The reddish middle structures are polysilicon gates, and the solid at the bottom
is the substrate.

sult is a netlist where eachnet interconnects a set ofmodules(or cells) — each of
which has a given physical realization.

The process of locating the modules and wires on the chip surface such that, e.g.,
area usage and signal delay is minimized, is calledphysical design. The first
step of physical design is usuallyfloorplanning, where major parts of the circuit
are placed on the chip surface. (For an integrated circuit ofa CPU, such major
parts could be arithmetic logic unit, branch predictor, cache etc.) In theplacement
step each of the modules is located on the chip surface. The placement prob-
lem is a multi-objective problem, where area usage, wire length and signal delay
are the primary objectives. These objectives are usually combined into a single
quality measure callednetlength. The problem of meeting timing (or clock rate)
constraints is calledtiming optimization, and is often performed by adjusting the
netlength of critical nets and reoptimizing the placement under the new netlength
objective.

The final step of physical design isrouting, where the wires interconnecting the

2



Figure 2:A placement and a routing of a small circuit. The circuit has 19 modules, 22 nets and
58 pins. The horizontal blue wires and vertical red wires runon different metal layers. Vias are in-
dicated by an “X”. (Figure reproduced by courtesy of Research Institute for Discrete Mathematics,
University of Bonn.)

modules are located on the chip surface and assigned to different (metal) layers.
Wires on a given layer have a preferred direction which is either horizontal or
vertical (Manhattan routing). Each net of the netlist should interconnect a given
set ofpins/terminalson the chip surface, and wires from different nets should not
intersect each other. The main objective of routing is firstly to obtain a feasible
routing and secondly, to minimize total wire length and signal delay. Figure 2
illustrates a small chip where placement and routing has been performed.

Routing is performed with the help of a (flat) three-dimensional grid graph, where
the distance between neighbouring grid lines is the minimumwidth of a wire plus
the minimum distance between wires. In older technologies modules and wires
were aligned perfectly on the grid graph, but in current designs, modules and wires
can be placedoff-grid. Modern routing algorithms therefore only implicitly use
the grid graph.

3



Routing millions of nets in a grid graph with billions of nodes is a challenging
task. The problem is therefore divided into at least two steps: global routingand
detailled routing. The global routing problem is a coarse version of the routing
problem, where the chip surface is divided into axis-aligedrectangular regions.
The height and width of a region is typically 50–100 grid lines in the grid graph.
In theglobal routing grid graphthe vertices are the regions, and two vertices are
connected by an edge if the two regions are neighbours. The edges in the global
routing grid graph have associated lengths and capacities,where the capacities
estimate the maximum number of wires than can be routed between two neigh-
bouring regions. The global routing problem is, in its simplest form, a so-called
Steiner tree packing problem, where trees should be “packed” in the global routing
grid graph such that the capacities of the edges are respected.

The output of the global routing problem is a “global routingcorridor” for each
nets, that is, a coarse description of the wiring of each net.In detailed routing
the exact wiring of each net is determined — and in such a way that the output of
global routing is respected. Using the output from global routing both minimizes
the risk of congestion in detailed routing and speeds up detailed routing, since
only a relatively small part of the full grid graph needs to beconsidered. Due to
the size of the detailed routing problem, the problem is normally solved one net
at at time — and in most cases one point-to-point connection at at time. While
global routing is a multi-objective problem where congestion, timing and wire
length is considered, detailed routing is primarily concerned with feasibility, and
the only real optimization involved is (implicit) shortest-path computation in the
grid graph.

The literature on physical design of integrated circuits isvast. Some fairly recent
books and theses include — in chronological order — Lengauer[126], Kahng and
Robins [113], Pecht and Wong [160], Sarrafzadeh and Wong [181], Gerez [83],
Sait and Youssef [175], Sherwani [185], Vygen [204] and Saxena et al. [182]. An
early tutorial on the routing problem is Hightower [94], andmore recent surveys
can be found in Möhring et al. [147], Cong et al. [63] and Peyer [162].

The list of combinatorial problems in chip design recently compiled by Korte and
Vygen [117] illustrates the challenges in the field. The authors consider the chip
design problem to be one of the most important application areas in (discrete)
mathematics. In particular, efficient algorithms are needed to handle problems
with millions of modules and nets.
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1.2 Steiner tree problem

The routing problem in chip design motivates the study of interconnection prob-
lems in the plane. In this section we introduce theSteiner tree problem— the
problem of interconnecting a given set of points in the planeby a tree of mini-
mum length. Algorithms for this problem play a fundamental role in chip design
routing. We briefly present the history and research development on the major
variants of the Steiner tree problem, namely theEuclideanSteiner tree problem,
therectilinearSteiner tree problem and the Steiner tree problem ingraphs.

History of the Euclidean Steiner tree problem

The roots of the Euclidean Steiner tree problem go back to Fermat early in the 17th
century [118, 229]. The problem was presented as a challengein a celebrated es-
say on maxima and minima: “Let he who does not approve of my method attempt
the solution to the following problem: Given three points inthe plane, find a fourth
point such that the sum of its distances to the three given points is a minimum!”

Torricelli proposed a geometric solution to the problem before 1640 by construct-
ing equilateral triangles and corresponding circumscribing circles on the sides of
and outside the given triangle. The circumscribing circlesintersect at the fourth
point, which today is called the Fermat-Torricelli point — or the Steiner-Weber
point or just the Steiner point — of the given three points (Figure 3).

The Fermat problem can be generalized in several ways. One isto allow more
than three given points, but still consider the problem of finding a single point
that minimizes the sum of distances to the given points. Furthermore, each of the
distances can be weighted with some positive number. This problem is called the
generalFermat problem; a nice overview of properties related to this problem,
including some elegant duality results, are presented by Kuhn [118].

Another generalization is theSteiner tree problem— the main topic of this dis-
sertation. Here a setN of n points are given in the plane, and the problem is to
compute a shortest network that interconnects these points. (Note that such a net-
work will always be a tree, and that the Fermat problem is the special case where
n = 3.) The Steiner tree problem appears to have been suggested for the first time
in 1934 by Jarnı́k and Kössler [107], and a famous mathematics book by Courant
and Robbins [69] gave the problem its name. Although Jakob Steiner was a well-

5



Simpson line

Fermat−Torricelli point

Circumscribing circle

Equilateral triangle

Figure 3: Construction of the Fermat-Torricelli point of three givenpoints. The circles cir-
cumscribing the equilateral triangles on the sides of and outside the given triangle intersect at the
Fermat-Torricelli point. Cavalieri argued that the segments connecting the given points with the
Fermat-Torricelli point meet at120◦ angles. The fact that the Simpson lines, which connect the
third corner of the equilateral triangle to the opposite given point, also meet at the Fermat-Torricelli
point was shown in 1750 by Simpson. In 1834 Heinen proved thatthe length of the Simpson lines
are equal to the sum of distances from the given points to the Fermat-Torricelli point.

known geometer in the 19th century, he made no significant contributions to the
problem.

The first breakthrough on the algorithmic side was made in 1961 by Melzak [145],
who gave a finite construction for the problem of computing a Euclidean Steiner
tree for a given tree structure (or topology) — resulting in afinite-time algorithm
for solving the problem. Several theoretical contributions and generalizations to
higher dimensional spaces were given in 1968 by Gilbert and Pollak [85]; they
also coined the nameSteiner pointsfor the vertices in the shortest tree that are not
among the given points. The problem reached the general public in 1989 through
a popular paper in Scientific American written by Bern and Graham [10].

6



Rectilinear Steiner tree problem and the Hanan grid

Returning to the routing problem in chip design, recall thatthe fundamental prob-
lem is to connect a setN of terminalsusing a minimum amount of wire. However,
due to manufacturing constraints in traditional chip technologies, wires can only
run in horizontal and vertical orientations (Manhattan routing). Ignoring the as-
signment of wires to (metal) layers, this correspond to therectilinear Steiner tree
problem— or the problem of computing a minimum length network under theL1

metric.

Already in 1966 Hanan [88] presented the first thorough studyof the rectilinear
Steiner tree problem. One of Hanan’s key contributions was to show that there
exists an SMT in theHanan griddefined by the terminals. The Hanan grid for
the terminal setN is obtained by drawing horizontal and vertical lines through
each point inN . Correspondingly, theHanan grid graphGG(N) is defined as
follows: The set of intersections in the Hanan grid are the vertices, and a pair
of vertices is connected if and only if the corresponding intersection points are
adjacent in the Hanan grid. The weight of an edge inGG(N) is the (Euclidean)
distance between the corresponding Hanan grid intersections. Computing a tree
of minimum total edge-weight inGG(N) that interconnects the vertices inN is
the same as solving the rectilinear Steiner tree problem (Figure 4).

z1

z3

z4

sz2

Figure 4: Hanan grid example forn = 4 terminals (only line segments within the bounding
rectangle are drawn). A Steiner minimum tree (SMT) is drawn with bold lines. Note that the
single Steiner points shares coordinates with the terminalsz2 andz3.

The Hanan grid graph Steiner tree problem is a special instance of the more gen-
eralSteiner tree problem in graphs[87]: Given an undirected graphG = (V, E)
with positive edge-weights and a non-empty setN ⊆ V of terminals, find a mini-
mum edge-weight tree inG that interconnectsN . Note that the edge-weights need
not be related to any familiar distance metric.

7



The rectilinear Steiner tree problem can therefore be solved as a graph problem
with at mostn2 vertices and2n(n − 1) edges, wheren = |N |. Early algorithms
for the general graph problem include the spanning tree enumeration algorithm
of Hakimi [87] and the dynamic programming algorithm of Dreyfus and Wag-
ner [70]. More recent algorithms use integer programming formulations which
are solved by branch-and-cut [164, 165]. Despite of the existence of efficient re-
duction methods [202, 218], solving the rectilinear Steiner tree problem via the
Hanan grid graph is not competitive with the so-called Geosteiner approach (see
Section 1.3).

On the other hand, a number of generalizations of the rectilinear Steiner tree
problem can be solved in the underlying Hanan grid. Ganley and Cohoon [78]
showed that the rectilinear Steiner tree problem with rectilinear obstacles can
be solved in the Hanan grid given by the terminals and the corners of the ob-
stacles. Zachariasen [232] presented a catalog of problemsthat have an opti-
mal solution in the Hanan grid, including so-called weighted-obstacle, group and
prize-collecting variants. Snyder [189] generalized Hanan’s results to higher di-
mensional spaces, and Du and Hwang [73] generalized the result further to any
d-dimensional normed space with a unit sphere that is a symmetric polytope with
2d extreme points (see Section 2 for definitions).

1.3 Fundamental properties and algorithmic developments

In this section we define some notation and sketch the algorithmic developments
related to the Steiner tree problem. Further details can be found in the following
books, tutorials and surveys (in chronological order): Hwang and Richards [100],
Hwang, Richards and Winter [101], Ivanov and Tuzhilin [106], Cieslik [54], Har-
ris [89], Prömel and Steger [168] and Cieslik [56].

Full topologies and fulsome Steiner trees

The graph structure of a treeT (i.e., the pattern of adjacencies of the vertices for
a given labelling of the terminals) is referred to as itstopologyT . A treeT or
its topologyT is said to befull if all its terminals have degree1; if every Steiner
point furthermore has degree 3, thenT is called afull Steiner topology.

We define aSteiner treeto be a tree that cannot be shortened by any (small) pertur-

8



bation of its Steiner points. A shortest tree with a given topology is called alocally
minimal tree. A locally minimal tree — which by definition is a Steinertree —
can be found efficiently since the minimization problem is convex in the locations
of the Steiner points (a local minimum is also a global minimum). We return in
Section 3.1 to the problem of computing a locally minimal tree, or abusing the
notation slightly, anSMT for a given topology.

A locally minimal tree having a full Steiner topology is called afull Steiner tree
(FST). In 1967 Cockayne [59] made the observation that a EuclideanSMT is a
union of FSTs (Figure 5). Cockayne also gave an algorithm forenumerating full
Steiner topologies by showing a connection to balanced parenthesis structures.

Figure 5:A Euclidean Steiner minimum tree (SMT) for a set of points representing 532 cities in
the United States. Note that most full Steiner trees (FSTs) span 2, 3 and 4 terminals.

A tree T or its topologyT is said to befulsomeif T contains the maximum
possible number of full Steiner trees for any SMT on the terminal set ofT . If we
perturb the Steiner points in a fulsome SMT (without changing the length of the
tree), then we cannot make a Steiner point coincide in position with one of the
terminals. Clearly, for any set of terminals there always exists an SMT in which
every FST is fulsome.

9



The notion of fulsome FSTs plays an important role when proving structural prop-
erties ofrectilinear SMTs. Basically, fulsomeness limits the set of SMTs that
needs to be considered, and this makes it possible to providemore powerful char-
acterizations. Hwang [97] proved that a rectilinear FST canbe assumed to have a
certain canonical form where all the terminals are connected in a chain-like fash-
ion to a backbone — the so-called Hwang-topology [231, 233].

Minimum spanning trees and the Steiner ratio

A minimum spanning tree (MST) for a setN of n points in the plane is a shortest
network which spansN and doesnot introduce Steiner points. Minimum spanning
trees in edge-weighted graphs can be computed in polynomialtime (essentially in
linear time in the number of edges [66]); by constructing thecomplete graph on
the set of pointsN , a MST in the plane can be computed inO(n2) time using,
e.g., Prim’s algorithm for the corresponding graph problem.

By exploiting the geometry of the problem, Euclidean and rectilinear MSTs in the
plane can be constructed inO(n logn) time [98, 167]. One classical approach is to
use the dual of the Voronoi diagram forN , the Delaunay triangulation, to identify
a subgraph withO(n) edges of the complete graph onN that contains a MST
for N . Another possibility is to use the well-separated pair decomposition data
structure [34]; Narasimhan and Zachariasen [152] showed that this data structure
allows the efficient computation of Euclidean and rectilinear MSTs in the plane
and in higher dimensions. This approach further has the advantage that only minor
adaptions are needed to handle new metrics.

Clearly, SMTs are in general shorter than MSTs for the same terminal setN , since
SMTs are allowed to contain Steiner points. The infimum over all terminal sets
N of the ratio between the SMT length ofN and MST length ofN is denoted
the Steiner ratio. Gilbert and Pollak [85] conjectured in 1968 that this valueis√

3/2 for the Euclidean problem. A proof of this conjecture was given by Du and
Hwang in 1992 [72]. The variational approach of Rubinstein and Thomas [174]
played an important role in proving the Steiner ratio conjecture.

The Steiner ratio for the rectilinear problem is2/3 [97]; hence, a rectilinear SMT
is at most33.3% shorter than a corresponding rectilinear MST. A Euclidean SMT
is at most13.4% shorter than a corresponding Euclidean MST. Steiner trees under
the rectilinear metric thus have a relatively greater length improvement potential.

10



Hardness, approximation and exact algorthms

The Euclidean and rectilinear Steiner tree problems were among the early prob-
lems that were shown to be NP-hard — and thus essentially eliminating the hope
that polynomial-time algorithms exist for the problems. Garey, Graham and John-
son [80] proved in 1977 that there exists no fully polynomial-time approximation
scheme (FPTAS) for the Euclidean problem unless P = NP. A FPTAS is an algo-
rithm that for every fixedǫ > 0 computes a(1 + ǫ)-approximation in polynomial
time in the length of the input and1/ǫ. Even though the Euclidean problem is
NP-hard, the decision version is not known to be in NP. On the other hand, as a
result of the Hanan grid property, the decision version of the rectilinear problem
is NP-complete [81].

A polynomial-time approximation scheme (PTAS) is an algorithm that for every
fixed ǫ > 0 computes a(1 + ǫ)-approximation in polynomial time in the length of
the input (but not necessarily in1/ǫ). It was for a long time a major open problem
whether there existed a PTAS for the Steiner tree problem andother geometric
problems in the plane. In contrast, the Steiner tree problemin graphswas known
to be APX-complete, and hence does not admit a PTAS unless P = NP; the best
approximation ratio is currently 1.55 [173].

In 1996 Arora [4] gave the first PTAS for the Euclidean Steinertree problem in
the plane — basically as a corollary of a similar result for the Euclidean traveling
salesman problem in the plane. The running time of Arora’s original algorithm
has later been improved by Arora [5] and Rao and Smith [170]. The Rao-Smith
algorithm is optimal in the sense that the asymptotic running time bound matches
theΩ(n log n) lower bound for the algebraic computation tree model.

Motivated primarily by applications in chip design, a rangeof heuristics have been
proposed both for the Euclidean and rectilinear Steiner tree problems in the plane.
An overview is given in the book by Hwang, Richards and Winter[101]; also,
the papers [48, 49, 111, 236] document some of the more recentand successful
contributions.

The work on super-polynomial time exact algorithms has alsobeen substantial.
Already in 1970, Cockayne [60] presented one of the first implementations of an
exact algorithm for the Euclidean problem. Since then, the so-called Geosteiner
approach suggested by Winter [216] in 1985 has by far proved to be the most suc-
cesful [61, 62, 89, 207, 208, 209, 220, 231]. The idea is to enumerate full Steiner
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trees (FSTs) followed by concatenation into a complete SMT.Today, Euclidean
and rectilinear Steiner tree problem instances with several thousand terminals can
be solved to optimality.

1.4 Overview of introduction to dissertation

The purpose of the introduction to the dissertation is to give a survey on the lit-
erature on the fixed orientation Steiner tree problem. The survey is intended to
be self-contained and comprehensive, but not particularlytechnical. The twelve
research papers that form the body of the dissertation are included in a natural
way, albeit with some emphasis on the results from the twelvepapers.

We begin by surveying known results on structural properties in Section 2. Then
we move on to present algorithmic developments for constructing a Steiner tree
for a given topology and for the general case in Section 3. Finally, in Section 4, we
present applications in chip design and various generalizations motivated by chip
design — and in particular contributions related to thegeneralfixed orientation
problem. Each section ends with a conclusion that summarizes the existing work
and future challenges.
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2 Theory

In this section we define the uniform and fixed orientation Steiner tree problems
and present some of the fundamental properties that are known for these problems.
These properties are mainly related to structural properties of optimal solutions,
e.g., properties related to angles and directions of edges in an optimal solution.
Also, the existence of optimal solutions in the so-called generalized Hanan grid is
discussed.

2.1 Uniform and fixed orientation Steiner tree problem

The generalization of the Euclidean Steiner tree problem toother metrics in the
plane was discussed in some early works of Melzak [145] and Cockayne [59]. One
generalization is to let the distance between two points depend on the orientation
of the line segment between the points. Here the orientationof a line (segment) is
the angleα it makes with the x-axis (where0 ≤ α < π).

In anormed(or Minkowski) plane the ordinary (Euclidean) unit circle is general-
ized to be the boundaryC = ∂D of any compact, convex and centrally symmetric
domainD. The distance between two pointsp andq is obtained by placing the
center ofC atp, drawing a rayr with base inp and containingq, and identifying the
intersectionq′ of r with C. The distance betweenp andq is now|pq|C = |pq|/|pq′|,
where| · | as usual denotes Euclidean distance. (Note that the points on the unit
circleC in fact have distance 1 from the center ofC.)

A normed plane isstrictly convexif C is strictly convex, i.e., if the line passing
through any pair of pointsx andy on C meetsC only atx andy. Equivalently,
the triangle inequality is strict for non colinear points ina strictly convex normed
plane. Asmoothnormed plane is one for which each boundary point onC has a
unique tangent. The well-knownLp metrics are strictly convex and smooth for
1 < p < ∞, but the rectilinear metric (L1) is neither strictly convex nor smooth
(Figure 6a).

In this section we consider the Steiner tree problem in normed planes whereC
is a centrally symmetricpolygon. The best known example of such a plane is
the rectilinear plane. An important generalization of the rectilinear plane is theλ-
geometry plane, in whichC is a regular2λ-gon for some integerλ ≥ 2 (Figure 6b):
the corresponding metric is also denoted theuniform orientationmetric [179].
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c)a) b) d)

Figure 6: Examples of polygonal unit circles. a) Rectilinear (2 perpendicular orientations).
b) Uniform orientation metric (λ = 4). c) Fixed orientation metric (σ = 3). d) Weighted fixed
orientation metric.

WhenC is an arbitrary polygon whose2σ vertices are inscribed in a Euclidean unit
circle, we have thefixed orientationmetric, or (unweighted)σ-geometry plane
(Figure 6c). Finally, in theweighted fixed orientationmetric (or weightedσ-
geometry plane), there are no restrictions on the locationsof vertices ofC — apart
from C being convex and centrally symmetric (Figure 6d).

The directions given by the vectors pointing from the centerto the2σ vertices of
C are calledlegal directions. The orientations given by (pairs of opposite) ver-
tices ofC are denotedlegal orientations. In the first systematic treatment in the
algorithmics literature on geometric problems related to (unweighted) fixed ori-
entation metrics, Widmayer et al. [214, 215] defined the fixedorientation metric
using legal orientations: The distance betweenp andq is the shortest geometric
path consisting of line segments in legal orientations only. If the orientation of
the line throughp andq coincides with a legal orientation, then the shortest path
is simply a straight line betweenp andq. In this case we say that the connection
betweenp andq is a straight edge. (In the definition of|pq|C given above this
corresponds to the case where the pointq′ coincides with a vertex ofC.) On the
other hand, if the orientation of the line throughp andq does not coincide with
a legal orientation, then any zigzag-path consisting of line segments having the
immediate preceding and succeeding legal orientations will constitute a shortest
path [215] (Figure 7a and 7b). In fact, such a shortest path connection, orbent
edge, can be assumed to consist of at most two line segments (having legal orien-
tations) joined by acorner point(Figure 7c).

Given a polygonal unit circleC and a set of terminalsN , the fixed orientation
Steiner tree problemis to construct a shortest possible interconnection of the
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Figure 7: Distances in fixed orientation metrics. a) Given legal orientations. b) Zigzag-path
between two pointsp andq consisting of line segments in legal orientations (here a so-called Z-
shaped zigzag-path). c) Bent edges betweenp andq consisting of exactly two line segments, one
containing corner pointc1 and the other containing corner pointc2.

points inN under the metric given byC (or in theσ-geometry plane). In the
uniform orientation metric (orλ-geometry plane), the problem is naturally called
theuniform orientation Steiner tree problem. As usual, an optimal solution is de-
noted aSteiner minimum tree (SMT). The Steiner tree problem has been shown to
be NP-hard both in the rectilinear plane (λ = 2) [81] and in the octilinear plane
(λ = 4) [186]. Brazil [22] surveys the developments for the uniform orientation
problem up to 2001.

2.2 Fundamental structural properties

One particular difficulty of the Steiner tree problem is thatan SMT may contain
junctions, or Steiner points, that are not among the given terminals. Consider
a Steiner points with neighboursx1, . . . , xm in an SMT (wherem ≥ 3). The
Steiner point is an optimal solution to the general Fermat problem for the points
x1, . . . , xm — also called a Fermat-Torricelli point (see Section 1.2). The general
Fermat problem has a long history and is of particular interest in location sci-
ence [118]. A nice survey on results pertaining to this problem in general normed
planes and spaces is given by Martin et al. [144].

In this section we first present bounds on the degrees and angles for Steiner points,
both for general weighted fixed orientation metrics and for special cases of the
metric. Related degree and angle bounds can be obtained for terminals, but from
an algorithmic point of view, properties related to Steinerpoints are substantially
more interesting.
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The second topic of this section is the so-called centroid property, which both is
a theoretically beautiful, but also algorithmically useful property of solutions to
the Fermat problem. Then we describe zero-shifts, which arelength-preserving
perturbations of Steiner points in SMTs. Zero-shifts are particularly interesting
for fixed orientation metrics, since these are not strictly convex, and therefore
generally result in an infinite set of SMTs for a given set of terminals. Finally,
at the end of the section we briefly survey results on the Steiner ratio for fixed
orientation metrics.

Degree and angle conditions

A Steiner configurationis a star with centers and leavesx1, . . . , xm that is part of
some SMT withs as Steiner point (wheres, x1, . . . , xm are distinct) . Note that
in a Steiner configuration, the centers is a Fermat-Torricelli point forx1, . . . , xm.
For unit circleC, let s(C) denote the maximum degree of a Steiner point; hence
under the metric given byC, the sizem of any Steiner configuration is3 ≤ m ≤
s(C), since Steiner points by definition have degree at least 3.

Theorem 2.1 For any unit circleC we haves(C) ≤ 4, and for asmoothunit
circle C we haves(C) = 3.

For the (smooth) Euclidean metric the bound of 3 follows immediately from the
fact that edges meet at120◦ angles, and for theL1 metric the bound of 4 was
shown already by Hanan [88] (a cross forms a degree 4 Steiner configuration).
Cockayne [59] proved thats(C) = 3 for smooth and strictly convex unit circles,
and Alfaro et al. [2] showed that if the unit circle is strictly convex (but not nec-
essarily smooth), thens(C) ≤ 4. (Liu and Du [139] independently proved that
s(C) = 3 for all smooth and strictly convexLp metrics, that is, when1 < p < ∞.)
Cieslik [52] gave a simple proof of the fact that for arbitrary unit circles (and
every terminal set) there alwaysexistsan SMT for whichs(C) ≤ 4. Lawlor
and Morgan [119] showed thats(C) = 3 for all smooth unit circles. Finally,
Swanepoel [193] proved Theorem 2.1 in full generality, and in addition, he gave a
precise characterization of unit circles that permit a degree 4 Steiner configuration
(so-called X-planes).

Since polygonal unit circles are neither smooth nor strictly convex, all we can
infer from Theorem 2.1 is that Steiner points have degree 3 or4. In order to
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characterize this more precisely, we now consider the meeting angles at Steiner
points for the uniform orientation metric (or inλ-geometry). Letω = π/λ be the
angle between neighboring orientations (e.g. forλ = 4 we haveω = π/4 = 45◦).

Theorem 2.2 In λ-geometry, the minimum meeting angle at a Steiner point is
⌈2λ/3 − 1⌉ω, while the maximum meeting angle is⌊2λ/3 + 1⌋ω.

Note that meeting angles inλ-geometry are somewhat poorly defined, since one
may say that they depend on the actual embedding of the edges.However, the
above theorem holds both when edges are considered to be straight line segments
between their endpoints, and when they are embedded using legal orientations
only.

The first proof of Theorem 2.2 was given by Sarrafzadeh and Wong [180], albeit
not covering the case whereλ is multiple of 3 correctly. Alternative (and cor-
rect proofs) using various proof techniques were given by Koh [115] (only for
λ = 4), Li et al. [129] (only lower bounds), Brazil et al. [24], Swanepoel [193],
Hayase [90], and Il’yutko [105].

Since2λ/3 · ω = 2π/3 = 120◦, Theorem 2.2 states that the minimum angle
is the largest multiple ofω that is strictly less than120◦; and similarly, that the
maximum angle is the smallest multiple ofω that is strictly greater than120◦.
Thus, asλ → ∞, the minimum and maximum angles both converge toward120◦

as could be expected.

Obviously, if the minimum angle⌈2λ/3 − 1⌉ω is strictly greater than90◦ then
the maximum Steiner point degree is 3. Direct computation shows that degree 4
Steiner points are only possible forλ = 2, 3, 4 and6. Thus we have the following:

Corollary 2.3 In λ-geometry, Steiner points have degree 3, except whenλ =
2, 3, 4 and6 (where Steiner points with degree 4 exist).

If we think of edges as embedded using legal orientations, then for λ = 3k, a
meeting angle can either be2π/3 − ω, 2π/3 or 2π/3 + ω, while for λ 6= 3k,
only two meeting angles are possible. In some sense there is agreater flexibility
whenλ is a multiple of 3 — something that will be discussed in further detail in
Section 3.2.

The lower bound on meeting angles in Theorem 2.2 is still valid for terminals,
but the upper bound is not relevant as terminals can have degree less than 3 in an
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Figure 8:Direction sets with 6 directions (left) and 4 directions (right).

SMT. For general unit circles thedegreeupper bound for terminals is the same
as for Steiner points,exceptin λ-geometry forλ = 3; in this case a terminal can
have 6 neighbours (star with six edges separated by60◦) [52, 193].

Degree properties of Steiner points and terminals for SMTs in higher-dimensional
spaces have been studied by, e.g., Cieslik [53] and Swanepoel [192, 194]. One
of the interesting results is that for arbitrary smooth unitballs in d-dimensional
spaces, the maximum degree of Steiner points and terminals isd+1. On the other
hand, for the non-smoothL∞ metric, the maximum degree of both Steiner points
and terminals is2d, so polyhedral unit balls significantly increase the numberof
possible Steiner tree topologies.

Direction sets

Consider a Steiner points with three neighboursx1, x2 andx3 in some SMT (in
σ-geometry). If we think of the edgessx1, sx2 andsx3 as pointing outwards from
s, then the line segments of each edge use one of the legal directions. Consider
the set of legal directions used by all three edges of the corresponding Steiner
configurationS (Figure 8). A Steiner configurationS is maximal if the set of
legal directions used byS does not form a strict subset of the directions used by
some other Steiner configuration. We define adirection setto be the set of legal
directions used by some maximal Steiner configuration [30].

Each edge in a Steiner configuration contributes to a direction set with one di-
rection (straight edge)or two adjacent directions (bent edge). Thus a direction
set contains from 3 to 6 directions. It turns out that a direction set with 3 direc-
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tions (corresponding to a Steiner configuration with straight edges only) cannot
exist: such a direction set can always be supplemented with at least one direction,
hence contradicting maximality [30]. Therefore, direction sets contain from 4 to
6 directions.

If an edge in a Steiner configuration contributes two (adjacent) directions to a
direction set, the first one (in counter-clockwise order) isdenoted aprimarydirec-
tion while the other is denoted asecondarydirection. Single-direction edges can
be labeled either primary or secondary.

Whenever an edge contributes two directions these are adjacent, so we immedi-
ately obtain an upper bound ofO(σ3) on the number of direction sets. However,
the actual number of direction sets is much smaller:

Theorem 2.4 In σ-geometry the number of direction sets isΘ(σ). In addition,
the collection of direction sets can be identified inΘ(σ) time (which is optimal).

As pointed out by Brazil et al. [24], forλ-geometry this theorem follows almost
immediately from the upper and lower bound on meeting angles(Theorem 2.2).
Consider two adjacent directions and a Steiner configuration {s, x1, x2, x3} with
an edgesx1 that uses these two directions. Ifλ is not a multiple of 3, then
since there are only two feasible meeting angles, both edgessx2 andsx3 must
be straight. Hence forλ not being a multiple of 3, a direction set contains 4 direc-
tions only — one direction set for each pair of adjacent directions (see Figure 8,
right). For λ being a multiple of 3, both edgessx2 andsx3 can be bent while
fulfilling the upper and lower bounds on the meeting angles — hence a direction
set contains 6 directions ifλ is a multiple of 3. Again, only one direction set is
possible if we fix a pair of adjacent directions. Since there are2σ pairs of adjacent
directions, the theorem follows. Furthermore, these2σ direction sets can trivially
be constructed inO(σ) time.

For generalσ-geometry, proving Theorem 2.4 is a bit more involved. The proof
uses a geometric characterization of Fermat-Torricelli points originally given by
Chakerian and Ghandehari [35] for smooth and strictly convex unit circles: For
a Steiner configuration{s, x1, x2, x3}, if a unit circle is placed with its centre at
s and l1, l2 and l3 are the tangents of the unit circle where the rayss → x1,
s → x2 ands → x3 intersect the unit circle, thenl1, l2 and l3 form a triangle
whosecentroidcoincides withs. We say that the tangentsl1, l2 and l3 have the
centroid-property.
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Du et al. [71] used the centroid-property to prove that if thedirection of edgesx1

is fixed, then the directions of edgessx2 andsx3 are uniquely determined (for
smooth and strictly convex unit circles). Based on a slightly weaker version of
the centroid-property from Martini et al. [144] that holds for generalunit circles,
Brazil and Zachariasen [30] showed that if two adjacent directions are fixed —
corresponding to the case where edgesx1 is bent — then edgesx2 (and edgesx3)
can use at most two fixed adjacent directions. Hence the first part of Theorem 2.4
follows. (Note that direction sets with 5 directions exist in σ-geometry.)

Based on the centroid-property, Pagh [157] gave aO(σ2) time algorithm to con-
struct all direction sets inσ-geometry. The running time was improved toΘ(σ)
by Brazil and Zachariasen [30].

Our interest in direction sets stems from the fact that all Steiner points in a full
Steiner tree (FST) use thesamedirection set; more precisely, we have the follow-
ing theorem [30]:

Theorem 2.5 Given a fulsome FST inσ-geometry, there exists asingledirection
set that is used byeverySteiner point in the tree.

(Recall that an SMT is fulsome if it contains the maximum possible number of
full components for any SMT on the same terminal set.) For smooth unit circles,
including the Euclidean metric, it is known that the edges ofa full SMT only
usethreedifferent orientations [71, 139]. Theorem 2.5 can be considered as a
generalization of this result to fixed orientation metrics,and it turns out to be
crucial in the design of efficient algorithms to construct FSTs (Section 3.1).

Zero-shifts and one bent edge property

The fixed orientation metric is not strictly convex, so in general there are infinitely
many SMTs for a given set of terminals. In this section we survey properties
pertaining to fulsome FSTs that are part of some SMT.

A zero-shiftin an FSTT is a perturbation of one or more Steiner points such that
the perturbation does not increase the length ofT . Zero-shifts were introduced by
Du and Hwang [73] forλ = 3, and originally used as a technical tool in the quest
for better bounds on the size of the generalized Hanan grid [115, 122, 123], see
also Section 2.3. One of the by-products of this work was the following:
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Theorem 2.6 In σ-geometry, every fulsome FST can be embedded in such a way
that the FST has at most one bent edge.

This theorem was proved forλ = 3 by Du and Hwang [73] in 1992, forλ =
4 by Lin and Xue [132, 135] in 1998, and finally for arbitraryλ by Brazil et
al. [24] in 2000; the full generalization toσ-geometry was given by Brazil and
Zachariasen [30] in 2009.

The general technique to prove Theorem 2.6 is to show that if there exist two
bent edgese1 and e2 in an FST, then we can perturb the Steiner points on the
path connectinge1 and e2 in such a way that eithere1 or e2 becomes straight
(and without introducing additional bent edges). In fact, we have the following
theorem:

Theorem 2.7 Let e1 ande2 be two edges in a fulsome FSTT in σ-geometry such
thate1 has an exclusively secondary component ande2 has an exclusively primary
component. Then there exists a zero-shift acting on the Steiner points on the path
frome1 to e2 in T , such that the shift can continue to be performed until either e1

has no exclusively secondary component ore2 has no exclusively primary compo-
nent. Furthermore, this shift preserves the direction of all straight edges except
(possibly)e1 ande2.

Zero-shifts can also be used to prove that FSTs with other special properties exist.
As an example, forλ = 3 or λ = 6 it is always possible to transform an FST using
zero-shifts to another FST where every Steiner point has degree 3 [129]. More
elaborate characterizations are presented and utilized inSections 3.1 and 3.2.

A fundamental zero-shiftis zero-shift that cannot be decomposed into two zero-
shifts each of which acts on a subset of the Steiner points acted on by the funda-
mental zero-shift (and at least one of which acts on a proper subset of those Steiner
points). Any zero-shift can be decomposed into fundamentalzero-shifts. Brazil et
al. [28, 29] showed that inλ-geometry and forλ being a multiple of 3, zero-shifts
perturbsingleSteiner points; forλ not being a multiple of 3, fundamental zero-
shifts perturbtwo neighbouring Steiner points. In generalσ-geometry, the type
of fundamental zero-shift depends on the number of directions in the underlying
direction set: For size 4 direction sets 1-point perturbations do not exist, while for
size 5 and 6 direction sets 1-point perturbations do exist [30].
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Steiner ratio

Consider interconnecting a set of terminalsN under a metric given by an arbitrary
unit circleC withoutbeing allowed to use Steiner points. This corresponds to com-
puting aminimum spanning tree (MST)for N — a problem that is polynomially
solvable (see Section 1.3).

Let |SMTC(N)| and|MSTC(N)| denote the length of an SMT and an MST, respec-
tively, for N under the metric given byC. Clearly|SMTC(N)| ≤ |MSTC(N)| since
an SMT is a shortest possible interconnection ofN . Now the question is: How
much shorter can an SMT be relative to an MST for the same set ofterminals?
Define

ρC(N) =
|SMTC(N)|
|MSTC(N)|

to be the ratio between the length of an SMT and an MST forN . TheSteiner ratio
ρC for the metric given by unit circleC is defined as

ρC = inf
N

ρC(N)

That is, the Steiner ratio is the smallest possible ratio between the SMT and MST
lengths for any set of terminals. In this section we briefly survey the results on the
Steiner ratio forλ-geometry andσ-geometry.

Let ρλ be the Steiner ratio inλ-geometry. Consider the rectilinear plane (λ = 2).
For the set of terminals{(−1, 0), (0,−1), (1, 0), (0, 1)}, the SMT is a cross of
length 4, while an MST has length 6 (all terminals are separated by a distance of
at least 2). Thus we haveρ2 ≤ 4/6 = 2/3. Furthermore, as shown in the seminal
paper by Hwang [97], we also haveρ2 ≥ 2/3, so for λ = 2 the Steiner ratio
problem is fully solved.

For the general Steiner ratio problem inλ-geometry, Sarrafzadeh and Wong [180]
gave the inequality

ρλ ≥
√

3

2
cos

π

2λ
which follows from

|SMTλ(N)| ≥ |SMT∞(N)| (1)

≥
√

3

2
|MST∞(N)| (2)

≥
√

3

2
cos

π

2λ
|MSTλ(N)| (3)
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Here |SMT∞(N)| denotes the length of an SMT forN asλ → ∞, which cor-
respond to the Euclidean metric; the second inequality follows from the Steiner
ratio theorem for the Euclidean metric [72]. It follows fromthis lower bound that
ρ3 ≥ 3/4; a matching upper bound can be obtained by placing three terminals on
every second vertex of the regular hexagon (which is the unitcircle forλ = 3).

The exact Steiner ratio is not known for all values ofλ (see Open Problem 1
on page 70). In Table 1 we summarize the results known forλ-geometry. It is
interesting to note that the Steiner ratio is not a monotonically increasing function
of λ. However, both the lower and upper bound approach

√
3/2 asλ → ∞ as

could be expected.

Metric Steiner ratio References

λ = 2 (rectilinear) 2

3
[97]

λ = 3 (hexagonal) 3

4
[122]

λ = 4 (octilinear) 2+
√

2

4
[184]

λ ≡ 3 mod 6
√

3

2
cos π

2λ
[122]

λ ≡ 0 mod 6
√

3

2
[122]

Generalλ (lower bound) max{2

3
,

√
3

2
cos π

2λ
} [71, 180]

Generalλ (upper bound) min{
√

13−1

3
,

√
3

2

1

cos
π

2λ

} [58, 71, 180]

λ → ∞ (Euclidean)
√

3

2
[72]

Table 1:Overview of the results on the Steiner ratioρλ for λ-geometry.

For generalσ-geometry the bounds on the Steiner ratio are the same as those for
arbitrary normed planes, since any norm can be approximatedarbitrarily closely
by a weighted fixed orientation metric. In normed planes2/3 is a tight lower
bound on the Steiner ratio [79] (the bound is achieved in, e.g., the rectilinear
plane). The best known upper bound is(

√
13 − 1)/3 ≈ 0.8686 [71], but it is

conjectured that the (tight) upper bound is
√

3/2 ≈ 0.8660 — the Steiner ratio for
the Euclidean metric [72].

Results on the Steiner ratio for other metric spaces are surveyed by Cieslik [55,
57]. ForLp metrics it is known that the Steiner ratio is in the interval[2/3,

√
3/2],

where the lower bound is attained forp = 1 andp = ∞, while the upper bound
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is attained for the Euclidean metricL2 [139]. That theL1 andL∞ metrics have
identical Steiner ratios follows from the fact that affinelyequivalent unit circles
achieve the same Steiner ratio; also, if two unit circles have almost the same shape,
then their Steiner ratios have almost the same value [58]. Intuitively, this is the
reason why the Steiner ratio forλ → ∞ approaches the Steiner ratio for the
Euclidean metric.

2.3 Generalized Hanan grid

For the rectilinear Steiner tree problem it is known that there exists an SMT in
the Hanan grid (see Section 1.2). Sarrafzadeh and Wong [180]pointed out that
when going from two to three orientations in the plane, thereexist terminal sets
for which every SMT has Steiner points that arenot in the corresponding Hanan
grid.

A natural question is therefore: Does there exist a “small” grid structure in which
an SMT for the general fixed orientation problem always can befound? As for
the rectilinear problem, the existence of such a grid — whichinduces a weighted
planar graph — would make it possible to reduce the fixed orientation problem to
the Steiner tree problem in graphs. In this section we surveythe results pertaining
to this reduction.

For any set of pointsP , defineGG(P ) to be the set of intersection points obtained
by drawing lines in all legal orientations through every point in P . Define the
generalized Hanan gridGGi as follows: For terminal setN , GG0(N) = N and
for i > 0 recursively defineGGi(N) = GG(GGi−1(N)) (Figure 9). Note that
GG1(N) coincides with the vertices of Hanan grid for the rectilinear metric.

Theorem 2.8 For each set ofn terminalsN there exists an SMT forN such that
all Steiner points are inGGn−2(N).

This theorem has a fairly long history, and over time it has been shown to hold for
increasingly larger classes of fixed orientation problems.The generalized Hanan
grid was introduced in 1992 by Du and Hwang [73], and they proved that The-
orem 2.8 holds forλ = 3 (uniform metric with three orientations). In fact, they
proved that forλ = 3, one can perform zero-shifts (by moving one Steiner point
at a time) until each FST contains at most one bent edge. The theorem then easily
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Figure 9:Generalized Hanan gridGG1(N) (left) andGG2(N) (right) for λ = 4, and a setN
with 5 terminals. Only lines segments that are within the bounding box of the terminals are drawn.

follows since in such an FST there must exist a Steiner points that is connected
with straight edges totwo terminals; hences is in GG1(N). By removing the two
terminals and their straight edges, and considerings to be a (pseudo) terminal, the
argument can be repeated for all (up to)n − 2 Steiner points.

Du and Hwang also conjectured that for anyi > 0 there exists a fixed orientation
metric and a terminal setN such that all SMTs forN have some Steiner pointnot
in GGi(N). In other words, they conjectured that the boundn−2 in Theorem 2.8
cannot be reduced to a constant.

The journey towards proving Theorem 2.8 was as follows. In 1995 Koh [115] and
Lee et al. [123] independently proved that the theorem holdsfor λ = 4 by showing
that it is always possible to perform zero-shifts such that some Steiner point is
connected to two terminals using straight edges only. In 1996 Lee and Shen [122]
generalized the result to anyλ (or uniform orientation metric) using the same
proof technique. Finally, in 2001 Li et al. [130] showed thatTheorem 2.8 holds for
all unweighted fixed orientation metrics, and in 2009 Braziland Zachariasen [30]
proved that the theorem also holds for the weighted case — andhence for any
metric given by a polygonal unit circle. The result is not stated explicitly in [30],
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but the theorem follows from the fact that there always exists an SMT for which
every FSTs has at most one bent edge (Theorem 2.6).

The bound provided by Theorem 2.8 can be improved for specialcases of the
fixed orientation problem. Forλ = 3 (three uniform orientations) a bound of
⌈(n − 2)/2⌉ follows from the fact that forn ≥ 4 it is possible to perform zero-
shifts in such a way thattwo Steiner points simultaneously are connected to two
terminals using straight edges only [225]. For three arbitrary orientations (σ = 3)
only a weaker bound of⌈(n − 1)/2⌉ is known [130, 131], and for four uniform
orientations (λ = 4), the best known bound is⌈2n/3⌉− 1 [132, 135]. The bounds
for λ = 3 andσ = 3 are known to be tight; furthermore, it is known that the bound
for λ = 4 must be strictly greater than⌈(n − 2)/2⌉ [130, 131].

It has been conjectured that the bound in Theorem 2.8 can be improved [22, 132,
135]. There are nevertheless arguments that support the opposite fact, and we
conjecture that the bound in Theorem 2.8 is tight (Open Problem 2).

From an algorithmic point of view, Theorem 2.8 has limited use since the number
of vertices inGGi(N) is Ω(ni+1σi) for |N | = n, which is Ω(nn−1σn−2) for
i = n − 2. Even for small problem instances, the generalized Hanan grid is too
large to be useful (see Figure 9).

2.4 Conclusions

The theoretical results that were presented in this sectionhave played a central
role in the development of efficient algorithms for the Steiner tree problem in
fixed orientation metrics. It is, however, interesting to note that while early con-
tributions focused on proving results related to the generalized Hanan grid, recent
contributions have focused more on proving structural results independent of their
Hanan grid applicability, e.g., results related to the distribution of orientations in
full Steiner trees. The exact value of the Steiner ratio for all uniform orientation
metrics is still among the future challenges — as well as further generalizations
of the results to unit circles that have a mixture of polygonal and strictly convex
boundary. From a practical point of view, however, the Steiner ratio is less im-
portant due to significant progress in approximation and exact algorithms over the
last decade.
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3 Algorithms

In this section we survey the range of algorithms that have been proposed for
computing Steiner minimum trees (SMTs) under uniform and fixed orientation
metrics. The survey does not cover all algorithms that have been specifically de-
vised for therectilinear Steiner tree problem; rather, we focus on algorithms that
coverother uniform and fixed orientation metrics. In most cases the algorithms
described work under all fixed orientation metrics.

In the first section we consider the problem of constructing an SMT for a given
topology, that is, when the interconnection pattern of terminals and Steiner points
is known. We then move on to give an algorithm for constructing the so-called
flexibility polygon, which is a representation of all SMTs for a given topology.
Finally, we present heuristics and exact algorithms for theNP-hard general case
(i.e., when the topology is unknown).

Before we embark on the journey of algorithms for the SMT problem, let us con-
sider an elementary problem — namely the one of computing thelength of an
SMT for two terminalsp and q. This is obviously the same as computing the
distance betweenp andq. As pointed out by Shen [184], distances under theuni-
formorientation metric (or inλ-geometry) can be computed in constant time, i.e.,
independent ofλ. The problem reduces to identifying the two legal orientations
that are immediate preceding and succeeding legal orientations to the orientation
of the straight line betweenp andq. Due to the regularity of the legal orienta-
tions in the uniform case, this is easy to do in constant time.However, achieving
constant time appears to be more difficult under a general fixed orientation metric
(Open Problem 3); a running time ofO(log σ) can be achieved by binary search
on the sorted set ofσ legal orientations. In many applicationsσ can be assumed
to be bounded by a constant, and in this case distances can trivially be computed
in constant time.

3.1 Steiner tree problem for a given topology

The problem of constructing an SMT for an arbitrary given topology can be seen
as a further generalization of the general Fermat problem (where the topology is
a star). In this section we present efficient algorithms for constructing SMTs for
a givenfull Steiner topology, i.e., where all terminals are leaves and all Steiner
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points are degree 3 interior vertices. We restrict our attention to topologies where
Steiner points have degree 3, since degree 4 Steiner points only appear in very re-
stricted and well-defined cases [30, 54, 56, 193]. The restriction to full topologies
is no limitation either, as any topology is a union of full topologies.

For a given (full Steiner) topologyT , the length|T |C of a Steiner treeT with
topologyT , seen as a function of the location of the Steiner points ofT , is a
convex function (sinceT lies in a normed plane). However, this convexity is not
strict; it may be possible to move Steiner points in an SMT without changing the
length of the tree. A Steiner treeT is said to belocally minimal if there is no
perturbation of its Steiner points which reduces the lengthof T . Thus, ifT is an
SMT for a given topology, it is locally minimal — and vice versa. Note that a
locally minimal tree is not necessarily an SMT for the terminals that its spans.

The problem of locating Steiner vertices in a tree with a given topology (in a gen-
eral metric space) was considered in an early paper by Sankoff and Rousseau [176].
They gave dynamic programming algorithms for some special metrics, including
Hamming distance and higher-dimensional rectilinear metrics. For a survey on
algorithms and complexity results related to the construction of shortest networks
under given tree topologies — covering a range of different metrics — consult the
survey by Jiang and Wang [108].

Euclidean problem

The classical Melzak-algorithm [145] computes a full Euclidean SMT for a given
full Steiner topologyT in O(2n) time (wheren is the number of terminals), or
decides that no such tree exists.

The idea of the algorithm is to rootT in one of the terminalsr, and identify a pair
of terminalsz1 andz2 with maximal depth that share an (interior) Steiner points;
such a pair always exists ifn ≥ 3. Consider the oriented linel throughz1 andz2

(Figure 10). Since the Euclidean metric is convex, the Steiner points has a unique
location in the SMTT for topologyT . Assume thats lies on the right hand side
of l. Now we may replacez1 andz2 by the third pointz on the equilateral triangle
with z1z2 as one of the sides and such thatz is on the left hand side ofl. The point
z is called theequilateral pointof z1 andz2.

Melzak’s key contribution was to show that if we solve the newproblem with
n − 1 terminals, the Steiner points can be identified by locating the intersection
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Figure 10:Recursion step of the Melzak-algorithm. Terminalsz1 andz2 are replaced with the
new terminalz and the problem is solved recursively.

between the SMT for the smaller problem with the circle through z1, z2 andz
(assuming that the SMT for the smaller problem exists). Hence, recursing on the
smaller problem eventually results in the trivial problem of constructing an SMT
for two terminals; the length of the so-called Simpson line between these two
terminals is the length of the SMT for the given topology. Thetotal running time
of O(2n) follows from the fact that in each recursion step, the Steiner point could
be on either side of the line through the terminals — and the algorithm has no
means of deciding the correct side.

Hwang [99] improved the running time of the Melzak-algorithm to (optimal) lin-
ear timeΘ(n) by proposing a clever method to identify the correct side of the
Steiner point in each step. Furthermore, this test could be performed in constant
time.

The Melzak-algorithm only works if the topology isnon-degenerate, that is, if no
Steiner points overlap with each other or with terminals in the corresponding SMT.
For the more general problem, where degenerate SMTs are allowed, Hwang and
Weng proposed the so-called “luminary algorithm”, which solves the SMT prob-
lem for a given topology inO(n2) time; the average running time isO(n log n),
where the average is taken over all full topologies for the set of terminals [223].
Another general method to solve the degenerate problem is the iterative approach
by Smith [188], which also can be generalized to higher dimensions and other
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metrics. This method is quite practical, but has the weakness that it only con-
verges with high probability.

In the fixed orientation problem the exact angles around Steiner points are not
known in advance (as in the Euclidean problem). As a consequence, there are
several candidates for “equilateral” points in each recursion step. As shown by
Brazil et al. [24], the Melzak-approach results in an exponential-time algorithm
for the fixed orientation problem. Until now it has not been possible to improve
the running time using this approach.

Linear programming

The fact that the unit discD for the weighted fixed orientation metric is linearly
constrained (and convex) makes it possible to compute distances using linear pro-
gramming — and hence to compute SMTs for (any) given topologyby solving a
linear programming problem.

In 1999, Thurber and Xue [199] gave a linear programming formulation for the
λ = 3 case, and in 2002, Xue and Thulasiraman [224] generalized the formula-
tion to the general uniform orientation metric. Zachariasen [234] pointed out a
nontrivial error in this formulation, and presented a new and correct formulation,
which is briefly presented here.

Let ul, l = 0, . . . , 2σ − 1, be the2σ vectors that define the vertices of the unit
circle C = ∂D (in counter-clockwise order around the circle). The successor of
unit vectorul is the vectorul+1, wherel + 1 = 0 whenl = 2σ − 1. Assume that
we would like to compute the distance|pq|C between two pointsp andq under the
metric given byC. Let {αl, βl} be the unique solution to

q = p + αlul + βlul+1 (4)

for eachl = 0, . . . , 2σ − 1. Using fairly simple arguments, Zachariasen [234]
showed that

|pq|C = max
l∈{0,...,2σ−1}

(αl + βl) (5)

and therefore thatdpq = |pq|C can be computed by solving the following linear
program:

minimize dpq

subject to αl + βl ≤ dpq, l ∈ {0, . . . , 2σ − 1}
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Note thatαl andβl depend linearly on the coordinates ofp andq. By applying the
constraints in the above formulation for each of the edges inthe given topology,
an SMT for this topology can be computed in polynomial time (in the size of the
input). Clearly, degenerate and non-tree topologies can also be handled by this
formulation.

A special case of the above problem, the (separable) rectilinear problem [32],
is known to be the dual of a transshipment problem. Similar connections are
currently unknown for the general problem.

Linear time algorithm for general σ-geometry

In order to compute an SMT for a given full Steiner topology inlinear time, it
is necessary to use an algorithmic approach that is different from the Melzak-
algorithm. In this section we present the historical time-line and some of the
technical results leading up to the following theorem.

Theorem 3.1 Given a full Steiner topologyT with n terminals and a weighted
fixed orientation metric withσ legal orientations, then inO(σn) time we can
either construct a full and fulsome SMTT with topologyT , or decide that no
such tree exists.

Hwang [97] proved the theorem for the rectilinear metric (λ = 2) in 1976. Hwang
showed that there always exists a rectilinear SMT for which the full Steiner trees
take on restricted canonical forms — so-called Hwang topologies — where all
terminals are connected to a backbone in a chain-like fashion. Computing an
SMT for such a topology can trivially be done in linear time.

In 1997, Li et al. [127, 128] gave an interesting structural result for the hexagonal
metric (λ = 3). They showed that there always exists a full SMT with a single
bent edge and such that every Steiner point has edges making120◦ with each other.
Albeit not pointed out by Li et al., this immediately gives anO(n2) time algorithm
for computing an SMT for a given full Steiner topology: Choose a candidate for
the bent edge (there areO(n) such edges), root the topology in this edge and use
a Melzak-approach to construct each of the subtrees in a bottom-up fashion. By
using a more clever implementation, similar to the one described below, linear
running time can be obtained.
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For the case whereλ is a multiple of 3, Nielsen et al. [155] in 2002 obtained a
linear time algorithm for constructing an SMT for a given full Steiner topology
by showing that there always exists an SMT where every Steiner point coincides
with the Steiner point for the correspondingEuclideanSMT; hence by using the
Melzak-Hwang algorithm to locate the Steiner points, linear running time can be
achieved.

A proof of Theorem 3.1 for alluniformorientation metrics was given by Brazil et
al. [27] in 2006. The concept of “forbidden subpaths” [25, 26] played a crucial
role in achieving this fast algorithm. Brazil and Zachariasen [30] proved Theo-
rem 3.1 in full generality by using the same algorithmic approach, but by sim-
plifying several of the underlying technical results — and without reference to
the results related to forbidden subpaths. In the remainderof this subsection, we
sketch some of the key ideas of this algorithm.

As a consequence of Theorem 2.7, it follows that there alwaysexists a so-called
canonical SMTdefined as follows:

Definition 3.1 Given an ordering of the edges in a full Steiner topologyT , an
SMTT for topologyT is said to becanonicalwith respect to that ordering ifT
contains at most one bent edge and all primary edges ofT come before secondary
edges ofT under the ordering.

Hence, in a canonical tree there exists a so-calledtransition edge(which is pos-
sibly a bent edge), such that all edges that appear before thetransition edge wrt.
the given ordering areprimary (straight) edges and all edges that appear after the
transition edge aresecondary(straight) edges.

The concept of canonical SMTs forms the cornerstone of theO(σn) algorithm for
constructing a full and fulsome SMT for given topology. Morespecifically, the
algorithm attempts to construct an SMT for each direction set (of which there are
Θ(σ), see Theorem 2.4). Given a direction set, the SMT — if it exists — is then
constructed inO(n) time. Here we first outline a simpleO(n2) algorithm for this
problem, and then we briefly explain howO(n) running time is obtained.

Consider any fixed ordering of the edges of the topologyT . Now, assuming that
a full and fulsome SMT exists, there must also exist a canonical treeT under the
given ordering. Assume that edge numberk under the ordering is the transition
edge. Then all edges numbered lower thank are primary edges and all edges
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Figure 11:Illustration of a treeT with the depth-first order canonical form rooted atr. Primary
edges are drawn as bold edges, and the remaining edges are secondary edges.

numbered higher thank are secondary edges. It turns out that this information
is sufficient to make it possible to construct each of two subtrees relative to the
transition edge in a bottom-up manner inO(n) time [27, 30]. Enumerating over
all choices for the transition edge results in aO(n2) algorithm.

Turning the quadratic time algorithm into a linear-time algorithm requires that we
carefully choose an ordering of the edges. A depth-first ordering of the edges from
a given (terminal) root results in a powerful and useful canonical form (Figure 11).
By applying appropriate preprocessing, each transition edge can be tested in con-
stant time, resulting in a linear-time algorithm for constructing a full and fulsome
SMT for a given topology.

3.2 Flexibility polygon

SMTs in fixed orientation metrics are usually not unique. Non-unique SMTs are
flexiblein the sense that we may choose among several (lengthwise equally good)
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embeddings of these SMTs. Hence, flexibility is a measure of the extent to which
edges and Steiner points in the minimum length network can beperturbed without
increasing the length of the network. This has important applications in solving
multi-objective optimisation problems in chip design, involving minimization of
negative effects of properties such as congestion or signaldelay as a secondary
objective [18, 19, 163].

In this section we characterize flexibility formally by defining theflexibility poly-
gon for a given topology (and for each of the Steiner points in this topology).
This concept was introduced by Brazil, Winter and Zachariasen [28, 29], and they
furthermore gave an efficient algorithm to construct the flexibility polygon. The
original algorithm [29] was only given forλ-geometry, but it can easily be gen-
eralized to arbitrary weighted fixed orientation metrics byapplying the structural
results from Brazil and Zachariasen [30].

The results related to the flexibility polygon subsume some of the earlier work on
flexibility. For theλ = 3 case, and considering the problem of constructing an
SMT with three terminals and one Steiner point, Yan et al. [225] showed that the
set of feasible Steiner points forms a region bounded by an equilateral triangle
(Figure 12). Li et al. [128] gave a simple algorithm to construct this triangular
region based on finding median points and so-called mid-orientation lines. More
generally, Shen [184] and Hayase [90] independently showedthat whenλ is a
multiple of 3, the feasible region (called a “public domain”in [184] and a “dia-
mond area” in [90]) is a convex polygon with up to six vertices; whenλ is not a
multiple of 3, then the SMT for three terminals is unique and the feasible region
contains a single point.

The fact that the feasible region for Steiner points is a convex polygon is not
surprising given that the problem of constructing an SMT fora given topology
can be solved by linear programming, where the coordinates of Steiner points
are variables [224, 234]. Even if linear programming in principle can be used to
construct feasible Steiner point regions, this would not beas efficient as direct
computation as shown below.

For a set of terminalsN and a full Steiner topologyT for N , we denote by
S(N, T ) the setof all full and fulsome SMTs interconnectingN with topology
T . Theflexibility polygonfor a terminal setN and a full Steiner topologyT is
defined to be theunionof the embeddings of all SMTs inS(N, T ). It turns out
that this union forms a simply connected region with a polygonal boundary whose
vertices include the terminalsN [29]. Some examples of flexibility polygons for
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Figure 12:Triangular flexibility polygon for three terminals andλ = 3. The Steiner point may
be placed anywhere in the gray-shaded region.

the cases whereλ = 4 andλ = 6 are shown in Figure 13.

In the remainder of this section we briefly discuss the following theorem by Brazil,
Winter and Zachariasen [29]:

Theorem 3.2 Given a full Steiner topologyT with n terminals and a weighted
fixed orientation metric withσ legal orientations, the flexibility polygon forT can
be computed inO(σn) time.

The first step of the algorithm is to compute an SMTT by applying Theorem 3.1.
The SMTT implicitly identifies a direction set that is used by every Steiner point
in T . Recall that a direction set consists of three sets of directions. Each set con-
tains either one or two directions; in the latter case one primary and one secondary
direction, and in the former case one direction that can be thought of as being both
primary and secondary (see Section 2.2). It should be noted that SMTs that use a
direction set with 5 or 6 directions usually have much more flexibility than SMTs
that use a direction set with 4 directions. (As an example, SMTs in λ-geometry
whereλ is a multiple of 3 usually have more flexibility since for these SMTs the
corresponding direction sets have 6 directions.)

Consider a counter-clockwise outer walk ofT , beginning and ending at the same
terminal. This defines a set ofconcave pathsin T that have terminals as endpoints
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λ = 4 λ = 6

Figure 13:Examples ofλ-SMTs and flexibility polygons. Notice that a flexibility polygon may
have overlapping boundary segments, indicating that partsof some edges may exhibit no flexibility
at all.

and Steiner points as interior points. In other words, theseare paths between
terminals where at each intermediate Steiner point the rightmost outgoing edge is
taken.

For each concave path we now seek an embedding of the SMT that pushes the path
as far as possible to the right, defining a so-calledrightmostconcave path. This
means that for each edgee on the rightmost concave path there is no alternative
embedding where the same edge is to the right ofe. It can be shown that the
collection of these rightmost concave paths defines the flexibility polygon.

Consider a concave pathP = v1v2 . . . vk−1vk connecting two terminalsv1 andvk.
We define an ordering of the edges ofT by making a depth-first traversal fromv1.
At every Steiner pointvi, the subtree ofT rooted atvi (and not intersectingP ) is
traversed before the edgevivi+1 is traversed. The main technical result is now that
the SMT that has the canonical form given by this ordering defines the embedding
of the rightmost concave path fromv1 to vk [29].

In order to compute these rightmost concave paths efficiently the algorithm first
constructs all primary and secondary subtrees ofT , that is, embeddings that con-
sist of primary resp. secondary directions only. This can beaccomplished inO(n)
time even though there areO(n) potential subtrees. The algorithm works bottom-
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up by maintaining a queue of subtrees that can be constructedat a given point in
time.

The final construction of rightmost concave paths, and hencethe flexibility poly-
gon, is achieved essentially by traversing a primary subtree as far as possible along
a concave path — and then switching to a secondary subtree rooted at the opposite
end of the edge where the primary subtree ends. The construction only requires
one outer walk ofT and constant time for each edge traversed — in totalO(n)
time.

For a given Steiner points in T , the union of all feasible positions ofs in the
SMTs inS(N, T ) is denoted the flexibility polygon for Steiner points. Given the
flexibility polygon for T , the flexibility polygon fors can be constructed in con-
stant time and has at most six vertices [29]. Examples of suchflexibility polygons
are shown in Figure 14.

Figure 14: Examples of flexibility polygons (dark-shaded) for Steinerpoints (λ = 6). The
flexibility polygon on the left has 6 vertices, while the flexibility polygons on the right have 3, 4
and 5 vertices, respectively.

3.3 Heuristics for the general case

In this section we give a survey on heuristics for the generalSMT problem: Given
a setN of n terminals, construct a shortest interconnection of the terminals under a
fixed orientation metric (thus the topology of the tree is unknown). Recall that this
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is an NP-hard problem — therefore heuristics that quickly construct near-optimal
solutions are valuable in an application setting.

From a theoretical point of view, SMTs can be approximated arbitrarily closely.
The polynomial-time approximation scheme (PTAS) of Arora [5] works for any
fixed orientation metric, and therefore it is possible to construct a solution to the
SMT problem that is within a factor of1 + ǫ from optimality in polynomial time
for any fixedǫ > 0. However, the degree of the polynomial for small values ofǫ
is too large to make this algorithm practical.

Almost all practical alternatives to the Arora algorithm use a minimum spanning
tree (MST) for the terminals as a starting point. The reasonsare twofold. Firstly,
an MST forn terminals can be computed efficiently inO(n log n) time under any
fixed orientation metric [215] (see also Section 1.3). Secondly, as a consequence
of the known lower bounds on the Steiner ratio (see Section 2.2), MSTs are prov-
ably good approximations to the Steiner tree problem; an MSTis at most50%
longer than an SMT under any fixed orientation metric [71, 79,180]. Further-
more, in practice MSTs are significantly better approximations than their corre-
sponding (worst-case) Steiner ratios indicate. Hence starting with an MST and
iteratively performing operations on the tree that reduce the length of tree is an
obvious choice.

Since all the surveyed heuristics have the same theoreticalapproximation guar-
antee — namely the guarantee provided by an MST — we instead compare their
experimental behaviour. In Table 2 we present the average reduction over the
MST length for uniformly distributed terminal sets of size around 50 (as reported
by the authors). It should be noted that the table does not report the running times
of the heuristics which varies significantly.

Optimal embedding of MST

Consider an MSTT for a set of terminalsN . Recall that each edgepq of T can be
embedded (or drawn) in the plane using at most two adjacent legal orientations;
any (monotone) zigzag-path consisting of line segments having these two legal
orientations is a shortest path under the fixed orientation metric (see Section 2.1).
For a given embedding ofT , line segments from different edges ofT may overlap;
if we drop all but one of the overlapping line segments, we obtain a Steiner tree for
N . An optimal embeddingis one where the resulting Steiner tree has the shortest
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Algorithm λ = 3 λ = 4
Optimal embedding of MSTs [95, 136] 2.5% [136] -
Delaunay-based heuristic [187] - 4.0% [184]
Iterated 1-Steiner heuristic [112] 3.4% [137] 4.1% [115]
Edge insertion heuristic [36] 3.4% [129] 4.1% [129]
Edge-based heuristic [14] - 4.3% [111]
Greedy triple contraction [238] - 4.4% [111]
Hierarchical construction [179] - 1.8% [184]
Simulated annealing based heuristic [128]3.1% [128] -
Steiner tree conversion [46] - 3.6% [46]
SMT 4.1% [154] 4.5% [154]

Table 2: Overview of results for practical heuristics for computinghexagonal and octilinear
Steiner trees. The table presents average length reductions over the corresponding MST for uni-
formly distributed terminal sets of size around 50. For eachalgorithm there is a reference to the
orignal paper describing the algorithm (or algorithmic idea).

possible length — or where the total overlap is as large as possible (Figure 15).

The first heuristic designated for generalλ-geometry was based on optimal MST
embedding. In 1991, Burman et al. [33] presented a polynomial-time algorithm
to compute an optimal embedding forλ = 4. Their algorithm is a generalization
of a similar algorithm for the rectilinear problem [95]. Here we present the main
ideas of the original algorithm.

Consider an MSTT . We say thatT is separableif only adjacentedgespq and
pq′ in T can possibly be embedded with overlap. Ho et al. [95] proved that there

Figure 15:Examples of embedding of an MST forλ = 3. The topology of the MST is given by
the dotted lines. The embedding on the right is shorter than the embedding on the left.
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always exists a separable MST for the rectilinear problem (λ = 2), and further-
more, that such an MST can be computed inO(n log n) time. This fact makes it
possible to devise an efficient algorithm to compute an optimal embedding of a
rectilinear MST.

A Z-shapedembedding is one where each edge is drawn using at most three line
segments (note that the embeddings in Figure 15 are Z-shaped). It turns out that
there always exists an optimal embedding of an MST which is Z-shaped. Ho et
al. [95] gave aO(n7) algorithm to construct an optimal Z-shaped embedding —
and hence an optimal embedding — for the rectilinear problem. Using similar
techniques, Lin et al. [136] gave aO(n2) time algorithm to construct an optimal
embedding of an MST forλ = 3; an improvedO(n) time algorithm was given by
Lin and Xue [134]. We conjecture that it is possible to construct a separable MST
in O(n logn) time and to construct an optimal embedding inO(n) time under any
fixed orientation metric (Open Problems 4 and 5).

Delauney triangulation based heuristics

In 1981, Smith, Lee and Liebman [187] proposed a fastO(n log n) heuristic for
the Euclidean problem. This heuristic uses the (Euclidean)Delaunay triangulation
to identify triplets and quartets of terminals for which small SMTs are constructed;
these SMTs form building blocks for a heuristic solution. The SMTs are then
greedily, as in Kruskal’s MST algorithm, combined with MST-edges to form a
Steiner tree.

Lee et al. [123] implemented this algorithm forλ = 4; only the construction of
small SMTs was modified to take the new metric into account. They also used
the Euclidean Delaunay triangulation to identify tripletsand quartets. Shen [184]
implemented the algorithm usingλ-geometry Delaunay triangulations. Shen also
presented a local refinement and a simulated annealing basedalgorithm where the
first greedy solution is iteratively improved by inserting small SMTs. (This is sim-
ilar to the approach independently proposed by Winter and Zachariasen [230, 236]
for the Euclidean problem). Another Delaunay-based heuristic was suggested by
Ho et al. [96] as part of a full-chip routing algorithm.
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Iterated 1-Steiner heuristics

The idea of the iterated 1-Steiner heuristic is to iteratively identify a Steiner point
s such that the length of an MST forN ∪ {s} is minimized. (The so-called
1-Steiner tree problem was originally considered for the Euclidean problem by
Georgakopoulos and Christofides [82].) Kahng and Robins [112] presented sev-
eral variants of this approach for the rectilinear problem.

The first application to generalλ-metrics was given by Koh [115], who used
the generalized Hanan grid to identify Steiner point candidates forλ = 4. A
quadratic-time algorithm to solve the 1-Steiner problem for λ = 3 was given by
Lin et al. [137]; they also presented experimental results for the iterated 1-Steiner
heuristic forλ = 3. A related heuristic based on inserting Steiner points into
MSTs was given by Hayase [91].

Edge-based heuristics

Instead of inserting Steiner points into the tree, Chao and Hsu [36] suggested
an edge-insertion heuristic for the rectilinear problem. The idea is to insert a new
edge into the current tree, and delete the longest edge from the loop that is created.
Li et al. [129] extended the method to insert more than one edge at at time. Also,
Steiner points were relocated to optimal positions after each insertion, so that the
tree becomes locally minimal.

Another edge-based heuristic was proposed for the rectilinear problem by Bo-
rah et al. [14, 15]. This algorithm is basically a Steiner point insertion heuristic;
however, two of the three vertices involved in the insertionshould be connected
by an edge in the tree. This reduces the number of possible triples; in fact, there
are at mostO(n) relevant triples and these can be identified inO(n log n) time.
This approach was used by Madden and Koh [116] in their feasibility study of
non-Manhatten architectures, but no detailed results for the reductions over MST-
length were given. Kahng et al. [110, 111] presented experimental results for the
heuristic forλ = 4. Zhu et al. [239] proposed a variant of the edge-based method
where a spanning graph is used to reduce the number of candidates for edges to
insert.
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Greedy triple contraction heuristics

The greedy triple contraction algorithm of Zelikovsky [238] for the Steiner tree
problem in graphs was the first to improve the (trivial) approximation bound pro-
vided by the minimum spanning tree. In addition to being theoretically inter-
esting, this algorithm also has practical potential for computing Steiner trees in
fixed orientation metrics. Kahng, Mandoiu and Zelikovsky [110, 111] presented
an efficient variant of Zelikovsky’s original algorithm; experimental results were
presented for the rectilinear and octilinear problem. It isstraightforward to extend
the algorithm to any fixed orientation metric.

The idea of the algorithm is to insert triples (Steiner pointplus edges to neighbour-
ing vertices) in a greedy manner, where the longest edges in the two loops created
are removed from the tree. Thegain of a triple is the net effect of the insertion:
The edge length of the removed edges minus the edge length of the triple. The
algorithm iteratively chooses a triple with maximum gain, and contracts it, that is,
collapses the three vertices and the Steiner point into a single new terminal. In the
variant suggested by Kahng et al., triples are inserted inbatches, hence reducing
the running time significantly. A set ofO(n log n) candidate triples is identified
in O(n log n) time; this set includes the so-called empty triples which are triples
that do not have any terminals within their bounding rectangle. Finally, an effi-
cient data structure to identify the longest edge on the pathbetween two terminals
is given. The total running time of the algorithm isO(n log2 n), which makes it
applicable to large-scale problem instances.

Similar to the edge-based heuristic, Zhu et al. [239] proposed a variant of the
greedy triple contraction heuristic where a spanning graphis used to reduce the
number of candidates for triples to insert. This algorithm constructs slightly
shorter trees than the algorithm by Kahng et al., but at the cost of a significant
increase in asymptotic running time.

Other heuristics

In this section we briefly describe other heuristic approaches that do no fit into the
classes given above.

In the hierarchical construction heuristic [180], a binarydecomposition is made
from the MST-topology. This decomposition then guides a bottom-up tree con-
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struction — which involves adding edges (and embeddings of these edges) that
minimize total length. Sarrafzadeh and Wong [180] presented experimental re-
sults for the rectilinear problem only, but a general algorithm for the uniformly
oriented problem was described and analyzed. The heuristicwas implemented
for λ = 4 by Shen [184], who also discussed how small optimal SMTs could be
computed using the generalized Hanan grid.

Li et al. [127, 128] suggested a simple simulated annealing heuristic forλ = 3:
Select a random setS of n − 2 Steiner points from the Hanan grid (forλ = 3),
and compute an MST forN ∪ S. Simulated annealing steps are performed by
relocating Steiner points to adjacent Hanan grid vertices.

In the octilinear heuristic by Chiang and Chiang [44, 46], the idea is to compute
a rectilinear Steiner tree and then convert all rectilinearedges to octilinear edges.
Also, Steiner points are moved to optimal locations under the octilinear metric.
The topology of the tree is not changed.

Finally, Coulston [68] proposed a heuristic for hexagonally partitioned space; the
unweighted case of this problem corresponds to the hexagonal problem (λ = 3).
A genetic algorithm that combines full Steiner trees was implemented for the
problem.

Summary of heuristic performance

As indicated by Table 2, the edge-based heuristic and the greedy triple contraction
heuristic outperform the other heuristics wrt. quality. Even more noteworthy, these
two heuristics also have good running time behaviour (clearly the running time of
the optimal embedding heuristic is hard to beat). The edge-based heuristic has
quadraticO(n2) running time, while the greedy triple contraction heuristic has
sub-quadraticO(n log2 n) running time behaviour.

Given the excellent performance (both wrt. quality and speed) and the ease with
which the greedy triple contraction heuristic can be applied to other metrics and
more general interconnection problems, this heuristic must be considered to be
the “champion” among practical heuristics for the fixed orientation Steiner tree
problem.
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3.4 Exact algorithms for the general case

Since the fixed orientation Steiner tree problem is NP-hard,there is little hope that
there exists a provably efficient exact algorithm. However,for restricted problem
instances polynomial-time algorithms do exist. As an example, Lin and Xue [133]
devised a linear-time algorithm for the problem of computing an hexagonal SMT
when the terminals are distributed on the boundary of a regular hexagon; Lin
and Xue also observed experimentally that forn ≥ 10, all computed SMTs were
minimum spanning trees (see Open Problem 6).

In this section we present twopracticalapproaches for computing SMTs for gen-
eral problem instances. These algorithms have no provably good running time
bounds, but as we shall see, the so-called Geosteiner approach works very well in
practice. Using the Geosteiner approach, it is possible to compute SMTs for prob-
lem instances with randomly distributed terminal sets — andreal-life problem
instances from chip design — with several thousand terminals.

Enumeration of full topologies

The problem of computing a Steiner tree for a given full Steiner topology was con-
sidered in Section 3.1. One straightforward approach to solving the general case is
to enumerate all full topologies, and for each of these to compute an SMT. (Here
we assume that we use an algorithm that also considers degenerate topologies —
such as the linear programming approach presented in Section 3.1.)

Enumeration of full topologies was proposed as a solution method for the Eu-
clidean problem by Smith [188], who also gave an elegant representation of full
topologies. Consider the unique topologyT3 for three terminals consisting of a
Steiner point that is connected to three leaf terminals. When adding a fourth ter-
minal t to this topology, we may view this as “joining”t to one of the edges
uv in T3 by removinguv and connecting a Steiner points to t, u and v. By
generalizing this argument, it is easy to see that a topologyTn with n ≥ 4 ter-
minals can be represented by an − 3 vectorV (Tn) = (v4, v5, . . . , vn), where
1 ≤ vi ≤ 2i− 5. (This also shows that the number of full Steiner topologiesonn
terminals is3 · 5 · · · (2n − 5), a function which grows super-exponentially inn.)

Based on an efficient application of this representation, Thurber and Xue [199]
in 1999 implemented the first exact algorithm for the hexagonal metric (λ = 3).
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Their branch-and-bound algorithm works as follows. First assume that an upper
boundUB on the length of an SMT exists — as provided by a heuristic method.
Also assume that the terminals are ordered by some ordering scheme. LetTk be
a topology on the firstk terminals (k < n), and letV (Tk) = (v4, v5, . . . , vk) be
the corresponding vector. If an SMT for topologyTk has length greater than or
equal toUB, then no matter howTk is extended by joining terminals (as given by
the ordering), this cannot result in a tree with a shorter length thanUB. Thus we
need not consider any vector for the complete problem with prefix (v4, v5, . . . , vk),
essentially cutting off a whole branch in the search tree.

Using this approach, Thurber and Xue were able to solve the SMT problem for
10 terminals in seconds. Computing an SMT for 20 terminals took several hours,
and was not feasible in all cases. The branch-and-bound scheme proved to be very
effective; as an example, approximately 2 million full topologies for 10 terminals
were reduced to around 350 topologies for which linear programming was ap-
plied to compute an SMT. Even though the branch-and-bound approach helps, the
running time growth of full topology enumeration makes the approach infeasible
even for moderately sized problem instances.

Geosteiner approach

Recall that an SMT is a union of full Steiner trees (FST), which are SMTs where
all terminals are leaves and all Steiner points are interiorvertices. Instead of
enumerating full topologies, it turns out to be much more efficient to enumerate
FSTs and then combine these to form an SMT for the complete setof terminals;
this is called theGeosteiner approachin the following.

The Geosteiner approach has its origins in the work on the Euclidean problem by
Cockayne [60] (in the 1970s) and Winter [216] (in the 1980s).More recently, sig-
nificant improvements were obtained, allowing the solutionof Euclidean and rec-
tilinear Steiner tree problem instances with several thousand terminals [89, 206,
207, 208, 209, 220, 231].

Nielsen, Winter and Zachariasen [154] adapted the Geosteiner approach to the
uniform orientation (λ-geometry) Steiner tree problem. The efficiency of the
approach depends critically on the characterization of canonical forms given by
Brazil et al. [27] (see Section 3.1). Here we describe the main ideas of the FST
enumeration (or generation) algorithm proposed by Nielsenet al. [154]. It should
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be noted that the so-called concatenation phase of the algorithm — the combina-
tion of FSTs into a complete SMT — is independent of the underlying metric, and
was solved using the branch-and-cut algorithm proposed by Warme [206].

Consider any FSTF in λ-geometry. We may assume that all Steiner points of
F have degree 3, and thatF has at most one bent edge (see Section 2.2). Letc
be the corner point of the bent edge. (IfF has no bent edges then letc be the
middle point of an arbitrary straight edge ofF .) If we split F at c, we obtain two
so-calledhalf FSTs— each of which is an FST with straight edges that has one
“dangling” extension ray (Figure 16). The base of the extension ray is called the
root of the half FST. Note that any FST can be obtained by joining two half FSTs;
the intersection between the extension rays defines the corner point of the single
bent edge in the FST. Also, any half FST can be obtained by joining two half
FSTs; here the intersection becomes the root of the half FST and a new extension
ray is added with the new root as its base (Figure 16).

T1

T2

r2

r1

r

Figure 16:Half FSTsT1 andT2 with rootsr1 andr2 are joined to form a larger half FST with
rootr. The dashed arrow is the extension ray of the new half FST.

In the FST generation algorithm, half FSTs are generated by increasing size (which
is the number of terminals spanned). A single terminal with an extension ray
forms a size 1 half FSTs. Clearly there are2λn such half FSTs. A size 2 half
FST can be obtained by joining two size 1 half FSTs, and more generally, a sizei
half FST can be obtained by joining a sizej half FST with a sizei − j half FST
(wherej ranges from 1 to⌊i/2⌋). The power of this idea comes from thepruning
techniques employed. These are techniques that can eliminate a half FST from
consideration since it can be shown that the half FST cannot be part of any SMT.
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Elementary pruning is based on for example angle propertiesof SMTs in λ-
geometry (see Section 2.2), and on properties such as the lune property which
basically states that terminals cannot be too close to long edges. Bottleneck dis-
tance properties — which bound the edge lengths in an SMT by the edge lengths
in a corresponding MST — are powerful forλ-geometry (as they are for the Eu-
clidean and rectilinear metric). However, these pruning techniques alone are not
sufficient to solve large-scale problem instances.

The concept of canonical forms facilitates pruning based ona cleverly chosen
canonical form. The idea is to choose a canonical form that can be tested bottom-
up in the algorithm, that is, which has effect even for small half FSTs. This can
be achieved by using the edge ordering that comes from a depth-first traversal
starting in the lowest indexed terminal of each FST (under any given ordering of
the terminals). Why is this canonical form effective? Consider a pair of half FSTs
that are to be joined. Either the lowest indexed terminal is among the terminals
spanned by the two half FSTs, or it is “outside” (and thus unknown). In the
former case, we know which terminal has the lowest index, andthis restricts the
distribution of directions in the merged half FST. In the latter case, even more
restrictions can be enforced; if neither the restrictions in the former nor the latter
case can be fulfilled, the resulting half FST can be pruned.

The resulting number of generated FSTs is almost linear in practice, and the size
of the largest generated FST is practically bounded by a constant asn increases.
Using this algorithm, Nielsen et al. [154] were able to solverandomly generated
problem instances with up to 1000 terminals in less than one hour for λ ≤ 8. A
single problem instance with 10000 terminals was solved in less than two days for
λ = 4.

Independently of the work of Nielsen et al. [154], Coulston [67] implemented a
similar algorithm forλ = 4. The algorithm could handle problem instances up to
around 25 terminals — mainly since some of the more sophisticated pruning tech-
niques were not used, among these pruning tests based on canonical forms. More
recently, Pagh [157] adapted the Geosteiner approach to thegeneral weighted
fixed orientation metric. Since no pruning tests based on canonical forms were
employed, this algorithm did not scale well either.
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3.5 Conclusions

The progress in algorithms for solving fixed orientation Steiner tree problems has
been enormous over the last decade. For the problem of computing an SMT for a
given topology, new algorithmic approaches were needed to solve the problem in
linear time. Similar techniques were capable of computing the flexibility polygon
within the same asymptotic running time bound.

For the general SMT problem (where the topology is unknown),well-known tech-
niques from the Euclidean and rectilinear problems could beadapted to the fixed
orientation problem. However, the adaptation of the Geosteiner approach would
not have been particularly successful without the characterization provided by
canonical forms.

One of the future challenges is to fill the gap between the polynomial-time ap-
proximation scheme of Arora [5], and the plethora of practical heuristics for the
problem. It would be useful to have practical heuristics with parameterized ap-
proximation bounds.
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4 Applications and generalizations

In the first decades of very large scale integrated (VLSI) chip production Manhat-
tan routing was the standard. Two layers were used for (signal) wiring, one for
horizontal and one for vertical wires; vias were used to connect wires running in
perpendicular directions. (The de-facto rule that wires ona single layer all run in
the same direction is sometimes denoted thepreferreddirection constraint.)

During the 1990s advances in manufacturing technologies made it possible to
produce chips with more than two interconnect layers. The increased number of
layers opened up the possibility of using alternative directions as to improve the
quality of the routing with respect to congestion, delay andpower usage. As a
general rule, decreasing total wire length improves all these quality measures, and
may even lead to a reduced chip size.

In this section we first discuss some early contributions related to non-Manhattan
routing. The application to printed circuit boards and channel routing is described
first. Then we move on to discuss advantages and disadvantages of pervasive use
of non-Manhattan wiring, that is, for general full-chip routing. We conclude the
section by describing a number of selected generalizationsof the fixed orientation
Steiner tree problem that are motivated by applications in chip design.

4.1 Printed circuit boards and channel routing

The first application of non-Manhattan routing in printed circuit design appears
to be due to Heiss [92]. In 1968, he gave an extension of the classical Lee algo-
rithm [120] that enableddiagonalrouting (Figure 17). Heiss also gave a general-
ization to more than two routing layers (where two layers correspond to the two
surfaces of a double sided printed circuit board). More recently, Stan et al. [191]
presented two other generalizations of Lee’s algorithm.

Another alternative to Manhattan routing was given by Chaudhuri [38] in 1979.
Chaudhuri introduced routing with three uniform orientations (corresponding to
λ = 3) for both printed circuit boards and channel routing. The new metric was
denoted the “Steiner metric” to distinguish it from the usual rectilinear (or Man-
hattan) metric. For printed circuit boards, Chaudhuri described a general routing
scheme for two layers, and he presented a method to deal with the problem of
routing three orientations on only two layers.
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Figure 17:Printed circuit board with diagonal routing (from Heiss [92]).

The other problem that Chaudhuri considered was thechannel routing problem.
Channel routing was one of the basic problems in chip design up to the late 1990s.
In the technology of the time, cells were placed on rows on thechip surface,
and routing was performed in the area between these rows (so-called channels).
A channel consists of two horizontal shores, where the terminals to be intercon-
nected are located. Usually, each net consists of terminalsfrom both shores; hence
the interconnection for each net has to cross the channel.

In the traditionalManhattan routing model, routing is performed on a rectilinear
grid with horizontaltracksand verticalcolumns(Figure 18). The number of tracks
is called thewidthof the channel. The main objective of the channel routing prob-
lem is to minimize the number of tracks needed for the routingas this minimizes
the area used by the channel. This is in general an NP-hard problem. Since the
objective is not to minimize the length of the nets (individually or jointly), chan-
nel routing may result in long connections for some of the nets. For a detailed
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Figure 18:Channel routing models: Manhattan, diagonal, times square, hexagonal and octo-
square.

introduction to the theory and algorithms for the Manhattanmodel, see [9, 126].
In the following we discuss some of the alternatives to the Manhattan model that
have been considered in the literature.

In thediagonal routing model, the rectilinear grid is simply rotated45◦ — hence
there are still only two orientations [140, 141, 143] (Figure 18). One of the im-
mediate advantages of this model is that short two-terminalinterconnections only
require one layer change as compared to the Manhattan model where two changes
always are needed — except when the two terminals can be connected by a direct
vertical connection. Thus fewer vias are in general needed under this model.

Returning to the problem studied by Chaudhuri [38], where three uniform orien-
tations are employed, one may distinguish between two cases. In the first case,
the so-calledtimes square model, one of the three orientations is the (usual) hor-
izontal track, and the other two orientations are denoted right and left tracks, re-
spectively [20, 142, 190, 195, 196]. In the second case, thehexagonal model, one
of the three orientations is vertical [21, 166] (Figure 18).One of the advantages
of the latter is that terminals can be spaced at the same interval that separates the
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wires in the grid; this is not possible under the times squaremodel. Both mod-
els can be shown to have superior properties when compared tothe Manhattan or
diagonal models.

Finally, theocto-square modelmerges the Manhattan and diagonal models. This
model thus has four uniform orientations (corresponding toλ = 4, see Figure 18).
This model is discussed in a series of papers [9, 37, 39, 125, 153, 177, 205, 212,
226]. Although this model clearly has the advantage of having more available
orientations, it also has the disadvantage that the rectilinear and diagonal wires
cannot possibly have the same separation. A slightly different model was dis-
cussed by Chiang and Sarrafzadeh [45], who introduced45◦ wires locally to avoid
so-called knock-knees in the wiring.

One particular subproblem which appears in the channel routing problem — as
well as in a more general setting — is the so-calledwiring problem: Assuming
a layout (of some nets) in the plane, assign each edge of the layout to a unique
layer such that the connectivity of the nets is preserved, and edges of distinct nets
do not overlap on the same layer. Lipski and Preparata [138] presented the first
systematic treatment of this problem, and gave a simple characterization of two-
layer wirability of arbitrary layouts. Tollis [200, 201] extended the theory to all
uniform grids; these are grids where the degree of each grid point is even, and
where the edges are uniformly distributed around each grid point (there exist ex-
actly four such uniform grids — corresponding to two, three,four and six uniform
orientations).

It is unclear to what extent the proposed models and algorithms have found their
way into the design of real chips. Channel routing essentially became obsolete
during the 1990s as a result of the new sea-of-cells technology, where cells could
be placed (more or less) freely on the chip surface; also, over-the-cell routing be-
came possible. In the next subsection we discuss general non-Manhattan routing
which is relevant for current day technology.

4.2 General routing in chip design

The application of multiple orientations to the general routing problem in chip
design was already anticipated by Widmayer et al. [214, 215]in 1985. In the
early 1990s, Burman et al. [33] and Sarrafzadeh and Wong [180] gave the first
practical applications ofλ-geometry to general routing in chip design. During the
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following decade a series of heuristics — mostly with inspiration from rectilinear
and Euclidean counterparts — were proposed for solving the Steiner tree problem
in uniform and fixed orientation metrics (see Section 3.3).

In 2000 Koh and Madden [116] presented the first in-depth study of the feasibility
of large-scale non-Manhattan routing architectures. Using simulation on realis-
tic benchmarks they showed that average wire length reductions between1% and
11% could be obtained for hexagonal routing (λ = 3) for a complete chip. Sim-
ilarly, reductions between6% and17% could be obtained for octilinear routing
(λ = 4). It should be noted that these improvements were obtained from the same
placement of cells on the chip.

Choi et al. [47] presented a similar analysis for octilinearrouting that confirmed
the reductions in wire length; however, these reductions were obtained at the cost
of an increase in the number of non-routed nets and an increase in the number of
vias.

X architecture

The commercial interest in non-Manhattan routing can be witnessed with the for-
mation of the X-Initiative in 2001 [222], a consortium of software and chip com-
panies that supported the development of the so-calledX architecture[197, 198].
The X architecture essentially adds diagonal wires to traditional Manhattan archi-
tecture (corresponding toλ = 4). However, in order to make this work in practice,
a number of difficulties had to be adressed [102].

One of the major problems with the X architecture is that gridded routing does
not work in practice; rectilinear and diagonal wires do not have the same sepa-
ration (see Figure 18, octo-square model). This either results in problems with
signal integrity or delay (if diagonal wires are too close ortoo thin), or results in
suboptimal use of routing area (if only every second diagonal wire is used or the
separation between rectilinear wires is increased). One solution to this problem
— but an algorithmically challenging one — is to drop the preferred direction
constraint and to allow all directions on all layers; this isdenotedliquid routing.
This allows for directional changes on a single layer, and can dramatically reduce
the number of vias.

Ho et al. [96] suggested a multilevel approach for the X architecture. A multilevel
algorithm consists of two main steps: coarsening followed by uncoarsening. The
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coarsening step is similar to the use of a global routing algorithm, but is iteratively
employed. The algorithm of Ho et al. on average reduced wire length by 18.7%
for a set of benchmark instances when compared to Manhattan routing.

Y architecture

As a reaction to the shortcomings of the X architecture, Chenet al. [40, 41, 42, 43]
in 2003 took one step back and investigated the use of hexagonal routing (corre-
sponding toλ = 3); they coined this theY architecture. The advantage is that
gridded routing is in fact possible for this architecture since all parallel wires have
the same separation (see Figure 18, times square or hexagonal model). There-
fore, from an algorithmic point of view, this architecture has a major advantage
over the X architecture. Based on simulations under realistic scenarios, Chen et
al. [42] estimated that the Y architecture improves wire length in the range5−8%
over Manhattan architecture, while the X architecture obtains improvements in
the range9− 11%. If the effect of decrease in routing area can be fully utilized to
make the chip smaller, wire length improvements of approximately23% and29%
are possible for Y and X architecture, respectively.

Although it is clear that both the X and Y architecture have the potential to de-
crease wire length significantly, it is (as of this writing) unclear how many chips
have been produced with these architectures. The first commercial chip (from
Toshiba1) using the X architecture was produced in 2004, and at least one chip
(from ATI2) followed in 2005.

General architecture

In general architectureany number of uniform orientations can be used for rout-
ing. Since each routing layer has a preferred direction, thetotal number of avail-
able orientations usually depends on the number of layers. However, since more
than 10 routing layers are already common, the number of available layers is not
a limiting factor.

The problem of balancing the use of routing resources on the available layers was
studied for the Manhattan architecture by Yildiz and Madden[227, 228], and for

1www.semiconductor.net/article/CA513393.html
2www.edn.com/article/CA608028.html
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general architecture by Agnihotri and Madden [1]. The idea is to make the routing
cost on each layer (as seen by the routing algorithm) depend on the congestion on
the layer. By iteratively adjusting the routing cost on eachlayer, congestion can
be lowered on highly utilized layers.

Paluszewski et al. [158, 159] presented a completely different approach to deal
with congestion when many routing layers are available. Theidea is to exploit the
fact that SMTs usually can be embedded in many different waysin λ-geometry.

The novel idea suggested by Paluszewski et al. [158, 159] is to use a pure geo-
metric approach for routing. In the first phase of the algorithm, SMTs and their
flexibility polygonsare computed for each net on the chip; recall that a flexibility
polygon is a geometric representation of all SMTs for a givennet (see Section 3.2).
Each flexibility polygon is assigned a weight that is equal tothe routing area used
by the SMT divided by the area of the flexibility polygon (hence a degenerate flex-
ibility polygon with no flexibility has weight 1). Note that the weight represents
the average probability that routing resources are needed for a given point in the
flexibility polygon.

Based on the weights of the flexibility polygons, acongestion mapis constructed
for the whole chip area (Figure 19). The congestion map givesthe estimated
routing resources needed for each point of the chip area. Theidea of the algorithm
is now to move wires away from highly congested areas. This isdone by picking a
flexibility polygon with least flexibility in a highly congested area and performing
the actual routing for this SMT — and in such a way that it avoids congested
areas if at all possible. This is repeated until all SMTs are routed, and results in a
so-calledinitial routing.

The next step of the algorithm is to remove overlapping wiresthat still may be left
in the initial routing. This is achieved using traditional Maze routing techniques.
Finally, liquid routing is applied to reduce the number of vias. This means that
wires may be assigned to non-preferred layers. Experimentswith the new method
show that it is indeed an advantage to use flexibility polygons in the initial routing
phase. The initial routing has significantly less overlap than one produced using a
standard routing technique, and the final routing also uses less wire length. When
using 5 or 6 layers, architectures withλ ≥ 4 reduce total wire length with7−18%
when compared to Manhattan routing. Thus, this prototype implementation is a
witness of the potential of applying a general architectureto the routing problem
in chip design.
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Figure 19: Congestion map (from [158]). Blue and white areas have little congestion, green
areas some congestion, while red areas have high congestion.

4.3 Generalizations motivated by chip design

In this section we present a number of generalizations of theSteiner tree problem
that are motivated by chip design. The presentation is not comprehensive and does
not cover all the literature, but it does cover the most important generalizations.
Other generalizations can be found in, e.g. [215].

Wire length estimation

In the placement phase of chip design, wire length can be estimated using a num-
ber of differentnetlength models. The purpose of a netlength model is to quantify
the quality of a given placement; total wire length is usually a primary objective,
but other objectives such as signal delay and power consumption also play an
important role.

Each net of the chip (in Manhattan architecture) is a rectilinear tree spanning a set
of terminalsN . A rectilinear SMT obviously has minimal length, but is NP-hard
to compute. Therefore, computational methods that quicklycan estimate SMT
length — and that can be incorporated directly and efficiently into the objective
function of the placement algorithm — are of great interest.

Consider the smallest axis-parallel rectangle that containsN , the so-calledbound-
ing box BB(N) of N (Figure 20, left). Let|BB(N)| be the perimeter length of
BB(N). In the rectilinear metricit is easy to see that the half-perimeter length
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1

2
|BB(N)| is a lower bound on the SMT length forN . Also, the placement prob-

lem under this model can be solved by linear programming; in fact, it is a solution
to the dual of a transshipment problem [32].

Figure 20:Bounding boxes forλ = 2 (left) andλ = 4 (right) for the same set of terminals.
Each of the lines (in legal orientations) that define the bounding boxes are shown.

Consider the worst-case relative errorρ(n) of the half-perimeter estimate for a set
of n terminals under the rectilinear metric. It is easy to see that ρ(2) = ρ(3) = 1,
that is, the estimate is exact forn = 2 andn = 3. Chung and Hwang [51] studied
the properties ofρ(n) for smalln. Using fairly involved arguments they showed
thatρ(n) ≤ 2 for n ≤ 10 (i.e., the SMT length is at most twice the value of the
lower bound forn ≤ 10). More generally,ρ(n) grows asΘ(

√
n) [50, 51]; the

best known upper bound is1
2
⌈
√

n − 2⌉+ 3

4
and is due to Brenner and Vygen [31].

Therefore, the half-perimeter estimate becomes arbitrarily bad in the worst-case
asn increases. (For uniformly distributed terminals, the expected error is also
Θ(

√
n) in the limit [84].)

Now consider an arbitrary (weighted) fixed orientation metric with σ legal orien-
tations given by unit circleC. Let BBC(N) be a smallest convex polygon with
sides inσ-geometry that containsN . The polygon is a “constrained” convex hull
of N where the sides have restricted orientations; note thatBBC(N) has minimum
perimeter among all such polygons. This generalized bounding box can be com-
puted inO(σn) time as follows. For each of the2σ legal directions, identify a
terminalt such that the right half-plane (as seen fromt and relative to the given
direction) includes all terminals. Clearly, terminalt can be identified inO(n)
time. The intersection of these2σ half-planes definesBBC(N) (see Figure 20).

As in the rectilinear case, the half-perimeter length1

2
|BBC(N)| is exact forn = 2,

but not in general forn > 2. Furthermore, we have the following:

Theorem 4.1 The half-perimeter length1
2
|BBC(N)| is a lower bound on the SMT

length forN under any fixed orientation metric.
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Wei, Dong and Hong [210] experimentally validated this claim for λ = 3, but
provided no proof. Here we sketch a proof of the theorem (see also [169] for a
similar proof for the Euclidean case). LetT be an SMT forN . Consider an outer
walk of T . This outer walk visits the terminals on the boundary ofBBC(N) in
order along the boundary. Consider two consecutive boundary terminalsu andv.
The main observation is that the path betweenu andv along the boundary is a
shortest pathin σ-geometry. Since the path inT betweenu andv is at least the
shortest distance betweenu andv, we have|BBC(N)| ≤ 2|T |C. Thus the theorem
follows.

It is easy to see that the asymptotic results for the rectilinear metric generalize to
arbitraryλ-geometry, sinceλ-metrics are bounded by constant factors from each
other. The same holds for unweighted fixed orientation metrics. For arbitrary
weightedfixed orientation metrics, the constants in the asymptotic bounds depend
on the skewness of the unit disk.

One straightforward way to improve the half-perimeter estimate is to scale it with
a function that depends onn. More precisely, a function of the formC

√
n,

whereC is an appropriate constant, is typically chosen. The constant factorC
is found using statistical methods by performing experiments on uniformly dis-
tributed and/or real-life problem instances. Wei, Dong andHong [210] studied
the half-perimeter estimate forλ = 3. They developed an improved wire length
estimation method denoted APWL-Y by performing more sophisticated scaling
of the half-perimeter estimate. In their method, the scaling not only depends on
n, but also on the “aspect ratio” of the bounding box, that is, the amount of skew-
ness of the bounding box. Based on comprehensive experiments, Wei et al. [210]
conclude that the error of the improved wire length estimateis less than 5% on
average. This error is similar to the error obtained by computing a minimum span-
ning tree (MST) for the terminals; however, computing the wire length estimate is
much faster than computing an MST.

A number of other methods can be used to esimate wire length. For the rectilin-
ear metric, Brenner and Vygen [31] compare the following alternative estimates:
MST length [171], star length (solution to the general Fermat problem forN) and
clique length (sum of distances over all pairs of points divided by some function
of n). Brenner and Vygen [31] argue that the clique model is most appropriate in
placement algorithms that only consider two-terminal connections, that is, where
a fixed topology must be assumed for each net of the chip.
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Delay-driven routing

In the chip routing problem the task is to interconnect the terminals of every net
of the chip. For each netN , one of the terminalsr ∈ N is thesource, while the
remaining terminals inN are thesinks. The electrical signal should propagate
from the source to the sinks via the constructed tree. Thus the Steiner tree is in
fact directed — or a so-calledSteiner arborescence.

One of the important objectives that should be taken into account in the routing
phase of a net is thesignal delayfrom the source to the sinks. In particular, if
the net is part of thecritical signal pathof the chip, then the signal delay of the
constructed tree has a direct influence on the clock-rate (orperformance) of the
chip. Signal delay is related to the length of the paths from the source to the sinks,
so minimizing total path length often improves the signal delay properties of the
tree. However, the actual signal delay has more complex behaviour, and depends
not only on the length of the path itself, but also on the length of the subtrees
that are rooted on the path. Furthermore, for a simple two-terminal connection,
signal delay increases quadratically with the length of theconnection. The popular
Elmore delay model [74, 86, 113, 161] serves as a good estimation for computing
the signal delay. The slightly simpler distributed RC delaymodel is easier to use
for optimization, but serves best as an upper bound on the delay [65]. An overview
of models and techniques for optimizing delay can be found in[63, 113]. The
problem of minimizing Elmore delay is still a major algorithmic challenge in chip
design [117].

In the remainder of this subsection we consider some simpler— but still useful
— models that can incorporate delay into Steiner tree algorithms. The simplest
model is to assume that the delay of a wire is linear in its length. Ignoring all other
objectives, a shortest path tree would provide minimum delay. However, shortest
path trees usually have unacceptable high total length. (Note that a shortest-path
tree in the Euclidean metric is a star centered at the source.) Therefore, so-called
shallow-light trees [7] have attracted considerable interest. These are trees that
both have short paths from their source to their sinks (are “shallow”) and that
have small total length (are “light”).

The two objectives, path length and total length, can be combined in a number
of different ways, e.g., by bounding both objectives, by bounding one objective
while minimizing the other, or by minimizing a weighted sum of both objectives.
This can be achieved by combining Prim’s algorithm for constructing minimum

59



spanning trees with Dijkstra’s algorithm for constructingshortest path trees [3, 64,
114, 151]. Shallow-light Steiner trees can also be obtainedby adding appropriate
shortest paths to a heuristic SMT [64]. Most of the algorithms for constructing
shallow-light trees can easily be extended to any fixed orientation metric as they
are in their core graph based.

For most nets on the chip, an SMT has sufficiently good delay properties. Further-
more, SMTs in fixed orientation metrics are usually not unique (see Section 3.2),
and the SMTs for a given terminal set may have varying delay properties (Fig-
ure 21).

rr

Figure 21:Two rectilinear SMTs for the same set of terminals. The SMT onthe right has better
signal delay properties than the SMT on the left.

The construction of (short) rectilinear Steiner trees thatare good with respect to
some other objective than length was considered by Boese et al. [11, 12, 13] and
by Bozorgzadeh et al. [18, 19]. Boese et al. introduced aGlobal Slack Removal
algorithm that attempts to improve the delay properties of aSteiner tree without
increasing its length. Peyer et al. [163] took this idea one step further and con-
sidered the problem of constructing rectilinear SMTs with somesecondarydelay-
related objective. More specifically, they focused on the problem of constructing
a rectilinear SMT with the weighted sum of path lengths as thesecondary objec-
tive (i.e., path lengths from a given source to a set of sinks). An optimal solution
to this problem exists in the Hanan grid for the terminal set [232], but Peyer et
al. [163] proved the following stronger result:

Theorem 4.2 The Steiner points of an optimal solution to the rectilinearSteiner
tree problem with weighted sum of path lengths secondary objectivemustoverlap
with vertices of the Hanan grid for the terminal set.

Adding the secondary objective to the problem thus forces the Steiner points to
belong to the Hanan grid. Contrary to the rectilinear problem, no structural results
are known for the same problem under other fixed orientation metrics; however,
it is easy to see that every FST of an optimal solution can be embedded in such
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a way that the FST has at most one bent edge (see Theorem 2.6). We conjecture
that there exist strong characterizations based on the concept of canonical forms
(Section 3.1).

For the rectilinear problem, Peyer et al. [163] presented both exact and heuristic
algorithms. The heuristic algorithm, denotedExtended Global Slack Removal
(XGSR), is also capable of minimizing Elmore delay as a secondary objective.
Experiments with real-life chip instances with 4 to 40 terminals were presented.
(Note that rectilinear SMTs with 2 or 3 terminals are always optimal wrt. weighted
sum of path lengths.) On average, XGSR constructed secondary objective optimal
trees for 98.4% of the problem instances; only 52.0% of the problem instances
were optimal before applying XGSR. Figure 22 shows two real-life rectilinear
SMTs — one of which is secondary objective optimal.

Group interconnections

During the routing phase of chip design, it is usually assumed that each pin of the
net is a single point. Thus computing a minimum length interconnection is the
same as computing a Steiner minimum tree for the pins of the net. However, on a
real chip a pin typically consists of several rectangles (orline segments), and any
point on this set of rectangles suffices as a connection point. This fact motivates
the study of so-calledgroupSteiner trees, where each “terminal” consists of a set
of rectangles. The roots of this problem go all the way back toMelzak [146], who
discussed the Euclidean group problem (where the groups areconvex sets in the
plane).

As shown by Zachariasen and Rohe [235], the rectilinear group problem with
rectangles reduces to the rectilinear group problem with points, as the problem can
be solved in the Hanan grid of the corner points of the given rectangles. So from
here on we consider the following definition of the rectilinear group Steiner tree
problem: Given a set of groupsN = {N1, N2, . . . , Nk}, where each groupNi, i =
1, . . . , k, is a finite set of points in the plane, construct a shortest rectilinear tree
which spans at least one point from each group. Such a tree is called arectilinear
group Steiner minimum tree (RGSMT). A real-life RGSMT is shown on Figure 23.

This problem is NP-hard even for very restricted cases, e.g., when all the termi-
nals are required to lie on two parallel lines [103] or when Steiner points are not
allowed [104]. In contrast to the ordinary Steiner tree problem, no polynomial-
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SMT (503)

r

XGSR (359)

r

Figure 22:Real-life chip net example with 8 terminals. Both trees are rectilinear SMTs. The
weighted sum of path lengths is given for each tree. The tree obtained by XGSR is secondary
objective optimal.

time approximation scheme or even constant-approximationalgorithm is known
for the problem. For the more general group Steiner tree problem in graphsit is
known that the problem cannot be approximated better than a factorln k in poly-
nomial time, assuming P6= NP [75, 104]. However, this does not exclude the
existence of better approximation algorithms for geometric variants of the prob-
lem. Scultze [183] gave a constant-factor algorithm for theEuclidean problem
where the groups are contained in disjoint regions with bounded “fatness” (disks
or squares have for example bounded fatness).

Practical heuristics for the rectilinear group Steiner tree problem were first consid-
ered by Reich and Widmayer [172]. These algorithms were experimentally eval-
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Figure 23: Rectilinear group Steiner minimum tree (real-life chip instance from [235]). The
line segments within each group (marked by a “bubble”) are electrically equivalent, and the tree
should span at least one point from each group.

uated in [104] and appeared to compute good solutions. Otherpractical heuristics
showing good performance have been proposed [8, 93].

As mentioned above, the rectilinear group Steiner tree problem can be reduced
to the group Steiner tree problem in the Hanan grid graph for the given points.
Furthermore, it is easy to transform the group problem to theordinary Steiner tree
problem in a graph by introducing so-called super-terminals to the graph problem.
Therefore, the problem can be solved using any exact algorithm for the Steiner tree
problem in graphs.

Zachariasen and Rohe [235] gave a first (tailored) exact algorithm for solving the
rectilinear group Steiner tree problem. They presented techniques to reduce the
given set of points, that is, to remove points in the groupsNi from consideration by
showing that an RGSMT exists that does not use these points. Also, a generalized
version of Zachariasen’s [231] full Steiner tree generation algorithm was used to
reduce the Hanan grid graph — hence speeding up standard branch-and-cut algo-
rithms for solving the corresponding graph problem. Computational experiments
on real-life and random problem instances with up to 100 groups were performed.
The techniques employed resulted in a speed-up approachingan order of magni-
tude, and increased the range of practically solvable real-life problem instances
from around 40 groups to beyond 70 groups.

Except from the above mentioned work on the rectilinear problem, no literature
appears to exist on the group problem for fixed or uniform orientation metrics.
One particular difficulty is that no computationally efficient reduction to a graph
problem exists, as the ordinary problem does not reduce to a polynomially-sized
graph problem (see Section 2.3). From an approximation algorithm point of view,
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it is likely that all fixed orientation metrics have the same asymptotical upper and
lower bounds on their approximation ratio. However, as pointed out above, no
non-trivial/specialized upper or lower bounds are currently known.

Obstacle-avoiding interconnections

When solving the routing problem in chip design, certain regions of the chip sur-
face may be forbidden — or may have certain restrictions. Such regions are usu-
ally denotedobstacles. Obstacles typically consist of pre-placed macros or other
circuits (Figure 24). In older technologies, where the number of available lay-
ers was limited, routing across pre-placed circuits was impossible. These circuits
formed hard obstacles. In newer technologies, where the number of layers is
higher, it is possible to route wires across pre-placed circuits. However, the length
of wires across suchsoft obstacles must usually be bounded, since there is no
room for placing buffers/repeaters in areas with obstacles[148].

Figure 24: Typical distribution of obstacles on two real-life chips. (Pictures reproduced by
courtesy of Research Institute for Discrete Mathematics, University of Bonn.)

An obstacle-avoiding Steiner minimum tree (OSMT) is a tree that interconnects
a given set of terminals using minimum total length while avoiding a set of given
hard obstacles (Figure 25). The problem with hard, polygonally-bounded obsta-
cles has by far received the most attention in the literature, and in the follow-
ing we focus on this particular problem. (Studies of other variants can be found
in [121, 124, 148].)
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a) b) c)

Figure 25:Soft and hard obstacles. a) A rectilinear SMT that ignores anobstacle. b) A rectilin-
ear SMT that respects a soft obstacle by bounding (the lengthof) the part of the tree that overlaps
with the obstacle; note that the tree is not an SMT for terminals. c) An hard obstacle and an
obstacle-avoiding rectilinear SMT.

The construction of obstacle-avoidingshortest pathsforms a building block in
the construction of obstacle-avoiding Steiner trees. A shortest obstacle-avoiding
path can be found in the so-called visibility graph [6, 211],which has the set of
terminals and obstacle corners as vertices, and an edge between two vertices if
it does not properly intersect one of the given obstacles. Wuet al. [221] defined
the so-called track-graph for the rectilinear problem, andshowed that obstacle-
avoiding rectilinear shortest paths can be computed efficiently using this graph.
Widmayer [213] gave anO(n log n) time construction of a rectilinear shortest
path preserving graph of sizeO(n logn), wheren is the number of terminals and
obstacle corners.

Ganley and Cohoon [78] observed that the obstacle-avoidingrectilinear Steiner
tree problem can be solved in a subset of the Hanan grid (see Section 1.2) of
the terminals and obstacle corners — thus providing an efficient reduction to the
Steiner tree problem inplanar graphs. Müller-Hannemann and Schulze [149] also
gave an approximative reduction from the obstacle-avoidingoctilinearSteiner tree
problem to the Steiner tree problem planar graphs. For the Euclidean problem,
Provan [169] gave an approximative reduction to an almost-planar graph problem
and derived a fully polynomial-time approximation scheme (FPTAS) for the spe-
cial case where the terminals lie on a constant number of boundary polygons and
interior points. Provan also defined the so-called path-convex hull — as a general-
ization of the convex hull of the terminals in the obstacle-free case — and showed
that there exists an OSMT in this region. Winter [217] extended the notion of
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visibility graphs to accomodate the construction of Euclidean OSMTs.

In addition to these graph problem reductions, a number of designated heuristics
and exact algorithms have been considered for the obstacle-avoiding problem.
Winter and Smith [219] gave a polynomial-time algorithm forthe construction
of a Euclidean OSMT for 3 terminals and one convex obstacle. Zachariasen and
Winter [237] experimented with an exact algorithm based on the Geosteiner ap-
proach (see Section 3.4), and were able to solve Euclidean problem instances with
up to 150 terminals.

For the rectilinear problem, Ganley and Cohoon [78] made experiments with a
greedy Steiner point insertion heuristic. Feng et al. [76] and Jin et al. [109] devised
O(n logn) time heuristics for the obstacle-avoiding problem inλ-geometry.

The polynomial-time approximation scheme (PTAS) of Arora [5] for the ordinary
Steiner tree problem does not work when hard obstacles are present. It was for a
while an open problem whether a PTAS existed for the obstacle-avoiding problem.
Recently, Borradaile et al. [16, 17] showed that the Steinertree problem in planar
graphs admits a PTAS. Müller-Hanneman and Tazari [150] used this result to
design a PTAS for the obstacle-avoiding problem under any uniform orientation
metric. (It appears that this approach also works for any fixed orientation metric.)
The result is obtained by reducing the geometric problem to an approximatively
equivalent problem in a planar graph and applying the PTAS ofBorradaile et al.

Rotational Steiner tree problem

Given some fixed orientation metric, suppose that we are permitted to rotate the
coordinate system (or the unit circle), that is, to rotate all legal orientations simul-
taneously. Let the rotation angle beα ∈ [0, π[. What is the value ofα minimizing
the length of the SMT?

Clearly thisrotational Steiner tree problemis a harder problem than the ordinary
Steiner tree problem, since the ordinary problem just corresponds to solving the
problem forα = 0. In this section we give some structural properties ofrota-
tionally optimal SMTswhich are trees that have minimum length over all possible
α ∈ [0, π[. (In fact, it is easy to see that we need only consider the interval [0, π/λ[
in λ-geometry due to the symmetry of the unit circle.) The main result for general
σ-geometry is the following:
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Theorem 4.3 In σ-geometry, a rotationally optimal SMT has at least one FST
that has no bent edges and that uses at mostthreeorientations.

The proof works by contradiction. If all FSTs contain bent edges, then the length
of the tree as a function ofα turns out to bestrictly concave. This property was
proved by Nielsen et al. [156] for the rectilinear problem; the fact that rectilinear
FSTs can be assumed to have Hwang-topology (see Section 1.3)enabled a fairly
straightforward proof. Similarly, for the problem inλ-geometry whereλ is a
multiple of 3, the property that the Steiner points of an FST can be assumed to
coincide with the Steiner points for the corresponding Euclidean FST [155] made
it possible to give a fairly simple proof for this special case [23].

The proof of Theorem 4.3 for generalλ requires a more careful study of how the
length of an FST changes under rotation of the legal orientations. The proof given
by Nielsen et al. [23] is in fact so general that it also coversthe fixed orientation
problem. It should be noted that the property that the lengthis a strictly concave
function ofα only helps to prove that there are no bent edges in at least oneFST. In
order to prove that there are at most three orientations, theresults of Section 2.2
on zero-shifts and direction sets are employed. The three orientations must all
have either primary or secondary orientations; forλ being a multiple of 3 this
means that there must be at least one FST that has exactly the same embedding as
a Euclidean FST with the same topology (i.e., with edges meeting at120◦ angles).

Experimental results presented in [23] indicate that it is indeed possible to achieve
non-trivial length reductions when rotating the legal orientations. On the other
hand, these reductions (as could be expected) become negligible when the num-
ber of terminals increases or when the number of legal orientations increases.
Nielsen et al. [23] conjectured that the structural resultson rotational optimal
SMTs may turn out to give further insight into the problem of determining the
Steiner ratio inλ-geometry for allλ (see Section 2.2).

Other generalizations

In this last subsection we briefly mention some other generalizations of the Steiner
tree problem that have been studied. Melzak [145] and Underwood [203] con-
sidered the problem of minimizing lengthplus a constant times the number of
Steiner points; by increasing the constant, a tree with fewer Steiner points is ob-
tained. Further generalizations were given by Melzak [145,146], who studied a
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general geometric problem where a weighted sum of the length, sum of degrees
of terminals, sum of degrees of Steiner points and number of Steiner points is
minimized.

Frommer et al. [77] considered an interconnection problem where the cost of
edges depend on their location in the plane (i.e., both on their orientation and
on their specific location).

Finally, Sarrafzadeh et al. [178] studied rectilinearfloatingSteiner trees. In this
problem multiple Steiner trees share a terminal that is movable. This problem is
relevant in the placement phase of chip design. The problem is to find the position
of the terminal that minimizes overall tree length.

4.4 Conclusions

One of the major challenges of applying non-Manhattan architectures to routing in
chip design is the necessity ofliquid routing — namely that multiple orientations
must be allowed on a single layer in order to reduce the numberof vias. Without
liquid routing, the advantages of multiple orientations are quickly eaten up by
layer change costs.

One particular problem for the X architecture, which is not present in the Manhat-
tan or the Y architecture, is that gridded routing does not work — the orientations
do not have the same separation. Thus traditional grid-based routing algorithms
must be abandoned.

Despite these challenges, there is no doubt that future integrated circuits are going
to use more than two orientations for routing — in one way or the other. Hence
the theory and the algorithms developed will most likely play an important role in
the future.
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Final remarks

The Steiner tree problem in Minkowski (and other) spaces wasdiscussed in the
book by Hwang, Richards and Winter from 1992 [101, page 287].One interesting
remark is the following:

“What has been missing in the literature is the invention of efficient algorithms
to construct a full SMT for a given topology, like what the Melzak FST algorithm
does for the Euclidean plane. ... Therefore, finding these efficient algorithms
for small numbers of terminals becomes a priority task to attack the Steiner tree
problem for general metric spaces.”

In Brazil’s survey from 2001 on the uniform orientation problem [22], the first of
three open problems is the following:

“Given λ > 3 and a terminal setN , does there exist a polynomial-time algorithm
for finding a Steiner minimumλ-tree for any given Steiner topology onN?”

The contributions of this dissertation answer Brazil’s question in the affirmative,
and even generalize the result to arbitrary (weighted) fixedorientation problems.
The dissertation is also a significant contribution to the general problem men-
tioned by Hwang, Richards and Winter.

The second open problem mentioned by Brazil is related to thegeneralized Hanan
grid (see our Open Problem 2). Our dissertation gives no direct answers to this
question, but it is likely that the theory developed will play a crucial role in solving
this open problem. In contrast to Brazil, we conjecture thatTheorem 2.8 is tight.

The third and final open problem mentioned by Brazil is on the Steiner ratio for
general uniform orientation metrics (see our Open Problem 1). Time will show
whether this dissertation has provided significant resultsfor the solution of this
problem.

Solving open problems is just one part of the story. Perhaps the most significant
contribution of our dissertation is its capability to link theory with algorithms, and
to link algorithms with applications. The scope of the dissertation — namely fixed
orientation interconnection problems — is not particularly broad, but the results
cover the full spectrum from theory to applications.
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Open problems

Open Problem 1 Determine the exact Steiner ratio for allλ-metrics (see Sec-
tion 2.2).

Open Problem 2 Prove that the bound given by Theorem 2.8 is tight, that is,
it is sufficientand necessaryto consider then − 2 generalized Hanan grid for a
general fixed orientation metric.

Open Problem 3 Prove (or disprove) that the distance between two points under
a general (weighted) fixed orientation metric can be computed in constant time.
(A logarithmic running time can easily be achieved by performing a binary search
on the sorted set of given legal orientations.)

Open Problem 4 Give aO(n log n) time algorithm to construct aseparableMST
for n terminals under any fixed orientation metric (see Section 3.3).

Open Problem 5 Give aO(n) time algorithm to construct an optimal embed-
ding for a separable MST forn terminals under any fixed orientation metric (see
Section 3.3).

Open Problem 6 Prove (or disprove) that the SMT for a set of 10 or more
terminals on the boundary of a hexagon under the hexagonal metric (λ = 3) is a
minimum spanning tree for the terminals (see Section 3.3).
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Summary (in Danish)

I forbindelse med design af integrerede kredsløb (chips) indgår der en række
såkaldte forbindelsesproblemer. En moderne chip beståraf flere milliarder tran-
sistorer, som skal forbindes med metalledninger på chippens overflade. Disse
metalledninger lægges i et (lille) antal lag, således at uafhængige elektriske net
ikke overlapper med hinanden. Den traditionelle fremstillingsteknologi kan kun
håndtere horisontale og vertikale forbindelser på chippens overflade — og bliver
betegnet Manhattan-arkitektur.

De seneste 10 år har interessen for generelle arkitekturer, hvor mere end to ori-
enteringer kan benyttes til at forbinde transistorerne, været stigende. Denne ud-
vikling har resulteret i en betydelig forskning i forbindelsesproblemer med faste
(men ellers vilkårlige) orienteringer. Minimering af forbindelsernes længde — det
såkaldte Steiner problem med faste orienteringer — har været genstand for særlig
opmærksomhed.

Denne doktorafhandling består af 12 forskningsartikler samt en oversigtsartikel
om Steiner problemet med faste orienteringer — med nogle af dets generalis-
eringer. Et af hovedbidragene er en lineær-tids algoritme,der kan konstruere et
minimalt Steiner træ for en given topologi. Desuden vises, at samme problem
kan løses ved hjælp af lineær programmering. For det generelle problem, hvor
topologien er ukendt, præsenteres en eksakt algoritme, derkan løse problemet
med flere tusinde punkter til optimalitet. Der præsenteres et nyt paradigma for
konstruktion af netforbindelser på en chip under en generel arkitektur med faste
orienteringer. Resultaterne dokumenterer, at der er klarefordele ved at benytte
mere end to orienteringer i chip design.

Afhandlingen afsluttes med en beskrivelse af en række generaliseringer af Steiner
problemet, der udspringer fra chip design. Der præsentereset katalog af proble-
mer, som kan løses på det såkaldte Hanan gitter. Desuden behandles generali-
seringer, som kan håndtere signalforsinkelser og gruppeforbindelser. Til sidst
gives en række egenskaber for Steiner problemet med tilladtrotation af de faste
orienteringer.

Resultaterne udgør et væsentligt teoretisk og algoritmiskbidrag til forståelsen af
Steiner problemet med faste orienteringer. Desuden fokuserer afhandlingen på
anvendelser i chip design.
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